Measurement of Albumin in Human Urine by Liquid Chromatography-Isotope Dilution Tandem Mass Spectrometry

Protein Analysis Working Group Meeting

Qinde Liu
Chemical Metrology Division
Applied Sciences Group
Health Sciences Authority
9 April 2018
Background

- Urine albumin is an important biomarker for assessing the health status of the kidneys.
- Urine albumin-to-creatinine ratio (ACR) helps to identify early-stage kidney disease.
- Diabetes and hypertension are the leading causes for kidney disease, it is imperative to routinely measure the urine albumin of patients with these chronic diseases in order to provide timely treatment and prevent the onset of kidney failure.
- The IFCC has formed a Working Group for standardisation of albumin in urine with the objectives of developing reference measurement procedures and commutable CRMs, as well as harmonising routine measurement procedures with reference measurement procedures.
Objectives of Our Research

- To develop an IDMS method for the measurement of albumin in urine using peptide and/or protein calibration standards.
- To provide metrologically traceable assigned values in the HSA External Quality Assessment (EQA) Programmes, and use the assigned values to evaluate the results from the participating clinical laboratories.
- To produce albumin in urine certified reference materials (CRMs) with certified values determined by the IDMS method.
- To contribute to standardisation of albumin in urine by collaborating with other NMIs/reference laboratories.
Choice of Calibrators and Internal Standards for the IDMS Method

❑ Peptide Calibrator with Isotope-labelled Peptide Internal Standard

Pros:
- Purity can be determined by peptide impurity corrected amino acid (PICAA) methods.
- Materials and internal standards are readily available from custom synthesis.

Cons:
- Accuracy may be affected by incomplete proteolysis, matrix effect and/or poor stability of the peptides during proteolysis.

❑ Protein Calibrator with Isotope-labelled Albumin Internal Standard

Pros:
- Less influence from incomplete proteolysis, matrix effect and/or poor stability of the peptides.
- Pure albumin CRMs from NMIs are readily available.

Cons:
- Isotope-labelled albumin is costly and relatively hard to obtain.
Procedure of Method 1 (Peptide Calibrator) – Peptide Purity

A few signature peptides of albumin were tested. Only one peptide, LVNEVTEFAK (L-K), was found to be suitable for quantification. The purity of L-K was determined by PICAA method.

Spike isotope-labelled Phe, Val and Leu (F*, V* and L*) as internal standards.

Hydrolysis using 6 N HCl at 120 °C for 24 hr

Analyse the hydrolysed mixture by LC-IDMS/MS using Phe, Val and Leu (F, V and L) CRM as calibration standards.
Procedure of Method 1 (Peptide Calibrator) – Determination of Albumin Concentration

Calibrator: Custom synthesised peptide, LVNEVTEFAK
Internal Standard: Isotope-labelled peptide, L*-VNEVTEFAK

Enzymatic digestion using trypsin at 37 °C overnight

Spike L*-K as internal standard

Analyse the digest by LC-IDMS/MS using purity assessed L-K as calibration standard
Recovery Test using Method 1 (Peptide Calibrator)

<table>
<thead>
<tr>
<th></th>
<th>Mid Level (~ 40 mg/kg)</th>
<th>High Level (~ 220 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replicates, n</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>% Recovery</td>
<td>96.4</td>
<td>98.8</td>
</tr>
<tr>
<td>% CV</td>
<td>1.04</td>
<td>2.33</td>
</tr>
</tbody>
</table>

Recovery = (Obtained Conc. – Intrinsic Conc.)/Spiked Conc.

- Albumin CRM from NMIJ was spiked into human urine samples with two different concentrations.
- Good recoveries (> 95%) were obtained when urine albumin concentrations were not very low.
- Not suitable for low concentrations of albumin in urine.
Procedure of Method 2 (Protein Calibrator) – Peptide Purity

Urine samples were digested using trypsin and eight resulting peptides, L-K, AEFAEVSK (A-K), YLYEIAR (Y-R), DLGEENFK (D-K), FQNALLVR (F-R), TYETTLEK (T-K), QTALVELVK (Q-K), and VFDEFKPLVEEPQNLIK (V-K), were quantified by LC-IDMS/MS simultaneously.

Enzymatic digestion using trypsin at 37 °C overnight

Spike 15N-labelled albumin as internal standard

Analyse the digest mixture by LC-IDMS/MS

Calibrator: Albumin solution CRM from NMIJ
Internal Standard: Recombinant isotope-labelled albumin
Recovery Test using Method 2 (Protein Calibrator) – Results from Different Peptides

<table>
<thead>
<tr>
<th>Peptides</th>
<th>% Recovery Low Level (~ 7 mg/kg), n = 6</th>
<th>% CV</th>
<th>% Recovery Mid Level (~ 40 mg/kg), n = 7</th>
<th>% CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-K</td>
<td>100.2</td>
<td>2.99</td>
<td>103.1</td>
<td>4.42</td>
</tr>
<tr>
<td>A-K</td>
<td>100.5</td>
<td>3.38</td>
<td>100.2</td>
<td>3.55</td>
</tr>
<tr>
<td>Y-R</td>
<td>104.1</td>
<td>2.73</td>
<td>103.3</td>
<td>3.34</td>
</tr>
<tr>
<td>D-K</td>
<td>104.9</td>
<td>4.52</td>
<td>104.4</td>
<td>2.49</td>
</tr>
<tr>
<td>F-R</td>
<td>100.1</td>
<td>2.25</td>
<td>104.2</td>
<td>3.24</td>
</tr>
<tr>
<td>T-K</td>
<td>101.1</td>
<td>2.36</td>
<td>105.6</td>
<td>5.63</td>
</tr>
<tr>
<td>Q-K</td>
<td>101.4</td>
<td>1.57</td>
<td>101.8</td>
<td>3.19</td>
</tr>
<tr>
<td>V-K</td>
<td>103.2</td>
<td>4.19</td>
<td>102.9</td>
<td>3.30</td>
</tr>
</tbody>
</table>
Overall Recovery using Method 2 (Protein Calibrator)

Good recovery was obtained even for very low concentration of albumin (close to Detection Limit of some clinical analysers).

Suitable for urine samples with a wide albumin concentration range.

<table>
<thead>
<tr>
<th></th>
<th>Low Level (~ 7 mg/kg)</th>
<th>Mid Level (~ 40 mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Peptides</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>% Recovery</td>
<td>101.9</td>
<td>103.2</td>
</tr>
<tr>
<td>% CV</td>
<td>1.85</td>
<td>1.60</td>
</tr>
</tbody>
</table>
Comparison of Two Methods

Mid Level

High Level

Albumin Concentration (mg/kg)

Method 1
Peptide Calibrator

Method 2
Protein Calibrator

Method 1
Peptide Calibrator

Method 2
Protein Calibrator
Value Assignments in HSA EQA Programmes

2017 EQA: Value assigned by Method 1 (Peptide Calibrator)

- Assigned Value = 229.0 ± 10.2 mg/L
- Robust Mean = 229.4 mg/L
- Relative Deviation = 0.2%
- No significant deviation

2018 EQA: Value assigned by Method 2 (Protein Calibrator)

- Assigned Value = 106.1 ± 5.6 mg/L
- Robust Mean = 105.9 mg/L
- Relative Deviation = -0.2%
- No significant deviation
Certification of CRMs

- Urine materials in 2017 HSA EQA Programme were developed into Certified Reference Materials.
- Certified values were determined using Method 2 (Protein Calibrator).

Certified Reference Material (HRM-3004A)
Albumin and Creatinine in Human Urine

<table>
<thead>
<tr>
<th>Certified Values of Albumin (mg/L)*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STY-0018-053</td>
<td>STY-0018-054</td>
</tr>
<tr>
<td>40.1 ± 2.4</td>
<td>226 ± 11</td>
</tr>
</tbody>
</table>

*Converted from mg/kg using urine density
Conclusion

• The newly developed LC-IDMS/MS methods were shown to be accurate and precise.

• Method 1 (peptide calibration) was suitable for urine samples with albumin concentrations close to or higher than 40 mg/kg.

• Method 2 (protein calibration) was found to be suitable for urine samples with a wide albumin concentration range.

• Methods 1 and 2 were successfully applied in the value assignments of albumin in urine in the 2017 & 2018 HSA EQA Programmes, respectively. No significant deviation was found between the assigned values and the results from the participating clinical laboratories.

• CRMs with certified values determined by the developed LC-IDMS/MS method were developed.
Acknowledgement

• Dr Chen Yizhao, Scientist, Chemical Metrology Laboratory
• Ms Liu Hong, Scientist, Chemical Metrology Laboratory
• Ms Teo Hui Ling, Scientist, Chemical Metrology Laboratory
• Dr Lee Tong Kooi, Division Director, Chemical Metrology Division
• Dr Teo Tang Lin, Laboratory Director, Chemical Metrology Laboratory
Thank you