Dissemination Techniques for UTC(k)

Judah Levine
Time and Frequency Division
NIST/Boulder
jlevine@boulder.nist.gov
Outline

- Requirements of a time service operated by a timing laboratory
- The error budget for time dissemination
- Description of methods with examples – advantages and limitations
Requirements - 1

- Integrity
 - Time signals must be protected so they are not modified or changed during transmission
 - Easy:
 • Telephone service
 • Radio broadcast service
 • Authenticated Internet service
 - Hard:
 • Normal Internet services
Requirements - 2

- **Availability**
 - Service should not have single point of failure
 - Multiple sources at different locations
 - Minimize Time to Repair
 - Balanced with Cost
Requirements - 3

- **Accuracy**
 - Service should transmit UTC(lab) only when operating correctly
 - Should transmit nothing or error message when failed
Requirements - 4

- **Technical Traceability**
 - Each link between user and UTC should be calibrated with delay and uncertainty
 - Magnitude consistent with user requirements

- **Legal Traceability**
 - Traceability can be documented and proven in legal proceedings
 - Log files and documents show proper operation and also errors

- **Users are responsible for traceability with assistance from timing laboratory**
The Error Budget

- Internal accuracy of the time source
 - Usually not the limiting factor
- The transmission delay
 - This is usually the hard part
 - Uncertainty often limits traceability
- Statistics of the user’s clock and the measurement process
 - Is calibration interval consistent with accuracy requirement?
Methods of Time Dissemination

- Simple one-way method
- One-way method with model of delay
- Common-view
- Partial two-way method
- Full Two-way method
Simple one-way method - 1

- Ignore network delay completely
 - Delay $<<$ required accuracy

- Simple broadcasts
 - Low-frequency services (WWVB, ...)
 - 60 kHz, 2 \times 50 kW covers most of US
 - Short-wave services (WWV, ...)
 - 2.5 MHz, 5 MHz, ... delay, coverage variable
 - Internet service in broadcast mode (NTP)
 - Delay, coverage very variable
Simple one-way method - 2

- Simple receiver and transmitter
- Transmission cost does not depend on number of receivers
- Receiver is passive
- Timing error < 1 s, often < 20 ms
- Traceability possible with *adequate* log files
Common-view method

Path delays are nearly equal and cancel in the difference.

Source clock cancels too.

Source

The time is S

$\Delta t = T_1 - T_2 = t(1) - t(2)$

$T_1 = t(1) - (S + \delta)$

$T_2 = t(2) - (S + \delta)$

Rcvr 1

Rcvr 2

Judah Levine, NIST, BIPM, Sept 2012: 11
Common View Sources

- Television Broadcasts
 - Synchronization pulse in blank line
- FM radio signals
 - Stereo sub-carrier
- Phase of mains voltage
 - Within building or small area
- Loran signals (no longer in US)
- Source is used passively at no cost
Partial two-way method

- Delay is stable and is white pm
 - Measure only occasionally
 - Unique to PTP/1588
 - Useful only in special cases
Full Two-way

- Measure round-trip delay on every calibration
 - Delay is not stable and not white pm over longer periods
 - Transmission delay is one-half of measured value
 - Delay is symmetric on the average
- Telephone system using ACTS
- Internet using full NTP
Real-world limitations

- Inbound and outbound delays are not equal
 - Realized as a two-way physical circuit with some one-way components
 - Physical component dispersion
 - Realized with a reversible one-way physical circuit
 - Time dispersion
 - Realized using a packet network
 - Asymmetric queuing and routing delays
Effect of Asymmetry - 1

- Method assumes one-way delay is one-half of round-trip value. Time error is given by

\[\epsilon = (k - 0.5)\Delta \]

\[\Delta = \text{round trip delay} \]

\[k = \text{outbound fraction} \]

\[0 \leq k \leq 1 \]
Effect of asymmetry - 2

Smaller delay has smaller asymmetry error

\[k=0, \quad \varepsilon = -\Delta/2 \]

\[k=1, \quad \varepsilon = \Delta/2 \]
NTP Service model

- Operate servers at many locations
 - Minimizes delay error for all users
 - No single point of failure
 - How are remote servers synchronized?
 - Time link to source of UTC(k)
- Performance limited by delay jitter and asymmetry
 - Few percent of round-trip measurement
 - Accuracy < 50 ms, often < 10 ms, maybe ~ 1 ms
Asymmetry – the bottom line

- Static asymmetry generally cannot be detected or removed
 - Limits accuracy of any protocol
 - Multiply-connected networks sometimes help in detecting asymmetry
Summary - 1

- One-way methods are simple and are good enough for many applications
 - Path delay can be ignored
 - Path delay can be modeled adequately

- Common-view depends on equality of delays along two one-way paths
 - Requires data exchange between stations

- Neither method can attenuate local effects
Summary - 2

- Two-way depends on equality of delay in opposite direction along a single path
- Limited by the symmetry of the link delay between the transmitter and the receiver
 - Magnitude of the delay not important
 - Message format not important
- Error in time data proportional to asymmetry and delay
 - Shorter paths will always have smaller errors
For more information

- List of publications of the NIST time and frequency division are in the publications menu of our web page: tf.boulder.nist.gov
- Many of these publications are on-line