Status of Calibration and Measurement Activities of KRISS in Fiber Optics

Seung Kwan Kim
Kee-Suk Hong, Sun Do Lim, Ki-Lyong Jeong
Center for Photometry and Radiometry
Division of Physical Metrology
Contents

• KRISS Fiber Optics Team
• History
• Service Items
• Service Status
• Standard Setup
• Current Research
• Collaboration Issues
KRISS Fiber Optics Team

Dr. Seung Kwan Kim
- Project leader
- Fiber optic power
- Polarization

Dr. Kee-Suk Hong
- Optical fiber length
- Optical fiber attenuation
- Single photon source

Dr. Sun Do Lim
- Return loss
- Dispersion
- Mid-IR fiber source

Mr. Ki-Lyong Jeong
- Calibration and Testing
- Customer liaison
History

- **2003**
 Fiber optic power responsivity scale at 1310 nm and 1550 nm

- **2005**
 Optical fiber length, attenuation scale and reference standard

- **2006**
 PMD, PDL scale and reference standard

- **2006**
 Informal bilateral comparison on PMD with NIST

- **2006~2014**
 Piloting APMP TCPR SC on fiber optic power responsivity (1310 nm, 1550 nm)

- **2011**
 Informal bilateral comparison on fiber power with NIST

- **2012~2014**
 Participating in EMRP MIQC project

- **2014**
 Fiber optic power responsivity scale at 1625 nm

- **2014~**
 Tunable fiber laser at 2 µm range, OPO in 2.5 µm ~ 3.5 µm, OPO in 5 µm ~ 8 µm

- **2015~**
 Piloting APMP TCPR SC on optical fiber length (1310 nm, 1550 nm)

- **2016~**
 Participating in COOMET SC on polarization mode dispersion
Service Items

• Calibration
 – Fiber optic power meter / Optical power meter
 – Optical fiber length reference
 – Optical fiber attenuation reference
 – Optical spectrum analyzer
 – Return loss reference
 – Polarization mode dispersion analyzer
 – Polarization dependent loss reference
 – Variable optical attenuator

• Test
 – Fiber optic source (LASER, LED)
Service Status

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber optic power meter</td>
<td>12</td>
<td>14</td>
<td>18</td>
<td>17</td>
<td>14</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Variable optical attenuator</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>11</td>
<td>9</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Optical fiber length reference</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Optical fiber attenuation reference</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Return loss reference</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>OTDR</td>
<td>7</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical spectrum analyzer</td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PMD reference</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMD analyzer</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDL reference</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Fiber optic source (test)</td>
<td>5</td>
<td>6</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number</td>
<td>45</td>
<td>37</td>
<td>58</td>
<td>40</td>
<td>46</td>
<td>34</td>
<td>18</td>
</tr>
</tbody>
</table>
Standard Setup (1/3)

Fiber optic power responsivity

Recently we added 1625 nm.
Standard Setup (2/3)

Optical fiber length (Time of Flight)

![Diagram of Optical fiber length setup]

- LS, laser source
- PC, polarization controller
- PD, photo-detector
- PG, pulse generator
- VOA, variable optical attenuator
- M, modulator
- DC, directional coupler
- OC, optical connector
- FUC, fiber under test
- OSC, oscilloscope

Optical fiber attenuation (Cut-back)

![Diagram of Optical fiber attenuation setup]

- LS, laser source
- VOA, variable optical attenuator
- PC, polarization controller
- PD, photo-detector
- BFA, bare fiber adaptor
- FUC, fiber under test

Return loss (Opt. Cont. Wave Refl.)

![Diagram of Return loss setup]

- FP-LD, Fabry-Perot laser diode
- VOA, variable optical attenuator
- PC, polarization controller
- OPM, optical power meter

DC, directional coupler; FC, frequency counter; LS, laser source; M, modulator; OC, optical connector; OSC, oscilloscope; PD, photo-detector; PG, pulse generator; VOA, variable optical attenuator.
Standard Setup (3/3)

Polarization Mode Dispersion
- JME method

Polarization Dependent Loss
- pol. scanning method
Current Research (1/4)

2 µm band tunable fiber laser (single longitudinal mode)

2 μm band tunable fiber laser: wavelength tunability ≥ 120 nm
- **MIR-OPO (1)**
 - MgO:PPLN
 - Pump: 1064 nm DPSS Laser
 - Signal: 1.5 μm ~ 1.9 μm
 - Idler: 2.5 μm ~ 3.5 μm
Current Research (4/4)

- **MIR-OPO (2)**
 - ZGP
 - Pump: 2 µm Fiber Laser
 - Signal: 2.8 µm ~ 3.2 µm
 - Idler: 5.3 µm ~ 7.0 µm
Collaboration Issues

• High power optical power meter

• Multimode fiber power meter

• References for Multimode OTDR

• Fiber optics in Mid-IR band
Thank you very much for your kind attention!