CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 1-3
FREQUENCY : 50 MHz
Degrees of equivalence: Di = xi - xR and expanded uncertainty Ui (k = 2),
both expressed in 10-3
Open symbol represents value for laboratory in Associate States and Economies of the CGPM.
Blue triangles: Participants in EUROMET.EM.RF-K0.CL
SPRING Singapore used the repaired transfer standard PTB 1-3-1
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 1-3
FREQUENCY : 1 GHz
Degrees of equivalence: Di = xi - xR and expanded uncertainty Ui (k = 2),
both expressed in 10-3
Open symbol represents value for laboratory in Associate States and Economies of the CGPM.
Blue triangles: Participants in EUROMET.EM.RF-K0.CL
SPRING Singapore used the repaired transfer standard PTB 1-3-1
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 1-3
FREQUENCY : 10 GHz
Degrees of equivalence: Di = xi - xR and expanded uncertainty Ui (k = 2), both expressed in 10-3
Open symbol represents value for laboratory in Associate States and Economies of the CGPM.
Blue triangles: Participants in EUROMET.EM.RF-K0.CL
SPRING Singapore used the repaired transfer standard PTB 1-3-1
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 1-3
FREQUENCY : 18 GHz
Degrees of equivalence: Di = xi - xR and expanded uncertainty Ui (k = 2),
both expressed in 10-3
Open symbol represents value for laboratory in Associate States and Economies of the CGPM.
Blue triangles: Participants in EUROMET.EM.RF-K0.CL
SPRING Singapore used the repaired transfer standard PTB 1-3-1
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 1-3
FREQUENCY : 20 GHz
Degrees of equivalence: Di = xi - xR and expanded uncertainty Ui (k = 2),
both expressed in 10-3
Open symbol represents value for laboratory in Associate States and Economies of the CGPM.
Blue triangles: Participants in EUROMET.EM.RF-K0.CL
SPRING Singapore used the repaired transfer standard PTB 1-3-1
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 1-3
FREQUENCY : 23 GHz
Degrees of equivalence: Di = xi - xR and expanded uncertainty Ui (k = 2),
both expressed in 10-3
Open symbol represents value for laboratory in Associate States and Economies of the CGPM.
Blue triangles: Participants in EUROMET.EM.RF-K0.CL
SPRING Singapore used the repaired transfer standard PTB 1-3-1
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 1-3
FREQUENCY : 26 GHz
Degrees of equivalence: Di = xi - xR and expanded uncertainty Ui (k = 2),
both expressed in 10-3
Open symbol represents value for laboratory in Associate States and Economies of the CGPM.
Blue triangles: Participants in EUROMET.EM.RF-K0.CL
SPRING Singapore used the repaired transfer standard PTB 1-3-1
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 2-6
FREQUENCY : 50 MHz
Degrees of equivalence: Di = xi - xR and expanded uncertainty Ui (k = 2),
both expressed in 10-3
Open symbol represents value for laboratory in Associate States and Economies of the CGPM.
Blue triangles: Participants in EUROMET.EM.RF-K0.CL
SPRING Singapore used the repaired transfer standard PTB 2-6-1
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 2-6
FREQUENCY : 1 GHz
Degrees of equivalence: Di = xi - xR and expanded uncertainty Ui (k = 2),
both expressed in 10-3
Open symbol represents value for laboratory in Associate States and Economies of the CGPM.
Blue triangles: Participants in EUROMET.EM.RF-K0.CL
SPRING Singapore used the repaired transfer standard PTB 2-6-1
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 2-6
FREQUENCY : 10 GHz
Degrees of equivalence: Di = xi - xR and expanded uncertainty Ui (k = 2),
both expressed in 10-3
Open symbol represents value for laboratory in Associate States and Economies of the CGPM.
Blue triangles: Participants in EUROMET.EM.RF-K0.CL
SPRING Singapore used the repaired transfer standard PTB 2-6-1
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 2-6
FREQUENCY : 18 GHz
Degrees of equivalence: Di = xi - xR and expanded uncertainty Ui (k = 2),
both expressed in 10-3
Open symbol represents value for laboratory in Associate States and Economies of the CGPM.
Blue triangles: Participants in EUROMET.EM.RF-K0.CL
SPRING Singapore used the repaired transfer standard PTB 2-6-1
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 2-6
FREQUENCY : 20 GHz
Degrees of equivalence: Di = xi - xR and expanded uncertainty Ui (k = 2),
both expressed in 10-3
Open symbol represents value for laboratory in Associate States and Economies of the CGPM.
Blue triangles: Participants in EUROMET.EM.RF-K0.CL
SPRING Singapore used the repaired transfer standard PTB 2-6-1
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 2-6
FREQUENCY : 23 GHz
Degrees of equivalence: Di = xi - xR and expanded uncertainty Ui (k = 2),
both expressed in 10-3
Open symbol represents value for laboratory in Associate States and Economies of the CGPM.
Blue triangles: Participants in EUROMET.EM.RF-K0.CL
SPRING Singapore used the repaired transfer standard PTB 2-6-1
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 2-6
FREQUENCY : 26 GHz
Degrees of equivalence: Di = xi - xR and expanded uncertainty Ui (k = 2),
both expressed in 10-3
Open symbol represents value for laboratory in Associate States and Economies of the CGPM.
Blue triangles: Participants in EUROMET.EM.RF-K0.CL
SPRING Singapore used the repaired transfer standard PTB 2-6-1
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 1-3
FREQUENCY : 50 MHz
Lab i | Di | Ui |
/ 10-3 | / 10-3 | |
NMIJ | -3.8 | 3.4 |
NRC | -2.9 | 8.2 |
NIST | 2.1 | 17.3 |
METAS | -5.6 | 12.2 |
CSIR-NML | 5.4 | 14.1 |
PTB | 1.1 | 4.5 |
NMIA | 1.4 | 4.5 |
NPL | -0.9 | 3.6 |
MIRS/SIQ | 2.4 | 6.3 |
INRIM | 2.9 | 10.6 |
SPRING* | 4.1 | 13.5 |
EIM | -4.1 | 14.0 |
SP | -2.1 | 5.8 |
NPL | -1.0 | 2.4 |
AREPA | 6.9 | 8.0 |
PTB | -0.4 | 4.0 |
* Laboratory having used the transfer standard PTB 1-3-1.
In blue: participants in EUROMET.EM.RF-K10.CL
Results are presented under A4 printable format in Summary Results (.PDF file).
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 1-3
FREQUENCY : 1 GHz
Lab i | Di | Ui |
/ 10-3 | / 10-3 | |
NMIJ | -4.0 | 4.2 |
NRC | 0.3 | 8.4 |
NIST | -1.9 | 17.6 |
METAS | -4.0 | 14.2 |
CSIR-NML | 2.0 | 16.2 |
PTB | -1.9 | 5.5 |
NMIA | 0.0 | 5.5 |
NPL | -2.0 | 6.5 |
MIRS/SIQ | -1.0 | 6.5 |
INRIM | 5.7 | 12.8 |
VNIIFTRI | 4.0 | 6.5 |
SPRING* | -2.0 | 13.6 |
EIM | -0.9 | 16.0 |
SP | -1.9 | 6.4 |
NPL | -2.6 | 6.0 |
AREPA | 6.1 | 8.0 |
PTB | -1.7 | 5.0 |
* Laboratory having used the transfer standard PTB 1-3-1.
In blue: participants in EUROMET.EM.RF-K10.CL
Results are presented under A4 printable format in Summary Results (.PDF file).
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 1-3
FREQUENCY : 10 GHz
Lab i | Di | Ui |
/ 10-3 | / 10-3 | |
NMIJ | 2.2 | 4.2 |
NRC | -1.2 | 8.1 |
NIST | 0.1 | 17.7 |
METAS | -0.6 | 20.0 |
CSIR-NML | 4.4 | 22.0 |
PTB | 1.2 | 8.1 |
NMIA | 0.4 | 9.5 |
NPL | -2.6 | 8.9 |
MIRS/SIQ | -3.6 | 14.1 |
INRIM | -7.2 | 27.0 |
VNIIFTRI | 19.4 | 12.1 |
SPRING* | 2.6 | 14.9 |
EIM | -13.6 | 20.0 |
SP | -1.6 | 9.6 |
NPL | -4.3 | 8.8 |
AREPA | 4.4 | 16.0 |
PTB | 2.5 | 8.0 |
* Laboratory having used the transfer standard PTB 1-3-1.
In blue: participants in EUROMET.EM.RF-K10.CL
Results are presented under A4 printable format in Summary Results (.PDF file).
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 1-3
FREQUENCY : 18 GHz
Lab i | Di | Ui |
/ 10-3 | / 10-3 | |
NMIJ | 3.5 | 11.9 |
NRC | 6.1 | 10.0 |
NIST | -2.7 | 17.8 |
METAS | -3.7 | 20.2 |
CSIR-NML | -3.7 | 26.2 |
PTB | -1.3 | 10.4 |
NMIA | 1.3 | 12.9 |
NPL | -2.7 | 11.4 |
MIRS/SIQ | 5.3 | 16.2 |
INRIM | -4.4 | 27.7 |
VNIIFTRI | -20.7 | 14.3 |
SPRING* | -7.1 | 19.8 |
EIM | -3.5 | 28.0 |
SP | -7.5 | 13.2 |
NPL | -4.9 | 10.6 |
AREPA | 4.5 | 11.0 |
PTB | 0.9 | 10.0 |
* Laboratory having used the transfer standard PTB 1-3-1.
In blue: participants in EUROMET.EM.RF-K10.CL
Results are presented under A4 printable format in Summary Results (.PDF file).
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 1-3
FREQUENCY : 20 GHz
Lab i | Di | Ui |
/ 10-3 | / 10-3 | |
NMIJ | 5.2 | 8.8 |
NRC | 2.5 | 10.4 |
NIST | -1.7 | 18.4 |
METAS | 1.4 | 22.4 |
CSIR-NML | 4.4 | 30.3 |
PTB | -1.3 | 11.7 |
NMIA | 4.4 | 19.0 |
NPL | 3.4 | 11.7 |
MIRS/SIQ | 2.4 | 16.5 |
INRIM | -8.4 | 26.5 |
VNIIFTRI | -19.6 | 22.4 |
SPRING* | -0.9 | 20.2 |
EIM | -34.8 | 26.0 |
SP | 1.2 | 13.2 |
NPL | -2.3 | 10.6 |
AREPA | 13.2 | 28.0 |
PTB | 1.0 | 11.0 |
* Laboratory having used the transfer standard PTB 1-3-1.
In blue: participants in EUROMET.EM.RF-K10.CL
Results are presented under A4 printable format in Summary Results (.PDF file).
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 1-3
FREQUENCY : 23 GHz
Lab i | Di | Ui |
/ 10-3 | / 10-3 | |
NMIJ | 1.0 | 9.6 |
NRC | 3.2 | 10.3 |
NIST | -2.7 | 18.8 |
METAS | 2.8 | 22.3 |
CSIR-NML | 5.8 | 32.2 |
PTB | -0.1 | 13.5 |
NMIA | 1.8 | 18.8 |
NPL | 5.8 | 13.7 |
MIRS/SIQ | 0.8 | 16.4 |
INRIM | -13.7 | 38.2 |
VNIIFTRI | -7.2 | 24.3 |
SPRING* | 0.8 | 26.3 |
EIM | -7.5 | 28.0 |
SP | -1.5 | 16.0 |
NPL | 0.2 | 12.8 |
AREPA | 12.5 | 34.0 |
PTB | 5.5 | 13.0 |
* Laboratory having used the transfer standard PTB 1-3-1.
In blue: participants in EUROMET.EM.RF-K10.CL
Results are presented under A4 printable format in Summary Results (.PDF file).
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 1-3
FREQUENCY : 26 GHz
Lab i | Di | Ui |
/ 10-3 | / 10-3 | |
NMIJ | -20.8 | 14.5 |
NRC | 3.0 | 10.6 |
NIST | -8.3 | 19.3 |
METAS | -13.8 | 24.4 |
CSIR-NML | 2.2 | 38.3 |
PTB | -0.1 | 17.6 |
NMIA | -2.8 | 18.7 |
NPL | 4.2 | 16.0 |
MIRS/SIQ | -3.8 | 16.6 |
INRIM | -22.5 | 37.7 |
VNIIFTRI | 1.2 | 28.3 |
SPRING* | -2.4 | 17.4 |
EIM | -23.1 | 30.0 |
SP | 4.9 | 20.8 |
NPL | 1.5 | 15.0 |
AREPA | 6.9 | 34.0 |
PTB | -0.5 | 17.0 |
* Laboratory having used the transfer standard PTB 1-3-1.
In blue: participants in EUROMET.EM.RF-K10.CL
Results are presented under A4 printable format in Summary Results (.PDF file).
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 2-6
FREQUENCY : 50 MHz
Lab i | Di | Ui |
/ 10-3 | / 10-3 | |
NMIJ | -5.0 | 4.7 |
NIST | 1.5 | 17.6 |
METAS | -4.5 | 12.6 |
CSIR-NML | 3.5 | 14.5 |
PTB | -0.6 | 5.5 |
NMIA | 0.5 | 5.5 |
NPL | -2.3 | 5.1 |
MIRS/SIQ | 1.5 | 7.1 |
INRIM | 5.6 | 12.2 |
SPRING* | 1.1 | 13.9 |
SP | -1.9 | 5.8 |
NPL | -0.9 | 2.4 |
AREPA | 5.1 | 8.0 |
NMi-VSL | -8.2 | 7.6 |
LNE | -3.7 | 4.6 |
UME | 3.3 | 5.6 |
PTB | -0.5 | 4.0 |
* Laboratory having used the transfer standard PTB 2-6-1.
In blue: participants in EUROMET.EM.RF-K10.CL
Results are presented under A4 printable format in Summary Results (.PDF file).
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 2-6
FREQUENCY : 1 GHz
Lab i | Di | Ui |
/ 10-3 | / 10-3 | |
NMIJ | -4.0 | 4.5 |
NIST | -2.0 | 17.7 |
METAS | -3.4 | 14.3 |
CSIR-NML | 1.6 | 16.3 |
PTB | -2.0 | 5.8 |
NMIA | 0.6 | 5.8 |
NPL | -2.4 | 7.1 |
MIRS/SIQ | -1.4 | 6.7 |
INRIM | 5.3 | 12.0 |
VNIIFTRI | 4.6 | 12.4 |
SPRING* | -2.5 | 13.7 |
SP | -1.1 | 6.4 |
NPL | -2.3 | 6.0 |
AREPA | 5.0 | 8.0 |
NMi-VSL | -9.2 | 10.2 |
LNE | -4.0 | 12.4 |
UME | 2.0 | 5.4 |
PTB | -1.9 | 5.0 |
* Laboratory having used the transfer standard PTB 2-6-1.
In blue: participants in EUROMET.EM.RF-K10.CL
Results are presented under A4 printable format in Summary Results (.PDF file).
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 2-6
FREQUENCY : 10 GHz
Lab i | Di | Ui |
/ 10-3 | / 10-3 | |
NMIJ | 2.2 | 4.5 |
NIST | 2.6 | 17.8 |
METAS | 1.0 | 20.1 |
CSIR-NML | 5.0 | 22.1 |
PTB | -0.4 | 8.4 |
NMIA | 2.0 | 9.7 |
NPL | -2.0 | 9.3 |
MIRS/SIQ | -7.0 | 14.2 |
INRIM | -4.5 | 30.7 |
VNIIFTRI | 21.0 | 20.1 |
SPRING* | 0.6 | 14.4 |
SP | -0.3 | 9.4 |
NPL | -3.2 | 8.8 |
AREPA | 4.6 | 14.0 |
NMi-VSL | -6.0 | 13.8 |
LNE | 12.1 | 17.0 |
UME | 13.5 | 7.8 |
PTB | 1.4 | 16.0 |
* Laboratory having used the transfer standard PTB 2-6-1.
In blue: participants in EUROMET.EM.RF-K10.CL
Results are presented under A4 printable format in Summary Results (.PDF file).
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 2-6
FREQUENCY : 18 GHz
Lab i | Di | Ui |
/ 10-3 | / 10-3 | |
NMIJ | 1.3 | 7.9 |
NIST | -0.5 | 17.7 |
METAS | -1.9 | 20.1 |
CSIR-NML | -4.9 | 26.1 |
PTB | -3.1 | 10.2 |
NMIA | 3.1 | 12.8 |
NPL | -0.9 | 11.2 |
MIRS/SIQ | 3.1 | 16.1 |
INRIM | 15.2 | 29.3 |
VNIIFTRI | -22.9 | 24.1 |
SPRING* | -5.5 | 20.1 |
SP | -8.4 | 13.2 |
NPL | -7.1 | 10.8 |
AREPA | 5.6 | 22.0 |
NMi-VSL | -3.3 | 16.6 |
LNE | 4.2 | 23.8 |
UME | 10.9 | 16.4 |
PTB | 3.1 | 10.0 |
* Laboratory having used the transfer standard PTB 2-6-1.
In blue: participants in EUROMET.EM.RF-K10.CL
Results are presented under A4 printable format in Summary Results (.PDF file).
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 2-6
FREQUENCY : 20 GHz
Lab i | Di | Ui |
/ 10-3 | / 10-3 | |
NMIJ | 1.3 | 9.9 |
NIST | -0.8 | 18.3 |
METAS | 4.0 | 22.2 |
CSIR-NML | 5.0 | 30.2 |
PTB | -5.6 | 11.5 |
NMIA | 4.0 | 18.9 |
NPL | 1.0 | 11.6 |
MIRS/SIQ | 6.0 | 16.3 |
INRIM | 4.0 | 29.2 |
VNIIFTRI | -25.0 | 44.1 |
SPRING* | -6.6 | 20.8 |
SP | -0.7 | 13.2 |
NPL | -3.3 | 11.0 |
AREPA | 11.3 | 26.0 |
NMi-VSL | -1.5 | 16.6 |
LNE | 4.5 | 25.6 |
UME | 16.3 | 16.6 |
PTB | 2.1 | 11.0 |
* Laboratory having used the transfer standard PTB 2-6-1.
In blue: participants in EUROMET.EM.RF-K10.CL
Results are presented under A4 printable format in Summary Results (.PDF file).
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 2-6
FREQUENCY : 23 GHz
Lab i | Di | Ui |
/ 10-3 | / 10-3 | |
NMIJ | 0.8 | 9.8 |
NIST | 0.3 | 18.9 |
METAS | 4.4 | 20.4 |
CSIR-NML | 4.4 | 32.3 |
PTB | -0.7 | 13.7 |
NMIA | 3.4 | 18.9 |
NPL | 6.4 | 14.0 |
MIRS/SIQ | 2.4 | 16.5 |
INRIM | 23.7 | 41.6 |
VNIIFTRI | -6.6 | 58.2 |
SPRING* | 0.5 | 27.1 |
SP | 0.3 | 16.0 |
NPL | 1.1 | 13.2 |
AREPA | 11.3 | 30.0 |
NMi-VSL | -0.8 | 16.4 |
LNE | 18.1 | 21.4 |
UME | 26.5 | 22.0 |
PTB | 4.6 | 13.0 |
* Laboratory having used the transfer standard PTB 2-6-1.
In blue: participants in EUROMET.EM.RF-K10.CL
Results are presented under A4 printable format in Summary Results (.PDF file).
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensor PTB 2-6
FREQUENCY : 26 GHz
Lab i | Di | Ui |
/ 10-3 | / 10-3 | |
NMIJ | -17.1 | 18.1 |
NIST | -7.9 | 21.6 |
METAS | -15.7 | 26.1 |
CSIR-NML | -4.7 | 39.3 |
PTB | -5.2 | 19.8 |
NMIA | -2.7 | 21.2 |
NPL | 3.3 | 18.5 |
MIRS/SIQ | -6.7 | 19.0 |
INRIM | 17.5 | 42.4 |
VNIIFTRI | 9.3 | 31.7 |
SPRING* | 1.3 | 20.3 |
SP | 5.0 | 21.0 |
NPL | 1.3 | 15.4 |
AREPA | 3.0 | 34.0 |
NMi-VSL | -7.4 | 18.2 |
LNE | 6.7 | 20.2 |
UME | 26.7 | 36.2 |
PTB | -0.3 | 17.0 |
* Laboratory having used the transfer standard PTB 2-6-1.
In blue: participants in EUROMET.EM.RF-K10.CL
Results are presented under A4 printable format in Summary Results (.PDF file).
Metrology area, Sub-field | Electricity and Magnetism, Radio frequencies |
Description | Power in 50 ohm coaxial lines |
Time of measurements | 2002 - 2003 |
Status | Approved for equivalence |
Final Reports of the comparisons | |
Measurand | Calibration factor and reflection coefficient |
Parameters | Frequency: 50 MHz to 26 GHz (7 discrete values) |
Transfer device | 3.5 mm coaxial thermometric sensor |
Comparison type | Key Comparison |
Consultative Committee | CCEM (Consultative Committee for Electricity and Magnetism) |
Conducted by | EURAMET (European Association of National Metrology Institutes) |
RMO Internal Identifier | EUROMET Project No 525 (GT-RF/99-2) |
Comments | CCEM.RF-K10.CL results published on 21 September 2006 EUROMET.EM.RF-K10.CL results, linked to those of CCEM.RF-K10.CL, published on 20 June 2007 Calibration factors of power sensors (50 ohm coaxial lines) (sensor designation, frequency): |
Pilot institute |
PTB
Physikalisch-Technische Bundesanstalt Germany |
Contact person | D. Janik +49 (0) 531 592 2222 |
Pilot laboratory | |
---|---|
PTB |
Physikalisch-Technische Bundesanstalt, Germany, EURAMET |
AREPA |
Arepa Test and Calibration A/S, Denmark, EURAMET |
EIM |
Hellenic Institute of Metrology, Greece, EURAMET |
LNE |
Laboratoire national de métrologie et d'essais, France, EURAMET |
NMi-VSL |
Nederlands Meetinstituut - Van Swinden Laboratorium (became VSL in 2009), Netherlands, EURAMET |
NPL |
National Physical Laboratory, United Kingdom, EURAMET |
SP |
Technical Research Institute of Sweden from 2017 Research Institutes of Sweden AB, Sweden, EURAMET |
UME |
TÜBITAK Ulusal Metroloji Enstitüsü, Türkiye, EURAMET |
This page proposes print-out on A4 paper (portrait) of the comparison details (best printed out using a black and white printer).
Please, select items to be printed out, then click on "OK" :
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensors PTB 1-3 and PTB 1-3-1
FREQUENCY : 50 MHz
The computation of the key comparison reference values, xR, and of their uncertainties, uR, is explained in Section 6.2 of the Final Report (pages 14 and 15). For PTB 1-3, xR = 0.9866 and uR = 0.0010 |
The degree of equivalence of laboratory i with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di = (xi - xR) and its expanded uncertainty Ui (k = 2), Ui = 2(ui2 + uR2)1/2. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij = (Di - Dj) and its expanded uncertainty Uij (k = 2), Uij = 2(ui2 + uj2)1/2. |
The laboratories that are participants in both comparisons (PTB and NPL) are used for linking the results obtained in EUROMET.EM.RF-K10.CL to the results obtained in CCEM.RF-K10.CL. The linking process is explained in section 6.2 of the EUROMET.EM.RF-K10.CL Final Report.
The degree of equivalence of laboratory i participant in EUROMET.EM.RF-K10.CL with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di and its expanded uncertainty Ui (k = 2). The degree of equivalence is computed as explained in section 6.3 of the EUROMET.EM.RF-K10.CL Final Report. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij and its expanded uncertainty Uij (k = 2). The pair-wise degrees of equivalence are computed only between two laboratories participants in EUROMET.EM.RF-K10.CL. |
It follows that the Matrix of equivalence and the Graph of equivalence obtained for CCEM.RF-K10.CL are extended with results obtained in EUROMET.EM.RF-K10.CL.
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor The computation of the key comparison reference values, xR, and of their uncertainties, uR, is explained in Section 6.2 of the Final Report (pages 14 and 15). For PTB 1-3, xR = 0.9760 and uR = 0.0012
The laboratories that are participants in both comparisons (PTB and NPL) are used for linking the results obtained in EUROMET.EM.RF-K10.CL to the results obtained in CCEM.RF-K10.CL. The linking process is explained in section 6.2 of the EUROMET.EM.RF-K10.CL Final Report.
It follows that the Matrix of equivalence and the Graph of equivalence obtained for CCEM.RF-K10.CL are extended with results obtained in EUROMET.EM.RF-K10.CL.
TRANSFER STANDARDS : Power sensors PTB 1-3 and PTB 1-3-1
FREQUENCY : 1 GHz
For each frequency and each of the transfer standards PTB 1-3 and PTB 2-6, xR is computed as the unweighted arithmetic mean of the participants' results obtained using independant primary power standards with outliers excluded. Its standard uncertainty, uR, is the standard deviation of the mean.
For each frequency and each of the repaired transfer standards PTB 1-3-1 and PTB 2-6-1, xR is computed using the common measurements carried out by PTB (see on page 15 of the Final Report). Its standard uncertainty, uR, is assumed to be equal to the standard uncertainty obtained with the transfer standard before repair.
For PTB 1-3-1, xR = 0.9841 and uR = 0.0012
The degree of equivalence of laboratory i with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di = (xi - xR) and its expanded uncertainty Ui (k = 2), Ui = 2(ui2 + uR2)1/2.
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij = (Di - Dj) and its expanded uncertainty Uij (k = 2),
Uij = 2(ui2 + uj2)1/2.
The degree of equivalence of laboratory i participant in EUROMET.EM.RF-K10.CL with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di and its expanded uncertainty Ui (k = 2).
The degree of equivalence is computed as explained in section 6.3 of the EUROMET.EM.RF-K10.CL Final Report.
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij and its expanded uncertainty Uij (k = 2).
The pair-wise degrees of equivalence are computed only between two laboratories participants in EUROMET.EM.RF-K10.CL.
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 1-3 and PTB 1-3-1
FREQUENCY : 10 GHz
The computation of the key comparison reference values, xR, and of their uncertainties, uR, is explained in Section 6.2 of the Final Report (pages 14 and 15). For PTB 1-3, xR = 0.9416 and uR = 0.0007 |
The degree of equivalence of laboratory i with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di = (xi - xR) and its expanded uncertainty Ui (k = 2), Ui = 2(ui2 + uR2)1/2. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij = (Di - Dj) and its expanded uncertainty Uij (k = 2), Uij = 2(ui2 + uj2)1/2. |
The laboratories that are participants in both comparisons (PTB and NPL) are used for linking the results obtained in EUROMET.EM.RF-K10.CL to the results obtained in CCEM.RF-K10.CL. The linking process is explained in section 6.2 of the EUROMET.EM.RF-K10.CL Final Report.
The degree of equivalence of laboratory i participant in EUROMET.EM.RF-K10.CL with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di and its expanded uncertainty Ui (k = 2). The degree of equivalence is computed as explained in section 6.3 of the EUROMET.EM.RF-K10.CL Final Report. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij and its expanded uncertainty Uij (k = 2). The pair-wise degrees of equivalence are computed only between two laboratories participants in EUROMET.EM.RF-K10.CL. |
It follows that the Matrix of equivalence and the Graph of equivalence obtained for CCEM.RF-K10.CL are extended with results obtained in EUROMET.EM.RF-K10.CL.
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 1-3 and PTB 1-3-1
FREQUENCY : 18 GHz
The computation of the key comparison reference values, xR, and of their uncertainties, uR, is explained in Section 6.2 of the Final Report (pages 14 and 15). For PTB 1-3, xR = 0.9317 and uR = 0.0014 |
The degree of equivalence of laboratory i with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di = (xi - xR) and its expanded uncertainty Ui (k = 2), Ui = 2(ui2 + uR2)1/2. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij = (Di - Dj) and its expanded uncertainty Uij (k = 2), Uij = 2(ui2 + uj2)1/2. |
The laboratories that are participants in both comparisons (PTB and NPL) are used for linking the results obtained in EUROMET.EM.RF-K10.CL to the results obtained in CCEM.RF-K10.CL. The linking process is explained in section 6.2 of the EUROMET.EM.RF-K10.CL Final Report.
The degree of equivalence of laboratory i participant in EUROMET.EM.RF-K10.CL with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di and its expanded uncertainty Ui (k = 2). The degree of equivalence is computed as explained in section 6.3 of the EUROMET.EM.RF-K10.CL Final Report. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij and its expanded uncertainty Uij (k = 2). The pair-wise degrees of equivalence are computed only between two laboratories participants in EUROMET.EM.RF-K10.CL. |
It follows that the Matrix of equivalence and the Graph of equivalence obtained for CCEM.RF-K10.CL are extended with results obtained in EUROMET.EM.RF-K10.CL.
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensors PTB 1-3 and PTB 1-3-1
FREQUENCY : 20 GHz
The computation of the key comparison reference values, xR, and of their uncertainties, uR, is explained in Section 6.2 of the Final Report (pages 14 and 15). For PTB 1-3, xR = 0.9276 and uR = 0.0020 |
The degree of equivalence of laboratory i with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di = (xi - xR) and its expanded uncertainty Ui (k = 2), Ui = 2(ui2 + uR2)1/2. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij = (Di - Dj) and its expanded uncertainty Uij (k = 2), Uij = 2(ui2 + uj2)1/2. |
The laboratories that are participants in both comparisons (PTB and NPL) are used for linking the results obtained in EUROMET.EM.RF-K10.CL to the results obtained in CCEM.RF-K10.CL. The linking process is explained in section 6.2 of the EUROMET.EM.RF-K10.CL Final Report.
The degree of equivalence of laboratory i participant in EUROMET.EM.RF-K10.CL with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di and its expanded uncertainty Ui (k = 2). The degree of equivalence is computed as explained in section 6.3 of the EUROMET.EM.RF-K10.CL Final Report. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij and its expanded uncertainty Uij (k = 2). The pair-wise degrees of equivalence are computed only between two laboratories participants in EUROMET.EM.RF-K10.CL. |
It follows that the Matrix of equivalence and the Graph of equivalence obtained for CCEM.RF-K10.CL are extended with results obtained in EUROMET.EM.RF-K10.CL.
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARD : Power sensors PTB 1-3 and PTB 1-3-1
FREQUENCY : 23 GHz
The computation of the key comparison reference values, xR, and of their uncertainties, uR, is explained in Section 6.2 of the Final Report (pages 14 and 15). For PTB 1-3, xR = 0.9252 and uR = 0.0019 |
The degree of equivalence of laboratory i with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di = (xi - xR) and its expanded uncertainty Ui (k = 2), Ui = 2(ui2 + uR2)1/2. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij = (Di - Dj) and its expanded uncertainty Uij (k = 2), Uij = 2(ui2 + uj2)1/2. |
The laboratories that are participants in both comparisons (PTB and NPL) are used for linking the results obtained in EUROMET.EM.RF-K10.CL to the results obtained in CCEM.RF-K10.CL. The linking process is explained in section 6.2 of the EUROMET.EM.RF-K10.CL Final Report.
The degree of equivalence of laboratory i participant in EUROMET.EM.RF-K10.CL with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di and its expanded uncertainty Ui (k = 2). The degree of equivalence is computed as explained in section 6.3 of the EUROMET.EM.RF-K10.CL Final Report. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij and its expanded uncertainty Uij (k = 2). The pair-wise degrees of equivalence are computed only between two laboratories participants in EUROMET.EM.RF-K10.CL. |
It follows that the Matrix of equivalence and the Graph of equivalence obtained for CCEM.RF-K10.CL are extended with results obtained in EUROMET.EM.RF-K10.CL.
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 1-3 and PTB 1-3-1
FREQUENCY : 26 GHz
The computation of the key comparison reference values, xR, and of their uncertainties, uR, is explained in Section 6.2 of the Final Report (pages 14 and 15). For PTB 1-3, xR = 0.9228 and uR = 0.0022 |
The degree of equivalence of laboratory i with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di = (xi - xR) and its expanded uncertainty Ui (k = 2), Ui = 2(ui2 + uR2)1/2. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij = (Di - Dj) and its expanded uncertainty Uij (k = 2), Uij = 2(ui2 + uj2)1/2. |
The laboratories that are participants in both comparisons (PTB and NPL) are used for linking the results obtained in EUROMET.EM.RF-K10.CL to the results obtained in CCEM.RF-K10.CL. The linking process is explained in section 6.2 of the EUROMET.EM.RF-K10.CL Final Report.
The degree of equivalence of laboratory i participant in EUROMET.EM.RF-K10.CL with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di and its expanded uncertainty Ui (k = 2). The degree of equivalence is computed as explained in section 6.3 of the EUROMET.EM.RF-K10.CL Final Report. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij and its expanded uncertainty Uij (k = 2). The pair-wise degrees of equivalence are computed only between two laboratories participants in EUROMET.EM.RF-K10.CL. |
It follows that the Matrix of equivalence and the Graph of equivalence obtained for CCEM.RF-K10.CL are extended with results obtained in EUROMET.EM.RF-K10.CL.
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 2-6 and PTB 2-6-1
FREQUENCY : 50 MHz
The computation of the key comparison reference values, xR, and of their uncertainties, uR, is explained in Section 6.2 of the Final Report (pages 14 and 15). For PTB 2-6, xR = 0.9895 and uR = 0.0019 |
The degree of equivalence of laboratory i with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di = (xi - xR) and its expanded uncertainty Ui (k = 2), Ui = 2(ui2 + uR2)1/2. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij = (Di - Dj) and its expanded uncertainty Uij (k = 2), Uij = 2(ui2 + uj2)1/2. |
The laboratories that are participants in both comparisons (PTB and NPL) are used for linking the results obtained in EUROMET.EM.RF-K10.CL to the results obtained in CCEM.RF-K10.CL. The linking process is explained in section 6.2 of the EUROMET.EM.RF-K10.CL Final Report.
The degree of equivalence of laboratory i participant in EUROMET.EM.RF-K10.CL with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di and its expanded uncertainty Ui (k = 2). The degree of equivalence is computed as explained in section 6.3 of the EUROMET.EM.RF-K10.CL Final Report. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij and its expanded uncertainty Uij (k = 2). The pair-wise degrees of equivalence are computed only between two laboratories participants in EUROMET.EM.RF-K10.CL. |
It follows that the Matrix of equivalence and the Graph of equivalence obtained for CCEM.RF-K10.CL are extended with results obtained in EUROMET.EM.RF-K10.CL.
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 2-6 and PTB 2-6-1
FREQUENCY : 1 GHz
The computation of the key comparison reference values, xR, and of their uncertainties, uR, is explained in Section 6.2 of the Final Report (pages 14 and 15). For PTB 2-6, xR = 0.9804 and uR = 0.0015 |
The degree of equivalence of laboratory i with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di = (xi - xR) and its expanded uncertainty Ui (k = 2), Ui = 2(ui2 + uR2)1/2. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij = (Di - Dj) and its expanded uncertainty Uij (k = 2), Uij = 2(ui2 + uj2)1/2. |
The laboratories that are participants in both comparisons (PTB and NPL) are used for linking the results obtained in EUROMET.EM.RF-K10.CL to the results obtained in CCEM.RF-K10.CL. The linking process is explained in section 6.2 of the EUROMET.EM.RF-K10.CL Final Report.
The degree of equivalence of laboratory i participant in EUROMET.EM.RF-K10.CL with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di and its expanded uncertainty Ui (k = 2). The degree of equivalence is computed as explained in section 6.3 of the EUROMET.EM.RF-K10.CL Final Report. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij and its expanded uncertainty Uij (k = 2). The pair-wise degrees of equivalence are computed only between two laboratories participants in EUROMET.EM.RF-K10.CL. |
It follows that the Matrix of equivalence and the Graph of equivalence obtained for CCEM.RF-K10.CL are extended with results obtained in EUROMET.EM.RF-K10.CL.
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 2-6 and PTB 2-6-1
FREQUENCY : 10 GHz
The computation of the key comparison reference values, xR, and of their uncertainties, uR, is explained in Section 6.2 of the Final Report (pages 14 and 15). For PTB 2-6, xR = 0.9380 and uR = 0.0012 |
The degree of equivalence of laboratory i with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di = (xi - xR) and its expanded uncertainty Ui (k = 2), Ui = 2(ui2 + uR2)1/2. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij = (Di - Dj) and its expanded uncertainty Uij (k = 2), Uij = 2(ui2 + uj2)1/2. |
The laboratories that are participants in both comparisons (PTB and NPL) are used for linking the results obtained in EUROMET.EM.RF-K10.CL to the results obtained in CCEM.RF-K10.CL. The linking process is explained in section 6.2 of the EUROMET.EM.RF-K10.CL Final Report.
The degree of equivalence of laboratory i participant in EUROMET.EM.RF-K10.CL with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di and its expanded uncertainty Ui (k = 2). The degree of equivalence is computed as explained in section 6.3 of the EUROMET.EM.RF-K10.CL Final Report. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij and its expanded uncertainty Uij (k = 2). The pair-wise degrees of equivalence are computed only between two laboratories participants in EUROMET.EM.RF-K10.CL. |
It follows that the Matrix of equivalence and the Graph of equivalence obtained for CCEM.RF-K10.CL are extended with results obtained in EUROMET.EM.RF-K10.CL.
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 2-6 and PTB 2-6-1
FREQUENCY : 18 GHz
The computation of the key comparison reference values, xR, and of their uncertainties, uR, is explained in Section 6.2 of the Final Report (pages 14 and 15). For PTB 2-6, xR = 0.9079 and uR = 0.0010 |
The degree of equivalence of laboratory i with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di = (xi - xR) and its expanded uncertainty Ui (k = 2), Ui = 2(ui2 + uR2)1/2. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij = (Di - Dj) and its expanded uncertainty Uij (k = 2), Uij = 2(ui2 + uj2)1/2. |
The laboratories that are participants in both comparisons (PTB and NPL) are used for linking the results obtained in EUROMET.EM.RF-K10.CL to the results obtained in CCEM.RF-K10.CL. The linking process is explained in section 6.2 of the EUROMET.EM.RF-K10.CL Final Report.
The degree of equivalence of laboratory i participant in EUROMET.EM.RF-K10.CL with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di and its expanded uncertainty Ui (k = 2). The degree of equivalence is computed as explained in section 6.3 of the EUROMET.EM.RF-K10.CL Final Report. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij and its expanded uncertainty Uij (k = 2). The pair-wise degrees of equivalence are computed only between two laboratories participants in EUROMET.EM.RF-K10.CL. |
It follows that the Matrix of equivalence and the Graph of equivalence obtained for CCEM.RF-K10.CL are extended with results obtained in EUROMET.EM.RF-K10.CL.
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 2-6 and PTB 2-6-1
FREQUENCY : 20 GHz
The computation of the key comparison reference values, xR, and of their uncertainties, uR, is explained in Section 6.2 of the Final Report (pages 14 and 15). For PTB 2-6, xR = 0.8960 and uR = 0.0016 |
The degree of equivalence of laboratory i with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di = (xi - xR) and its expanded uncertainty Ui (k = 2), Ui = 2(ui2 + uR2)1/2. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij = (Di - Dj) and its expanded uncertainty Uij (k = 2), Uij = 2(ui2 + uj2)1/2. |
The laboratories that are participants in both comparisons (PTB and NPL) are used for linking the results obtained in EUROMET.EM.RF-K10.CL to the results obtained in CCEM.RF-K10.CL. The linking process is explained in section 6.2 of the EUROMET.EM.RF-K10.CL Final Report.
The degree of equivalence of laboratory i participant in EUROMET.EM.RF-K10.CL with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di and its expanded uncertainty Ui (k = 2). The degree of equivalence is computed as explained in section 6.3 of the EUROMET.EM.RF-K10.CL Final Report. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij and its expanded uncertainty Uij (k = 2). The pair-wise degrees of equivalence are computed only between two laboratories participants in EUROMET.EM.RF-K10.CL. |
It follows that the Matrix of equivalence and the Graph of equivalence obtained for CCEM.RF-K10.CL are extended with results obtained in EUROMET.EM.RF-K10.CL.
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 2-6 and PTB 2-6-1
FREQUENCY : 23 GHz
The computation of the key comparison reference values, xR, and of their uncertainties, uR, is explained in Section 6.2 of the Final Report (pages 14 and 15). For PTB 2-6, xR = 0.8776 and uR = 0.0021 |
The degree of equivalence of laboratory i with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di = (xi - xR) and its expanded uncertainty Ui (k = 2), Ui = 2(ui2 + uR2)1/2. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij = (Di - Dj) and its expanded uncertainty Uij (k = 2), Uij = 2(ui2 + uj2)1/2. |
The laboratories that are participants in both comparisons (PTB and NPL) are used for linking the results obtained in EUROMET.EM.RF-K10.CL to the results obtained in CCEM.RF-K10.CL. The linking process is explained in section 6.2 of the EUROMET.EM.RF-K10.CL Final Report.
The degree of equivalence of laboratory i participant in EUROMET.EM.RF-K10.CL with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di and its expanded uncertainty Ui (k = 2). The degree of equivalence is computed as explained in section 6.3 of the EUROMET.EM.RF-K10.CL Final Report. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij and its expanded uncertainty Uij (k = 2). The pair-wise degrees of equivalence are computed only between two laboratories participants in EUROMET.EM.RF-K10.CL. |
It follows that the Matrix of equivalence and the Graph of equivalence obtained for CCEM.RF-K10.CL are extended with results obtained in EUROMET.EM.RF-K10.CL.
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 2-6 and PTB 2-6-1
FREQUENCY : 26 GHz
The computation of the key comparison reference values, xR, and of their uncertainties, uR, is explained in Section 6.2 of the Final Report (pages 14 and 15). For PTB 2-6, xR = 0.8857 and uR = 0.0051 |
The degree of equivalence of laboratory i with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di = (xi - xR) and its expanded uncertainty Ui (k = 2), Ui = 2(ui2 + uR2)1/2. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij = (Di - Dj) and its expanded uncertainty Uij (k = 2), Uij = 2(ui2 + uj2)1/2. |
The laboratories that are participants in both comparisons (PTB and NPL) are used for linking the results obtained in EUROMET.EM.RF-K10.CL to the results obtained in CCEM.RF-K10.CL. The linking process is explained in section 6.2 of the EUROMET.EM.RF-K10.CL Final Report.
The degree of equivalence of laboratory i participant in EUROMET.EM.RF-K10.CL with respect to the key comparison reference value is given by two terms, both expressed in 10-3: Di and its expanded uncertainty Ui (k = 2). The degree of equivalence is computed as explained in section 6.3 of the EUROMET.EM.RF-K10.CL Final Report. |
The degree of equivalence between two laboratories i and j is given by two terms, both expressed in 10-3: Dij and its expanded uncertainty Uij (k = 2). The pair-wise degrees of equivalence are computed only between two laboratories participants in EUROMET.EM.RF-K10.CL. |
It follows that the Matrix of equivalence and the Graph of equivalence obtained for CCEM.RF-K10.CL are extended with results obtained in EUROMET.EM.RF-K10.CL.
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 1-3 and PTB 1-3-1
FREQUENCY : 50 MHz
xi : result of measurement carried out by laboratory i
ui : combined standard uncertainty of xi
Lab i |
xi |
ui |
Date of measurement |
NMIJ |
0.9828 |
0.0014 |
Jul - Aug 2000 |
NRC |
0.9837 |
0.0040 |
Aug - Sep 2000 |
NIST |
0.9887 |
0.0086 |
Oct - Nov 2000 |
METAS |
0.9810 |
0.0060 |
Nov - Dec 2000 |
CSIR-NML |
0.9920 |
0.0070 |
Dec 2000 - Jan 2001 |
PTB |
0.9877 |
0.0020 |
Feb 2001 |
NMIA |
0.9880 |
0.0020 |
Mar - Apr 2001 |
NPL |
0.9857 |
0.0015 |
Apr - May 2001 |
MIRS/SIQ |
0.9890 |
0.0030 |
May - Jun 2001 |
INRIM |
0.9895 |
0.0052 |
Jun - Jul 2001 |
VNIIFTRI |
- |
- |
Sep - Oct 2001 |
PTB* |
0.9897 |
0.0020 |
Nov 2001 |
SPRING Singapore* |
0.9936 |
0.0067 |
Dec 2001 - Jan 2002 |
* Laboratory having reported result for the measurement of the transfer standard
PTB 1-3-1.
Due to failure, the transfer standard PTB 1-3 was repaired after the VNIIFTRI measurements and relabelled PTB 1-3-1 (see page 10 of the Final Report).
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 1-03-2
FREQUENCY : 50 MHz
xi-EUR : result of measurement carried out by laboratory i participant in EUROMET.EM.RF-K10.CL
ui-EUR : combined standard uncertainty of xi-EUR
Lab i |
xi-EUR |
ui-EUR |
Date of measurement |
EIM |
0.9880 |
0.0070 |
May 2002 |
SP |
0.9900 |
0.0029 |
Jun 2002 |
NPL |
0.9912 |
0.0012 |
Jul - Aug 2002 |
AREPA |
0.9990 |
0.0040 |
Aug - Sep 2002 |
NMi-VSL |
0.9764 |
0.0038 |
Sep - Oct 2002 |
LNE |
- |
- |
Nov 2002 |
UME |
- |
- |
Feb - Mar 2003 |
PTB |
0.9917 |
0.0020 |
Mar - Apr 2002, |
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 1-3 and PTB 1-3-1
FREQUENCY : 1 GHz
xi : result of measurement carried out by laboratory i
ui : combined standard uncertainty of xi
Lab i |
xi |
ui |
Date of measurement |
NMIJ |
0.9720 |
0.0017 |
Jul - Aug 2000 |
NRC |
0.9763 |
0.0040 |
Aug - Sep 2000 |
NIST |
0.9741 |
0.0087 |
Oct - Nov 2000 |
METAS |
0.9720 |
0.0070 |
Nov - Dec 2000 |
CSIR-NML |
0.9780 |
0.0080 |
Dec 2000 - Jan 2001 |
PTB |
0.9741 |
0.0025 |
Feb 2001 |
NMIA |
0.9760 |
0.0025 |
Mar - Apr 2001 |
NPL |
0.9740 |
0.0030 |
Apr - May 2001 |
MIRS/SIQ |
0.9750 |
0.0030 |
May - Jun 2001 |
INRIM |
0.9817 |
0.0063 |
Jun - Jul 2001 |
VNIIFTRI |
0.9800 |
0.0030 |
Sep - Oct 2001 |
PTB* |
0.9821 |
0.0025 |
Nov 2001 |
SPRING Singapore* |
0.9821 |
0.0067 |
Dec 2001 - Jan 2002 |
* Laboratory having reported result for the measurement of the transfer standard
PTB 1-3-1.
Due to failure, the transfer standard PTB 1-3 was repaired after the VNIIFTRI measurements and relabelled PTB 1-3-1 (see page 10 of the Final Report).
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 1-03-2
FREQUENCY : 1 GHz
xi-EUR : result of measurement carried out by laboratory i participant in EUROMET.EM.RF-K10.CL
ui-EUR : combined standard uncertainty of xi-EUR
Lab i |
xi-EUR |
ui-EUR |
Date of measurement |
EIM |
0.9840 |
0.0080 |
May 2002 |
SP |
0.9830 |
0.0032 |
Jun 2002 |
NPL |
0.9823 |
0.0030 |
Jul - Aug 2002 |
AREPA |
0.9910 |
0.0040 |
Aug - Sep 2002 |
NMi-VSL |
0.9679 |
0.0051 |
Sep - Oct 2002 |
PTB |
0.9832 |
0.0025 |
Mar - Apr 2002, |
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 1-3 and PTB 1-3-1
FREQUENCY : 10 GHz
xi : result of measurement carried out by laboratory i
ui : combined standard uncertainty of xi
Lab i |
xi |
ui |
Date of measurement |
NMIJ |
0.9438 |
0.0020 |
Jul - Aug 2000 |
NRC |
0.9404 |
0.0040 |
Aug - Sep 2000 |
NIST |
0.9417 |
0.0088 |
Oct - Nov 2000 |
METAS |
0.9410 |
0.0100 |
Nov - Dec 2000 |
CSIR-NML |
0.9460 |
0.0110 |
Dec 2000 - Jan 2001 |
PTB |
0.9428 |
0.0040 |
Feb 2001 |
NMIA |
0.9420 |
0.0047 |
Mar - Apr 2001 |
NPL |
0.9390 |
0.0044 |
Apr - May 2001 |
MIRS/SIQ |
0.9380 |
0.0070 |
May - Jun 2001 |
INRIM |
0.9344 |
0.0135 |
Jun - Jul 2001 |
VNIIFTRI |
0.9610 |
0.0060 |
Sep - Oct 2001 |
PTB* |
0.9362 |
0.0040 |
Nov 2001 |
SPRING Singapore* |
0.9384 |
0.0074 |
Dec 2001 - Jan 2002 |
* Laboratory having reported result for the measurement of the transfer standard
PTB 1-3-1.
Due to failure, the transfer standard PTB 1-3 was repaired after the VNIIFTRI measurements and relabelled PTB 1-3-1 (see page 10 of the Final Report).
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 1-03-2
FREQUENCY : 10 GHz
xi-EUR : result of measurement carried out by laboratory i participant in EUROMET.EM.RF-K10.CL
ui-EUR : combined standard uncertainty of xi-EUR
Lab i |
xi-EUR |
ui-EUR |
Date of measurement |
EIM |
0.9440 |
0.0100 |
May 2002 |
SP |
0.9560 |
0.0048 |
Jun 2002 |
NPL |
0.9532 |
0.0044 |
Jul - Aug 2002 |
AREPA |
0.9620 |
0.0080 |
Aug - Sep 2002 |
NMi-VSL |
0.9454 |
0.0070 |
Sep - Oct 2002 |
PTB |
0.9601 |
0.0040 |
Mar - Apr 2002, |
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 1-3 and PTB 1-3-1
FREQUENCY : 18 GHz
xi : result of measurement carried out by laboratory i
ui : combined standard uncertainty of xi
Lab i |
xi |
ui |
Date of measurement |
NMIJ |
0.9352 |
0.0058 |
Jul - Aug 2000 |
NRC |
0.9378 |
0.0048 |
Aug - Sep 2000 |
NIST |
0.9290 |
0.0088 |
Oct - Nov 2000 |
METAS |
0.9280 |
0.0100 |
Nov - Dec 2000 |
CSIR-NML |
0.9280 |
0.0130 |
Dec 2000 - Jan 2001 |
PTB |
0.9304 |
0.0050 |
Feb 2001 |
NMIA |
0.9330 |
0.0063 |
Mar - Apr 2001 |
NPL |
0.9290 |
0.0055 |
Apr - May 2001 |
MIRS/SIQ |
0.9370 |
0.0080 |
May - Jun 2001 |
INRIM |
0.9273 |
0.0138 |
Jun - Jul 2001 |
VNIIFTRI |
0.9110 |
0.0070 |
Sep - Oct 2001 |
PTB* |
0.8982 |
0.0050 |
Nov 2001 |
SPRING Singapore* |
0.8933 |
0.0098 |
Dec 2001 - Jan 2002 |
* Laboratory having reported result for the measurement of the transfer standard
PTB 1-3-1.
Due to failure, the transfer standard PTB 1-3 was repaired after the VNIIFTRI measurements and relabelled PTB 1-3-1 (see page 10 of the Final Report).
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 1-03-2
FREQUENCY : 18 GHz
xi-EUR : result of measurement carried out by laboratory i participant in EUROMET.EM.RF-K10.CL
ui-EUR : combined standard uncertainty of xi-EUR
Lab i |
xi-EUR |
ui-EUR |
Date of measurement |
EIM |
0.9440 |
0.0140 |
May 2002 |
SP |
0.9400 |
0.0066 |
Jun 2002 |
NPL |
0.9426 |
0.0053 |
Jul - Aug 2002 |
AREPA |
0.9520 |
0.0110 |
Aug - Sep 2002 |
NMi-VSL |
0.9340 |
0.0086 |
Sep - Oct 2002 |
PTB |
0.9484 |
0.0050 |
Mar - Apr 2002, |
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 1-3 and PTB 1-3-1
FREQUENCY : 20 GHz
xi : result of measurement carried out by laboratory i
ui : combined standard uncertainty of xi
Lab i |
xi |
ui |
Date of measurement |
NMIJ |
0.9328 |
0.0039 |
Jul - Aug 2000 |
NRC |
0.9301 |
0.0048 |
Aug - Sep 2000 |
NIST |
0.9259 |
0.0090 |
Oct - Nov 2000 |
METAS |
0.9290 |
0.0110 |
Nov - Dec 2000 |
CSIR-NML |
0.9320 |
0.0150 |
Dec 2000 - Jan 2001 |
PTB |
0.9263 |
0.0055 |
Feb 2001 |
NMIA |
0.9320 |
0.0093 |
Mar - Apr 2001 |
NPL |
0.9310 |
0.0055 |
Apr - May 2001 |
MIRS/SIQ |
0.9300 |
0.0080 |
May - Jun 2001 |
INRIM |
0.9192 |
0.0131 |
Jun - Jul 2001 |
VNIIFTRI |
0.9080 |
0.0110 |
Sep - Oct 2001 |
PTB* |
0.8814 |
0.0055 |
Nov 2001 |
SPRING Singapore* |
0.8840 |
0.0099 |
Dec 2001 - Jan 2002 |
* Laboratory having reported result for the measurement of the transfer standard
PTB 1-3-1.
Due to failure, the transfer standard PTB 1-3 was repaired after the VNIIFTRI measurements and relabelled PTB 1-3-1 (see page 10 of the Final Report).
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 1-03-2
FREQUENCY : 20 GHz
xi-EUR : result of measurement carried out by laboratory i participant in EUROMET.EM.RF-K10.CL
ui-EUR : combined standard uncertainty of xi-EUR
Lab i |
xi-EUR |
ui-EUR |
Date of measurement |
EIM |
0.9060 |
0.0130 |
May 2002 |
SP |
0.9420 |
0.0066 |
Jun 2002 |
NPL |
0.9385 |
0.0053 |
Jul - Aug 2002 |
AREPA |
0.9540 |
0.0140 |
Aug - Sep 2002 |
NMi-VSL |
0.9329 |
0.0086 |
Sep - Oct 2002 |
PTB |
0.9418 |
0.0055 |
Mar - Apr 2002, |
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 1-3 and PTB 1-3-1
FREQUENCY : 23 GHz
xi : result of measurement carried out by laboratory i
ui : combined standard uncertainty of xi
Lab i |
xi |
ui |
Date of measurement |
NMIJ |
0.9262 |
0.0044 |
Jul - Aug 2000 |
NRC |
0.9284 |
0.0048 |
Aug - Sep 2000 |
NIST |
0.9225 |
0.0092 |
Oct - Nov 2000 |
METAS |
0.9280 |
0.0110 |
Nov - Dec 2000 |
CSIR-NML |
0.9310 |
0.0160 |
Dec 2000 - Jan 2001 |
PTB |
0.9251 |
0.0065 |
Feb 2001 |
NMIA |
0.9270 |
0.0092 |
Mar - Apr 2001 |
NPL |
0.9310 |
0.0066 |
Apr - May 2001 |
MIRS/SIQ |
0.9260 |
0.0080 |
May - Jun 2001 |
INRIM |
0.9115 |
0.0190 |
Jun - Jul 2001 |
VNIIFTRI |
0.9180 |
0.0120 |
Sep - Oct 2001 |
PTB* |
0.8578 |
0.0065 |
Nov 2001 |
SPRING Singapore* |
0.8590 |
0.0130 |
Dec 2001 - Jan 2002 |
* Laboratory having reported result for the measurement of the transfer standard
PTB 1-3-1.
Due to failure, the transfer standard PTB 1-3 was repaired after the VNIIFTRI measurements and relabelled PTB 1-3-1 (see page 10 of the Final Report).
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 1-03-2
FREQUENCY : 23 GHz
xi-EUR : result of measurement carried out by laboratory i participant in EUROMET.EM.RF-K10.CL
ui-EUR : combined standard uncertainty of xi-EUR
Lab i |
xi-EUR |
ui-EUR |
Date of measurement |
EIM |
0.9310 |
0.0140 |
May 2002 |
SP |
0.9370 |
0.0080 |
Jun 2002 |
NPL |
0.9387 |
0.0064 |
Jul - Aug 2002 |
AREPA |
0.9510 |
0.0170 |
Aug - Sep 2002 |
NMi-VSL |
0.9271 |
0.0087 |
Sep - Oct 2002 |
PTB |
0.9440 |
0.0065 |
Mar - Apr 2002, |
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 1-3 and PTB 1-3-1
FREQUENCY : 26 GHz
xi : result of measurement carried out by laboratory i
ui : combined standard uncertainty of xi
Lab i |
xi |
ui |
Date of measurement |
NMIJ |
0.9020 |
0.0069 |
Jul - Aug 2000 |
NRC |
0.9258 |
0.0048 |
Aug - Sep 2000 |
NIST |
0.9145 |
0.0094 |
Oct - Nov 2000 |
METAS |
0.9090 |
0.0120 |
Nov - Dec 2000 |
CSIR-NML |
0.9250 |
0.0190 |
Dec 2000 - Jan 2001 |
PTB |
0.9227 |
0.0085 |
Feb 2001 |
NMIA |
0.9200 |
0.0091 |
Mar - Apr 2001 |
NPL |
0.9270 |
0.0077 |
Apr - May 2001 |
MIRS/SIQ |
0.9190 |
0.0080 |
May - Jun 2001 |
INRIM |
0.9003 |
0.0187 |
Jun - Jul 2001 |
VNIIFTRI |
0.9240 |
0.0140 |
Sep - Oct 2001 |
PTB* |
0.8580 |
0.0085 |
Nov 2001 |
SPRING Singapore* |
0.8583 |
0.0084 |
Dec 2001 - Jan 2002 |
* Laboratory having reported result for the measurement of the transfer standard
PTB 1-3-1.
Due to failure, the transfer standard PTB 1-3 was repaired after the VNIIFTRI measurements and relabelled PTB 1-3-1 (see page 10 of the Final Report).
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 1-03-2
FREQUENCY : 26 GHz
xi-EUR : result of measurement carried out by laboratory i participant in EUROMET.EM.RF-K10.CL
ui-EUR : combined standard uncertainty of xi-EUR
Lab i |
xi-EUR |
ui-EUR |
Date of measurement |
EIM |
0.9140 |
0.0150 |
May 2002 |
SP |
0.9420 |
0.0104 |
Jun 2002 |
NPL |
0.9386 |
0.0075 |
Jul - Aug 2002 |
AREPA |
0.9440 |
0.0170 |
Aug - Sep 2002 |
NMi-VSL |
0.9268 |
0.0097 |
Sep - Oct 2002 |
PTB |
0.9366 |
0.0085 |
Mar - Apr 2002, |
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 2-6 and PTB 2-6-1
FREQUENCY : 50 MHz
xi : result of measurement carried out by laboratory i
ui : combined standard uncertainty of xi
Lab i |
xi |
ui |
Date of measurement |
NMIJ |
0.9845 |
0.0014 |
Jul - Aug 2000 |
NRC |
- |
- |
Aug - Sep 2000 |
NIST |
0.9910 |
0.0086 |
Oct - Nov 2000 |
METAS |
0.9850 |
0.0060 |
Nov - Dec 2000 |
CSIR-NML |
0.9930 |
0.0070 |
Dec 2000 - Jan 2001 |
PTB |
0.9889 |
0.0020 |
Feb 2001 |
NMIA |
0.9900 |
0.0020 |
Mar - Apr 2001 |
NPL |
0.9872 |
0.0017 |
Apr - May 2001 |
MIRS/SIQ |
0.9910 |
0.0030 |
May - Jun 2001 |
INRIM |
0.9951 |
0.0058 |
Jun - Jul 2001 |
VNIIFTRI |
- |
- |
Sep - Oct 2001 |
PTB* |
0.9883 |
0.0020 |
Nov 2001 |
SPRING Singapore* |
0.9892 |
0.0067 |
Dec 2001 - Jan 2002 |
* Laboratory having reported result for the measurement of the transfer standard
PTB 2-6-1.
Due to failure, the transfer standard PTB 2-6 was repaired after the VNIIFTRI measurements and relabelled PTB 2-6-1 (see page 10 of the Final Report).
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 2-06-2
FREQUENCY : 50 MHz
xi-EUR : result of measurement carried out by laboratory i participant in EUROMET.EM.RF-K10.CL
ui-EUR : combined standard uncertainty of xi-EUR
Lab i |
xi-EUR |
ui-EUR |
Date of measurement |
SP |
0.9870 |
0.0029 |
Jun 2002 |
NPL |
0.9880 |
0.0012 |
Jul - Aug 2002 |
AREPA |
0.9940 |
0.0040 |
Aug - Sep 2002 |
NMi-VSL |
0.9807 |
0.0038 |
Sep - Oct 2002 |
LNE |
0.9852 |
0.0023 |
Nov 2002 |
UME |
0.9922 |
0.0028 |
Feb - Mar 2003 |
PTB |
0.9884 |
0.0020 |
Mar - Apr 2002, |
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 2-6 and PTB 2-6-1
FREQUENCY : 1 GHz
xi : result of measurement carried out by laboratory i
ui : combined standard uncertainty of xi
Lab i |
xi |
ui |
Date of measurement |
NMIJ |
0.9764 |
0.0017 |
Jul - Aug 2000 |
NRC |
- |
- |
Aug - Sep 2000 |
NIST |
0.9784 |
0.0087 |
Oct - Nov 2000 |
METAS |
0.9770 |
0.0070 |
Nov - Dec 2000 |
CSIR-NML |
0.9820 |
0.0080 |
Dec 2000 - Jan 2001 |
PTB |
0.9784 |
0.0025 |
Feb 2001 |
NMIA |
0.9810 |
0.0025 |
Mar - Apr 2001 |
NPL |
0.9780 |
0.0032 |
Apr - May 2001 |
MIRS/SIQ |
0.9790 |
0.0030 |
May - Jun 2001 |
INRIM |
0.9857 |
0.0058 |
Jun - Jul 2001 |
VNIIFTRI |
0.9850 |
0.0060 |
Sep - Oct 2001 |
PTB* |
0.9780 |
0.0025 |
Nov 2001 |
SPRING Singapore* |
0.9775 |
0.0067 |
Dec 2001 - Jan 2002 |
* Laboratory having reported result for the measurement of the transfer standard
PTB 2-6-1.
Due to failure, the transfer standard PTB 2-6 was repaired after the VNIIFTRI measurements and relabelled PTB 2-6-1 (see page 10 of the Final Report).
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 2-06-2
FREQUENCY : 1 GHz
xi-EUR : result of measurement carried out by laboratory i participant in EUROMET.EM.RF-K10.CL
ui-EUR : combined standard uncertainty of xi-EUR
Lab i |
xi-EUR |
ui-EUR |
Date of measurement |
SP |
0.9790 |
0.0032 |
Jun 2002 |
NPL |
0.9777 |
0.0030 |
Jul - Aug 2002 |
AREPA |
0.9850 |
0.0040 |
Aug - Sep 2002 |
NMi-VSL |
0.9708 |
0.0051 |
Sep - Oct 2002 |
LNE |
0.9761 |
0.0062 |
Nov 2002 |
UME |
0.9820 |
0.0027 |
Feb - Mar 2003 |
PTB |
0.9782 |
0.0025 |
Mar - Apr 2002, |
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 2-6 and PTB 2-6-1
FREQUENCY : 10 GHz
xi : result of measurement carried out by laboratory i
ui : combined standard uncertainty of xi
Lab i |
xi |
ui |
Date of measurement |
NMIJ |
0.9402 |
0.0019 |
Jul - Aug 2000 |
NRC |
- |
- |
Aug - Sep 2000 |
NIST |
0.9406 |
0.0088 |
Oct - Nov 2000 |
METAS |
0.9390 |
0.0100 |
Nov - Dec 2000 |
CSIR-NML |
0.9430 |
0.0110 |
Dec 2000 - Jan 2001 |
PTB |
0.9376 |
0.0040 |
Feb 2001 |
NMIA |
0.9400 |
0.0047 |
Mar - Apr 2001 |
NPL |
0.9360 |
0.0045 |
Apr - May 2001 |
MIRS/SIQ |
0.9310 |
0.0070 |
May - Jun 2001 |
INRIM |
0.9335 |
0.0153 |
Jun - Jul 2001 |
VNIIFTRI |
0.9590 |
0.0100 |
Sep - Oct 2001 |
PTB* |
0.9402 |
0.0040 |
Nov 2001 |
SPRING Singapore* |
0.9404 |
0.0071 |
Dec 2001 - Jan 2002 |
* Laboratory having reported result for the measurement of the transfer standard
PTB 2-6-1.
Due to failure, the transfer standard PTB 2-6 was repaired after the VNIIFTRI measurements and relabelled PTB 2-6-1 (see page 10 of the Final Report).
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 2-06-2
FREQUENCY : 10 GHz
xi-EUR : result of measurement carried out by laboratory i participant in EUROMET.EM.RF-K10.CL
ui-EUR : combined standard uncertainty of xi-EUR
Lab i |
xi-EUR |
ui-EUR |
Date of measurement |
SP |
0.9370 |
0.0047 |
Jun 2002 |
NPL |
0.9341 |
0.0044 |
Jul - Aug 2002 |
AREPA |
0.9420 |
0.0070 |
Aug - Sep 2002 |
NMi-VSL |
0.9314 |
0.0069 |
Sep - Oct 2002 |
LNE |
0.9494 |
0.0085 |
Nov 2002 |
UME |
0.9508 |
0.0039 |
Feb - Mar 2003 |
PTB |
0.9388 |
0.0080 |
Mar - Apr 2002, |
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 2-6 and PTB 2-6-1
FREQUENCY : 18 GHz
xi : result of measurement carried out by laboratory i
ui : combined standard uncertainty of xi
Lab i |
xi |
ui |
Date of measurement |
NMIJ |
0.9092 |
0.0038 |
Jul - Aug 2000 |
NRC |
- |
- |
Aug - Sep 2000 |
NIST |
0.9074 |
0.0088 |
Oct - Nov 2000 |
METAS |
0.9060 |
0.0100 |
Nov - Dec 2000 |
CSIR-NML |
0.9030 |
0.0130 |
Dec 2000 - Jan 2001 |
PTB |
0.9048 |
0.0050 |
Feb 2001 |
NMIA |
0.9110 |
0.0063 |
Mar - Apr 2001 |
NPL |
0.9070 |
0.0055 |
Apr - May 2001 |
MIRS/SIQ |
0.9110 |
0.0080 |
May - Jun 2001 |
INRIM |
0.9231 |
0.0146 |
Jun - Jul 2001 |
VNIIFTRI |
0.8850 |
0.0120 |
Sep - Oct 2001 |
PTB* |
0.9104 |
0.0050 |
Nov 2001 |
SPRING Singapore* |
0.9071 |
0.0100 |
Dec 2001 - Jan 2002 |
* Laboratory having reported result for the measurement of the transfer standard
PTB 2-6-1.
Due to failure, the transfer standard PTB 2-6 was repaired after the VNIIFTRI measurements and relabelled PTB 2-6-1 (see page 10 of the Final Report).
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 2-06-2
FREQUENCY : 18 GHz
xi-EUR : result of measurement carried out by laboratory i participant in EUROMET.EM.RF-K10.CL
ui-EUR : combined standard uncertainty of xi-EUR
Lab i |
xi-EUR |
ui-EUR |
Date of measurement |
SP |
0.9040 |
0.0066 |
Jun 2002 |
NPL |
0.9053 |
0.0054 |
Jul - Aug 2002 |
AREPA |
0.9180 |
0.0110 |
Aug - Sep 2002 |
NMi-VSL |
0.9091 |
0.0083 |
Sep - Oct 2002 |
LNE |
0.9167 |
0.0119 |
Nov 2002 |
UME |
0.9233 |
0.0082 |
Feb - Mar 2003 |
PTB |
0.9156 |
0.0050 |
Mar - Apr 2002, |
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 2-6 and PTB 2-6-1
FREQUENCY : 20 GHz
xi : result of measurement carried out by laboratory i
ui : combined standard uncertainty of xi
Lab i |
xi |
ui |
Date of measurement |
NMIJ |
0.8973 |
0.0047 |
Jul - Aug 2000 |
NRC |
- |
- |
Aug - Sep 2000 |
NIST |
0.8952 |
0.0090 |
Oct - Nov 2000 |
METAS |
0.9000 |
0.0110 |
Nov - Dec 2000 |
CSIR-NML |
0.9010 |
0.0150 |
Dec 2000 - Jan 2001 |
PTB |
0.8904 |
0.0055 |
Feb 2001 |
NMIA |
0.9000 |
0.0093 |
Mar - Apr 2001 |
NPL |
0.8970 |
0.0056 |
Apr - May 2001 |
MIRS/SIQ |
0.9020 |
0.0080 |
May - Jun 2001 |
INRIM |
0.9000 |
0.0145 |
Jun - Jul 2001 |
VNIIFTRI |
0.8710 |
0.0220 |
Sep - Oct 2001 |
PTB* |
0.9075 |
0.0055 |
Nov 2001 |
SPRING Singapore* |
0.9044 |
0.0103 |
Dec 2001 - Jan 2002 |
* Laboratory having reported result for the measurement of the transfer standard
PTB 2-6-1.
Due to failure, the transfer standard PTB 2-6 was repaired after the VNIIFTRI measurements and relabelled PTB 2-6-1 (see page 10 of the Final Report).
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 2-06-2
FREQUENCY : 20 GHz
xi-EUR : result of measurement carried out by laboratory i participant in EUROMET.EM.RF-K10.CL
ui-EUR : combined standard uncertainty of xi-EUR
Lab i |
xi-EUR |
ui-EUR |
Date of measurement |
SP |
0.8970 |
0.0066 |
Jun 2002 |
NPL |
0.8944 |
0.0055 |
Jul - Aug 2002 |
AREPA |
0.9090 |
0.0130 |
Aug - Sep 2002 |
NMi-VSL |
0.8962 |
0.0083 |
Sep - Oct 2002 |
LNE |
0.9022 |
0.0128 |
Nov 2002 |
UME |
0.9140 |
0.0083 |
Feb - Mar 2003 |
PTB |
0.8998 |
0.0055 |
Mar - Apr 2002, |
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 2-6 and PTB 2-6-1
FREQUENCY : 23 GHz
xi : result of measurement carried out by laboratory i
ui : combined standard uncertainty of xi
Lab i |
xi |
ui |
Date of measurement |
NMIJ |
0.8784 |
0.0044 |
Jul - Aug 2000 |
NRC |
- |
- |
Aug - Sep 2000 |
NIST |
0.8779 |
0.0092 |
Oct - Nov 2000 |
METAS |
0.8820 |
0.0100 |
Nov - Dec 2000 |
CSIR-NML |
0.8820 |
0.0160 |
Dec 2000 - Jan 2001 |
PTB |
0.8769 |
0.0065 |
Feb 2001 |
NMIA |
0.8810 |
0.0092 |
Mar - Apr 2001 |
NPL |
0.8840 |
0.0067 |
Apr - May 2001 |
MIRS/SIQ |
0.8800 |
0.0080 |
May - Jun 2001 |
INRIM |
0.9013 |
0.0207 |
Jun - Jul 2001 |
VNIIFTRI |
0.8710 |
0.0290 |
Sep - Oct 2001 |
PTB* |
0.8857 |
0.0065 |
Nov 2001 |
SPRING Singapore* |
0.8866 |
0.0134 |
Dec 2001 - Jan 2002 |
* Laboratory having reported result for the measurement of the transfer standard
PTB 2-6-1.
Due to failure, the transfer standard PTB 2-6 was repaired after the VNIIFTRI measurements and relabelled PTB 2-6-1 (see page 10 of the Final Report).
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 2-06-2
FREQUENCY : 23 GHz
xi-EUR : result of measurement carried out by laboratory i participant in EUROMET.EM.RF-K10.CL
ui-EUR : combined standard uncertainty of xi-EUR
Lab i |
xi-EUR |
ui-EUR |
Date of measurement |
SP |
0.8740 |
0.0080 |
Jun 2002 |
NPL |
0.8748 |
0.0066 |
Jul - Aug 2002 |
AREPA |
0.8850 |
0.0150 |
Aug - Sep 2002 |
NMi-VSL |
0.8729 |
0.0082 |
Sep - Oct 2002 |
LNE |
0.8918 |
0.0107 |
Nov 2002 |
UME |
0.9002 |
0.0110 |
Feb - Mar 2003 |
PTB |
0.8783 |
0.0065 |
Mar - Apr 2002, |
CCEM.RF-K10.CL and EUROMET.EM.RF-K10.CL
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 2-6 and PTB 2-6-1
FREQUENCY : 26 GHz
xi : result of measurement carried out by laboratory i
ui : combined standard uncertainty of xi
Lab i |
xi |
ui |
Date of measurement |
NMIJ |
0.8686 |
0.0075 |
Jul - Aug 2000 |
NRC |
- |
- |
Aug - Sep 2000 |
NIST |
0.8778 |
0.0095 |
Oct - Nov 2000 |
METAS |
0.8700 |
0.0120 |
Nov - Dec 2000 |
CSIR-NML |
0.8810 |
0.0190 |
Dec 2000 - Jan 2001 |
PTB |
0.8805 |
0.0085 |
Feb 2001 |
NMIA |
0.8830 |
0.0093 |
Mar - Apr 2001 |
NPL |
0.8890 |
0.0077 |
Apr - May 2001 |
MIRS/SIQ |
0.8790 |
0.0080 |
May - Jun 2001 |
INRIM |
0.9032 |
0.0206 |
Jun - Jul 2001 |
VNIIFTRI |
0.8950 |
0.0150 |
Sep - Oct 2001 |
PTB* |
0.8905 |
0.0085 |
Nov 2001 |
SPRING Singapore* |
0.8945 |
0.0088 |
Dec 2001 - Jan 2002 |
* Laboratory having reported result for the measurement of the transfer standard
PTB 2-6-1.
Due to failure, the transfer standard PTB 2-6 was repaired after the VNIIFTRI measurements and relabelled PTB 2-6-1 (see page 10 of the Final Report).
MEASURAND : Calibration factor
TRANSFER STANDARDS : Power sensors PTB 2-06-2
FREQUENCY : 26 GHz
xi-EUR : result of measurement carried out by laboratory i participant in EUROMET.EM.RF-K10.CL
ui-EUR : combined standard uncertainty of xi-EUR
Lab i |
xi-EUR |
ui-EUR |
Date of measurement |
SP |
0.8820 |
0.0105 |
Jun 2002 |
NPL |
0.8783 |
0.0077 |
Jul - Aug 2002 |
AREPA |
0.8800 |
0.0170 |
Aug - Sep 2002 |
NMi-VSL |
0.8696 |
0.0091 |
Sep - Oct 2002 |
LNE |
0.8837 |
0.0101 |
Nov 2002 |
UME |
0.9037 |
0.0181 |
Feb - Mar 2003 |
PTB |
0.8767 |
0.0085 |
Mar - Apr 2002, |