Requested reliability of dynamic mechanical measurement in mobility, from automobile to service robot

Tatsuo Fujikawa
Japan Automobile Research Institute (JARI)
Japan Automobile Research Institute

- JARI: Independent lab. for automotive research & test in Japan

- Research and testing on automotive safety and environment

- Expanding our research and testing field to safety of robotics in terms of interactions with human

- In this presentation, dynamic measurement methods for collision of cars and robots will be reported and discussed.
Contents

• Collision tests of personal care robots
• Car crush criteria
• Car crush dummy
• Calibration of sensors
• Required dynamic response (Examples of data)
• Dynamic measurement in our studies
Contents

- Collision tests of personal care robots
- Car crush criteria
- Car crush dummy
- Calibration of sensors
- Required dynamic response (Examples of data)
- Dynamic measurement in our studies
Collision tests of personal care robots

Project for practical applications of service robots by New Energy and Industrial Technology Development Organization
Collision tests of personal care robots
Contents

- Collision tests of personal care robots
- **Car crush criteria**
- Car crush dummy
- Calibration of sensors
- Required dynamic response (Examples of data)
- Dynamic measurement in our studies
Car crush criteria

Example 1: Rigid barrier / in-position / FMVSS 208

<table>
<thead>
<tr>
<th></th>
<th>50 % male</th>
<th>5% female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>HIC(_{15} = 700)</td>
<td>HIC(_{15} = 700)</td>
</tr>
<tr>
<td>Neck</td>
<td>N(_{ij} = 1.0)</td>
<td>N(_{ij} = 1.0)</td>
</tr>
<tr>
<td>Tension: F({z{\text{max}}} = 4.17) kN</td>
<td>Tension: F({z{\text{max}}} = 2.62) kN</td>
<td></td>
</tr>
<tr>
<td>Compression: F({z{\text{max}}} = 4.0) kN</td>
<td>Compression: F({z{\text{max}}} = 2.52) kN</td>
<td></td>
</tr>
<tr>
<td>Chest</td>
<td>a(_{3ms} = 60) G</td>
<td>a(_{3ms} = 60) G</td>
</tr>
<tr>
<td>s(_{\text{max}} = 63) mm</td>
<td>s(_{\text{max}} = 52) mm</td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>F(_{\text{max}} = 10) kN</td>
<td>F(_{\text{max}} = 6.805) kN</td>
</tr>
</tbody>
</table>

\[
HIC_{15} = \left(\frac{1}{t_2-t_1} \int_{t_1}^{t_2} a \, dt \right)^{2.5} (t_2-t_1)
\]
Car crush criteria

Example 2: Deformable barrier / in-position / EC

<table>
<thead>
<tr>
<th>Body Part</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>HPC\textsubscript{36} = 1000</td>
</tr>
<tr>
<td>Neck</td>
<td>My = 57 Nm</td>
</tr>
<tr>
<td>Chest</td>
<td>VC = 1 m/s</td>
</tr>
<tr>
<td>Femur</td>
<td>FFC (F\textsubscript{max})</td>
</tr>
<tr>
<td>Knee</td>
<td>s\textsubscript{max} = 15 mm</td>
</tr>
<tr>
<td>Tibia</td>
<td>TCFC(F\textsubscript{max}) = 8.0 kN</td>
</tr>
</tbody>
</table>

![Graph showing Axial Femur Force (kN) vs. Duration (ms)](image)

- FFC (F\textsubscript{max})
 - 9.07 kN
 - 10 ms
 - 7.58 kN

- 50% male

HPC\textsubscript{36} = 1000

a\textsubscript{3ms} = 80 G

My = 57 Nm

VC = 1 m/s

ThCC(s\textsubscript{max}) = 50 mm

FFC (F\textsubscript{max})

s\textsubscript{max} = 15 mm

TCFC(F\textsubscript{max}) = 8.0 kN

TI = 1.3
Contents

- Collision tests of personal care robots
- Car crush criteria
- Car crush dummy
- Calibration of sensors
- Required dynamic response (Examples of data)
- Dynamic measurement in our studies
Car crush dummy
Contents

- Collision tests of personal care robots
- Car crush criteria
- Car crush dummy
- Calibration of sensors
- Required dynamic response (Examples of data)
- Dynamic measurement in our studies
Calibration of sensors

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Static Calibration of sensors</th>
<th>Dynamic Calibration of sensors</th>
<th>Response verification of dummy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration</td>
<td>✓</td>
<td>improving</td>
<td>✓</td>
</tr>
<tr>
<td>Displacement</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>Force</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>Torque</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
</tbody>
</table>

Note: Dynamic calibration of sensors is currently under improvement.
Calibration of accelerometer

~ 1000 G

Static
Calibration of accelerometer

Dynamic (up to 2000 Hz)

<10 G
Calibration of accelerometer
Calibration of force/torque transducer

Static
Verification of dummy head response

Resultant Acceleration Hybrid-III 50th

Time (ms)
Verification of dummy chest response
Verification of dummy chest response

Knee Impact Force Hybrid-III 50th

Time (ms)

kN

- 規格
- JARIコリドー
Contents

- Collision tests of personal care robots
- Car crush criteria
- Car crush dummy
- Calibration of sensors
- Required dynamic response (Examples of data)
- Dynamic measurement in our studies
Examples of car crash data

35mph Frontal Impact

\[HIC_{15} = \left[\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} a(t) dt \right]^{2.5} (t_2 - t_1) \]

\[HIC_{15} = 518 \]
Examples of car crash data

35mph Frontal Impact
Examples of car crash data

35mph Frontal Impact
Example of robot crash data.

Moving object:
- 200 kg
- Steel Structure
- 6 km/h

Dummy:
- 6-Y-O
- Standing in front of wall

HIC₁₅ = 323

REF: NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
Example of robot crash data

Moving object:
- 200 kg
- Steel Structure
- 6 km/h

Dummy: 6-Y-O
- Standing in front of wall

$S_{\text{max}} = 10$ mm

Displacement (mm)

Chest Injury Probability (%)

Chest Deflection (mm)

S$\max = 10$ mm

REF: NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
• Collision tests of personal care robots
• Car crush criteria
• Car crush dummy
• Calibration of sensors
• Required dynamic response (Examples of data)
• Dynamic measurement in our studies
Dynamic measurement
Tire dynamic force /1987
Dynamic measurement
Tire contact force /1989

Tire tread

Road surface

Transducer
Dynamic measurement
Tire contact force / 1989
Dynamic measurement
Tire temperature in actual contact area /1990
Dynamic measurement
Tire temperature in actual contact area /1990

- 2 µm Deposited Chromel Coating
- Alumel Wire
- Ceramic Insulation
- Chromel Tube

Graph: Temperature Rise vs. Distance into Patch (mm)

- Measured
- Computed
Dynamic measurement
Tire tread vibration /1999

Transducer

Acceleration

Transducer

Transfer function (m/s/N)

Frequency (Hz)

Real

Imaginary

Time (s)

0 0.02 0.04 0.06 0.08 0.1

0 500 1000 1500 2000

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0 1000 1500 2000

200 m/s²

37
Dynamic measurement
Tire tread vibration /1999
Dynamic measurement

Crash barrier force / 20XX

Transducers