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1. Scope 

The mise-en-pratique for the definition of the kelvin describes absolute primary radiometric 

thermometry as an approach for thermodynamic temperature measurement based on an accurate 

determination of the optical power emitted, over a known spectral band and known solid angle, by an 

isothermal cavity of known emissivity. This report has been produced by members of the CCT 

Working Group on Non-Contact Thermometry (CCT-WG-NCTh) to describe the methods used for 

determining the uncertainty associated with thermodynamic temperature as measured using absolute 

primary radiometric thermometry. The uncertainty components given in the report are described as 

“best” and “normal”, where best uncertainties are those that can be obtained with considerable effort 

by a small number of leading workers in the field, and normal uncertainties are those that can easily be 

obtained at present in national metrology institutes. All uncertainties given in this document are 

standard uncertainties. 
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2. Radiometric Measurement of Thermodynamic Temperature 

2.1 Measurement of Radiance 

The determination of thermodynamic temperature through filter radiometry involves the measurement 

of the spectral radiance of a blackbody source using an instrument known variously as a ‘filter 

radiometer’ or ‘absolute radiation thermometer’. Such an instrument consists of a detector and spectral 

filter
1
, and an optical system, typically including two co-aligned circular apertures that define the solid 

angle, and, optionally, additional lenses or mirrors.  

 

The blackbody spectral radiance is given by Planck’s law, which, for measurements where the detector 

is in air, is 

 

  
 

2

b 2 5

2 1
,

exp 1

hc
L T

n hc n kT


 

 
  

     
, (1) 

 

where T is the thermodynamic temperature, k is the Boltzmann constant, h is the Planck constant, c is 

the speed of light in a vacuum, n is the refractive index of the air [1, 2] at the detector, and  is the 

wavelength in air. The constants in Eq. (1) are usually written in terms of the first and second radiation 

constants, 
2 16 2

1 2 1.191 042 972 10  W mc hc     and 2 0.014 387 768 m Kc hc k  . 

 

The temperature of the blackbody is determined by measuring the spectral radiance within a defined 

spectral band. The units of spectral radiance are W m
–2

 sr
–1

 nm
–1

 and, therefore, a primary radiometric 

determination of thermodynamic temperature requires the power measurement to be traceable to the 

definition of the watt, and wavelength, area, and distance measurements to the definition of the metre. 

Generally, this is achieved as follows: 

 Power: via a responsivity calibration of the filter radiometer against a trap detector that has 

been calibrated against a cryogenic radiometer. 

 Wavelength: by making the responsivity calibration at discrete wavelengths using a 

calibrated tuneable monochromatic source. This is often achieved using a tuneable laser 

illuminating an integrating sphere [3, 4] or, alternatively, a monochromator-based source 

[5, 6]. The wavelength determination of the laser, or the wavelength scale calibration of the 

monochromator using atomic emission lines [7], provides traceability to the metre. 

 Area and distance: via two precision circular apertures with known diameters and separation. 

 

2.2 The Geometric Factor (Form Factor, Configuration Factor) 

Consider the simple case of a coaxial system consisting of a blackbody, two apertures, and a detector. 

The blackbody is a Lambertian source and, therefore, the flux, , that leaves the first aperture and 

radiates into the full hemisphere is determined by the area, 1A , of the first aperture and the radiance of 

the blackbody: 

 

 
1 1 bA A L  . (2) 

 

                                       
1
 Which may be a glass or interference filter, or may be created using an instrument such as a monochromator. 
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The form factor is the fraction of radiation emitted by one Lambertian surface that is intercepted 

directly by a second surface. The form factor for two coaxial parallel circular apertures of radii 1r  and 

2r  and separation d is: 

 

 
1 2

2

2

2 2 2 2 2 2 2 2 2

1 2 1 2 1 2

2

( ) ( ) 4
A A

r
F

r r d r r d r r
 

     
. (3) 

 

The flux that reaches the second aperture is equal to the flux emitted by the first aperture multiplied by 

the form factor; i.e., 

 

 
2 1 21 bΦ  A A AA L F . (4) 

 

It is sometimes helpful to introduce a geometric factor, g, defined as  

 

 
1 2

2 2

1 2
1 2 2 2 2 2 2 2 2 2

1 2 1 2 1 2

2

( ) ( ) 4
A A

r r
g A F

r r d r r d r r


 

     
, (5) 

 

so that the flux is calculated from 

 

 
2 bA g L  . (6) 

 

The geometric factor is symmetrical with respect to the two apertures, so distinguishing between a 

‘first’ and a ‘second’ aperture is not required. 

 

2.3 Four Calibration Schemes 

As currently realised, filter radiometers comprise a detector, a spectrally-selective filter, and a 

geometric/optical system with two defining apertures. For illustrative purposes, four different 

implementations are described below (and in the mise en pratique), each having a slightly different 

calibration method. 

 

 A filter radiometer, calibrated for power responsivity, used to measure the radiance of the 

blackbody in combination with detector and source apertures – the spectral power method.  

 A filter radiometer, calibrated for irradiance responsivity, used to measure the radiance of the 

blackbody in combination with a source aperture – the irradiance method. 

 A filter radiometer, calibrated for irradiance responsivity, used to measure the radiance of the 

blackbody in combination with a lens aperture and a single, simple lens – the hybrid method.  

 An imaging radiometer, calibrated for radiance responsivity, comprising a filter radiometer 

incorporated within an optical system consisting of several lenses and appropriate baffling – 

the radiance method. 

 

The first two methods are non-imaging and the second two use optics to facilitate the measurement of 

small sources. 

 



7 

 

2.4 The Basic Measurement Equation 

Whichever scheme is used, the measurement equation takes the form 

 

 
b

0

( ) ( , )Li s L T d  


  ,  (7) 

 

where i is the measured photocurrent, ( )Ls   is the spectral radiance responsivity [units: A W
–1

 m
2
 sr] 

of the combined instrument, b( , )L T  is the spectral radiance of the blackbody, as given by Eq. (1),  

is the wavelength in air, and T is the thermodynamic temperature. This expression will be modified 

somewhat for the different schemes. 

 

For the spectral power method, the radiometer is calibrated for flux responsivity [units: A W
–1

] and 

two apertures are added for the blackbody measurement (see Figure 1). Equation (7) is implemented 

using 

 

 Spectral power: ( ) ( )Ls gs   , (8) 

 

where g is the geometric factor for the added double aperture system, given by Eq. (5), and ( )s   is 

the spectral flux responsivity of the filter radiometer. 

 

 
Figure 1. The power method. 

 

 

For the irradiance method, the radiometer is calibrated for irradiance responsivity [units: A W
–1

 m
2
] 

with an overfilled aperture. It is then used with a second aperture added for the blackbody 

measurement (see Figure 2). Equation (7) is implemented using 

 

 Irradiance: 
FR

( )
( ) E

L

gs
s

A

 
  , (9) 

 

where g is the geometric factor for the double aperture system, given by Eq. (5), after the second 

aperture is added, FRA  is the filter radiometer’s aperture area, and ( )Es   is the irradiance responsivity 

of the filter radiometer. 

 

 

  

b) Use a) Calibration 
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Figure 2. The irradiance method. 

 

 

For the hybrid method, the setup is similar to the irradiance method, but an additional lens is 

introduced to enable the measurement of smaller sources (see Figure 3). Here, Eq. (7) is implemented 

using 

 

 Hybrid: 
FR

( ) ( )
( ) E

L

gs
s

A

   
  , (10) 

 

where g is the geometric factor for the double aperture system, given by Eq. (5), after the second 

aperture is added, FRA  is the filter radiometer’s aperture area, ( )Es  is the irradiance responsivity of 

the filter radiometer, and ( )   is the spectral transmittance of the lens. 

 

 

 

 

b) Use a) Calibration  

Figure 3. The hybrid method. 

 

 

For the radiance method, Eq. (7) can be used directly, as here the instrument is calibrated for radiance 

responsivity (see Figure 4). 

 

b) Use a) Calibration 
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Figure 4. The radiance method. 

 

 

2.5 The Generic Measurement Equation 

Generally, Eq. (7) has additional multiplying constants to account for various corrections. The 

measured signal may be, for example, a voltage 

 

 
signal ampV i G  , (11) 

 

where 
ampG is the gain of a transimpedance amplifier [units: V A

–1
].  

 

There will be further corrections for other effects. The hybrid and radiance methods will have a size-

of-source effect (SSE) correction due to lens scatter (see Sections 6.1.1 and 6.1.2). The irradiance and 

power methods will have a similar diffraction correction for diffraction at the first aperture (see 

Section 4.1.7). These provide an additional correction factor, here generically given by the symbol 

SSEK . The power, irradiance, and hybrid methods will also have a correction for stray light, strayK  (see 

Section 4.1.6). 

 

There may be a correction for blackbody emissivity, BB , which is generally considered to be a 

constant over the spectral responsivity of the filter radiometer (but may need to be treated as a spectral 

quantity for wide bandwidths). There may also be a correction for instrument linearity between the 

calibration and blackbody signal levels, linK (see Section 6.1.3), and a correction for out-of-band 

transmittance, OOBK (see Section 4.1.5). Thus, for example, for the hybrid method Eq. (7) may be 

written 
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 signal BB amp OOB stray SSE lin b

FR 0

( ) ( ) ( , )E

g
V G K K K K s L T d

A


     



  . (12) 

For the purposes of uncertainty analysis, it is helpful to write this in a generic way to simplify the 

mathematical expressions. Therefore, for the mathematical sections of this report, we use a generic 

version of this expression. Note that later sections describe how to interpret this generic notation for 

specific cases. Thus, the generic version of the equation is: 

 

 Generic: 
b

0

( ) ( , )S K s L T d  


  ,  (13) 

 

where S is the measured temperature-dependent “signal”, which may be in amps, volts, or digital 

numbers, depending on the device, ( )s   is the radiance, irradiance, or power responsivity of the filter 

radiometer, as appropriate (and for the hybrid case also includes the lens transmittance), K includes all 

the optical, geometrical, and electrical quantities not included in ( )s  , and b( , )L T  is the blackbody 

spectral radiance. 

 

2.6 Determining the Temperature of the Blackbody 

Generally, Eq. (13), with the appropriate corrections (e.g., in the form of Eq. (12)), is solved 

numerically by iteratively varying T until the calculated signal (the right-hand side of Eq. (13)) is 

equal to the measured signal, S. Methods such as the bisection rule can be used to achieve this, but the 

most efficient method is to use the Newton-Raphson algorithm, based on an initial estimate 0T . The 

algorithm then proceeds by forming successively better estimates, iT , for i  1, 2, 3, …, using the 

formula 

 

 

 

b

0
1

2 b

2

20

( ) ( , )

( , )
( )

1 exp ( )

i

i i

i

i i

S K s L T d

T T
c L T

K s d
T n c n T

  


 

 



 



 

   





 . (14) 

 

Convergence to better than 0.1 mK is usually achieved in fewer than 5–10 iterations, depending on 

how close the initial guess, 0T , is to the true temperature [8]. 
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3. Uncertainty Analysis 

3.1 Categorising the Uncertainty Components 

For the purposes of this report, the uncertainty components are separated into four categories, as 

shown in Figure 5. The main split is between those sources of uncertainty that are due to the 

calibration of the filter radiometer and those that are due to its use in measuring a blackbody. Some 

sources of uncertainty for the filter radiometer calibration are common to all four calibration schemes 

(Section 4.1), while others are specific to one scheme. The sources of uncertainty relating to the 

measurement of a blackbody can themselves be split into those due to the source and those due to the 

filter radiometer. 

 

 

 
 

Figure 5. Classification of the uncertainty components. 

 

 

3.2 Overview of Uncertainty Analysis 

The measurement equation, written in generic notation as Eq. (13), relates the measured signal to the 

source temperature, T. Uncertainty associated with any of the factors or parameters in Eq. (13), 

determined either during the calibration phase or during use to determine an unknown temperature, 

must be propagated through this equation to calculate its influence on the calculated value of T. As the 

expression cannot be rearranged into the direct form  1 2, ,T f x x , the uncertainty analysis 

requires implicit differentiation. The sensitivity coefficient for any standard uncertainty component 

( )iu x  can be determined from: 
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ii

T S S

x Tx

  
 

 
. (15) 

The total standard uncertainty associated with the calculated temperature is then, in accordance with 

the law of propagation of uncertainties [9], 

   

 

1 2
2

,

( ) ( ) ( , ) ( ) ( )i i j i j

i i j j ii i j

T T T
u T u x r x x u x u x

x x x

    
   

     
  , (16) 

 

where ( , )i jr x x  is the correlation coefficient between the uncertainties ( )iu x  and ( )ju x . 

 

There are two approaches to deriving these sensitivity coefficients. One method, described in 

Appendix A, is based on the full integral of Eq. (13). The second method, described in Appendix B, 

approximates the measurement equation by an analytic equation based on key spectral parameters of 

the filter radiometer, which can be used to calculate T directly. 

 

3.3 Correlation 

There are two ways in which correlation affects the uncertainty analysis: 

 Where multiple measured values are combined, it is necessary to distinguish those sources of 

uncertainty that are systematic between the combined measurements (for example, if the same 

filter radiometer is used, then its calibration can be considered common) and those that change 

from one measurement to the next (for example, measurement noise).  

 The measurement equation, Eq. (13), integrates the product of the Planck function and the 

spectral responsivity of the filter radiometer. The spectral responsivity of the filter radiometer 

is determined at discrete wavelength values by comparison with the trap detector. In order to 

estimate the uncertainty associated with the integrated quantity, it is necessary to understand 

the correlation between the measured values at the discrete wavelengths. 

 

This section concentrates on the second condition – the implication of correlation on the spectral 

integral. It is also necessary to consider that there will be uncertainties associated with both the 

wavelength scale (horizontal axis in graphed spectral responsivity) and with the responsivity (vertical 

axis in graphed spectral responsivity), and for both wavelength and responsivity effects there are some 

sources of uncertainty that are fully correlated, some that are partially correlated, and some that are 

uncorrelated. 

 

3.3.1 Uncertainties associated with wavelength 

During the filter radiometer spectral calibration, the responsivity is determined at several wavelengths 

using a monochromatic, or pseudo-monochromatic, source created using either a tuneable laser or a 

monochromator illuminated by a broadband source. The calibration of the wavelength scale of a laser 

and monochromator is described in Section 4.1.4. Where a wavemeter is used with a laser, the 

uncertainties are generally small. The worst-case scenario would be when these uncertainties are fully 

uncorrelated. 

 

A monochromator’s wavelength scale is itself calibrated against reference wavelengths. Here there 

will be wavelength uncertainties in all three categories. The accuracy of the wavelength scale 
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calibration will be a fully correlated (systematic-wavelength) effect. The reproducibility of the 

wavelength scale (repeatability of the grating rotation) will be a fully uncorrelated (random-

wavelength) effect. Any sine-bar error, which creates a reproducible spectral shape to the wavelength 

scale error, will be a partially-correlated effect. 

3.3.2 Uncertainties associated with the spectral responsivity 

Assuming that the calibration is performed in ‘one go’ (i.e., the filter radiometer is not realigned from 

one wavelength to the next), then all sources of uncertainty relating to the setup (e.g., alignment, 

geometry, diffraction) will be correlated effects, affecting the spectral responsivity equally at all 

wavelengths. Stray light and source non-uniformity are usually also spectrally ‘flat’ across the spectral 

range of a filter radiometer. 

 

Measurement noise (whether electrical or optical) is always a random effect, and, assuming that the 

measurements take a considerable period of time, fluctuations in, for example, room temperature, as 

well as source stability, will also be uncorrelated (having a random effect on the responsivity values 

determined from one wavelength to the next). 

 

Partial correlation will come from a slow drift during the measurements of, for example, the reference 

detector, from room temperature variations, or from a drift in the instrument alignment. Here, 

measured values at wavelengths taken closer together in time will have a higher correlation than those 

taken at, for example, the beginning and end of a scan. Partial correlation is also introduced through 

mathematical interpolations of the reference detector’s spectral responsivity. If the filter radiometer is 

relatively narrowband, then the reference detector’s spectral responsivity may be based on a single 

wavelength value and, therefore, the uncertainty associated with the reference detector’s responsivity 

will create a fully correlated effect in the filter radiometer’s spectral responsivity. On the other hand, if 

the filter radiometer is broadband, then the reference detector’s responsivity will be based on several 

measured values, and in this case the effect will be partially correlated.  

 

3.3.3 Application of correlation information 

The application of correlation information is discussed in Appendices A and B. In these appendices, 

the wavelength uncertainties are separated into fully correlated components and fully uncorrelated 

components, and propagation of uncertainty formulae, based on Eq. (16), are explicitly derived for 

these two cases (i.e., when ( , ) 1i jr     for all i and j, and when ( , ) 1i jr     only when i j  and is 

zero otherwise). Partially-correlated uncertainties are easily dealt with if the values of ( , )i jr    are 

known, since all of the sensitivity coefficients in Eq. (16) are given. Propagation of uncertainty 

formulae for the spectral responsivity values are similarly derived. 

  



14 

 

4. Calibration of the Filter Radiometer 

4.1 Common Sources of Uncertainty 

This section describes sources of uncertainty that are common to all four of the calibration schemes 

discussed in Section 2.3. There may be some differences in how these uncertainties are assessed for 

each calibration scheme, and those differences are discussed in the relevant sections below 

(Section 4.2). 

 

4.1.1 Power responsivity of a trap detector 

The spectral power responsivity, ,trap( )s  , of a photodiode-based trap detector is defined as the ratio 

of the photocurrent, I, to the incident radiant power, P, causing the photocurrent: 

 

 ,trap( )s I P  . (17) 

 

The photocurrent measurement is usually performed by a current-to-voltage converter (Section 4.1.2) 

and a digital voltmeter. The radiant power is measured using a cryogenic radiometer, which is an 

electrical substitution radiometer operated at low temperatures, slightly above the boiling point of 

liquid helium. The radiation sources can be subdivided into three main types: (i) a monochromator in 

conjunction with a broadband radiation source (e.g., an argon arc plasma, a xenon arc, or a tungsten-

halogen lamp); (ii) a widely and continuously wavelength-tuneable laser system; and (iii) a laser 

system delivering radiation at widely separated laser lines (e.g., a krypton ion laser). The first two 

systems allow, in principle, the determination of the spectral responsivity at any wavelength of 

interest. In practice, the measurements are performed at wavelengths separated by intervals ranging 

from about 2 nm to 20 nm. The last system (iii) is restricted to measurements at the available laser 

lines, which are usually widely separated. In all cases, the measured spectral responsivity must be 

interpolated over the entire wavelength range of interest using empirical or physical models. When the 

trap detector is applied to measure the radiant power in order to calibrate a filter radiometer, its 

spectral responsivity has to be corrected for the experimental conditions (e.g., radiant power, 

temperature, spot size, polarisation state, etc.) during the calibration of the filter radiometer, which 

usually strongly differ from those during the calibration of the trap detector. 

 

The uncertainty contributions can be grouped as follows: 

G1. Uncertainty of the radiant power measurement by the cryogenic radiometer. 

These contributions mainly depend on the type of cryogenic radiometer used and the effort 

spent to characterise the device. 

G2. Uncertainty contributions related to the trap detector calibration against the cryogenic 

radiometer. 

These contributions mainly depend on the calibration principle, the radiation source, and the 

facility used to calibrate a trap detector against a cryogenic radiometer. 

G3. Uncertainty contributions arising from the interpolation of the spectral responsivity. 

G4. Uncertainty contributions related to the use of the calibrated trap detector under experimental 

conditions different from those during its calibration. 

These contributions depend on the properties of the filter radiometer to be calibrated and the 

degree of mismatch of the experimental conditions of the calibration and the use of the trap 

detector. 

 



15 

 

An example of an uncertainty budget is shown in the Table 1.  

Table 1. Example uncertainty budget for the power responsivity of a trap detector. 

Source of uncertainty 10
6
  relative standard uncertainty 

G1 (radiant power measurement):  

Electrical power measurements  5 

Non-equivalence of electrical/optical power  10 

Cavity absorptance  10 

Window transmittance  18 

Sensitivity of the radiometer 10 

Repeatability  15 

Total uncertainty of group G1 30 

G2 (Detector calibration):  

Stray radiation  20 

Photocurrent 10 

Wavelength 2 

Distance and diameter effects  20 

Total uncertainty of group G2 30 

G3 (Interpolation/Fit):  

Interpolation/fit of the spectral responsivity 200 

Total uncertainty of group G3 200 

G4 (Use of the detector under different 

experimental conditions): 
 

Spatial non-uniformity 40 

Linearity correction  20 

Temperature correction 10 

Beam polarisation orientation 10 

Temporal stability 20 

Total uncertainty of group G4 51 

Total 211 

 

 

4.1.2 Amplification of a small photocurrent 

Photocurrent amplifiers (current-to-voltage converters) are used both with the reference trap detector 

and with the filter radiometer. The filter radiometers are typically calibrated at a single power level but 

are used at several power levels with possibly quite large differences in the generated photocurrents. In 

this case, the gain-to-gain linearity of the preamplifier must be known with stated uncertainties. These 

separate current calibrations can be performed only if the detector and the preamplifier can be 

separated from each other.  

 

The gain accuracy in the operational amplifier circuits is primarily determined by the accuracy and the 

temporal stability of the feedback resistors. Custom preamplifiers can be constructed with precision 

feedback resistors exhibiting low temperature and voltage coefficients of resistance. The shunt 

resistances of the detectors should be either measured or known so that the feedback resistances can be 

kept below the shunt resistances under operational conditions. 
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The preamplifiers can be calibrated using a precision current source whose output has been calibrated. 

These current sources can be calibrated using shunt resistors or by using a charging capacitor 

technique. The current source is operated to output a known current, and the voltage output of the 

preamplifier is measured using a calibrated voltmeter. This procedure can be repeated over the output 

range of the preamplifier at interval steps. A linear function can be fitted to the voltage output with 

changing input current to determine a single gain value and to determine the differences from linearity. 

 

The uncertainties of the measurements include the uncertainties in the determination of the output 

current value from the current source. The input current should be stable between the time of the 

calibrations and the time of use. An additional source of uncertainty can arise from differences in the 

output resistance of the current source and the feedback resistance of the preamplifier. An example of 

such an uncertainty budget is shown in Table 2. 

 

 

Table 2. Example uncertainty budget for the amplifier gain. 

Uncertainty components 

1  10
10

 V/A 
Type Relative uncertainty (ppm) 

Current measurement B 20 

Short-term instability of input current A 6 

Voltage measurement (HP DVM, 3458A) B 2 

Output noise and drift (4 days) A 16 

Loop gain A 2 

Combined standard uncertainty of signal-gain, ampG  
 

26 

 

 

4.1.3 Geometric propagation through a double aperture system  

The geometric factor is defined by two apertures of known area, a known distance apart (Section 2.2).  

 

4.1.3.1 Quality of the apertures and their area determination 

To minimise the uncertainty associated with the two apertures, two things should be considered: the 

quality of the apertures and how the aperture areas are determined. Optically, a knife-edge aperture is 

ideal since it reduces scattering, but an aperture with a land (physical edge size) of 0.1 mm can be 

measured using a contact method. Diamond-turned aluminium, copper, or aluminium-bronze apertures 

have been found to have ideal properties for highly-accurate filter radiometry [10]. High-quality 

apertures can also be made from nickel over brass bi-metal substrate using electrochemical etching 

[11]. 

 

The aperture area can be determined using contact or non-contact methods. Typical stated 

uncertainties for contact methods (in the determination of diameter) are ~0.1 µm. However, there are 

two reasons not to ‘believe’ these uncertainties for operational use. The first is the results of the 

CCPR-S2 aperture comparison. As shown in Figure 6, the results did not agree within the 

uncertainties. This comparison compared optical and contact methods for measuring aperture area, and 
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there is a noticeable discrepancy. This suggests that uncertainties should be increased by at least a 

factor of 3. 

 

 
Figure 6. Comparison result for aperture area (from CCPR-S2 report). 

 

 

The second reason that these uncertainties are likely to be under-estimated is that the measured values 

are based on calibrations of brand new apertures in the clean and very accurately temperature-

controlled environment of a length metrology laboratory. Apertures in operational use in an optical or 

thermal laboratory (often with high-temperature graphite furnaces producing graphite dust) can often 

have minor damage. It is important to ensure that apertures near a high-temperature furnace are also 

temperature-controlled, for example by using a temperature-controlled aperture holder. 

 

The geometric factor as used here is based on the radii of the two apertures. This makes an underlying 

assumption that the apertures are perfectly round. In practice, aperture roundness can vary and so 

needs to be determined during the measurements of diameter. 

 

4.1.3.2 Alignment of the apertures 

The calculation of the geometric factor assumes that the apertures are co-aligned. It is not 

unreasonable to assume that they may be slightly misaligned relative to each other, say by ~2 mm at 

300 mm separation. Consider Figure 7. The distance between the two apertures is the hypotenuse 

cosd . As irradiance drops according to the inverse square law, this means the irradiance of the 

second aperture is reduced compared to the on-axis irradiance by 2cos  . The second aperture has an 

effective area in this direction of 2 cosA   and the first aperture has an effective area of 1 cosA  . 

Combining all of this, the effective irradiance drops as 4cos  . For 300 mmd   and 2 mmx  , 
4cos  0.999911  . Therefore, the uncertainty associated with the measured radiance due to possible 

misalignment is < 0.009 %. 

 

The apertures are aligned to be parallel with each other and perpendicular to the optical axis either by 

back-reflecting a laser beam or by aligning the apertures to the faces of a gauge bar. If the laser 

method is used, the angular uncertainty is approximately 0.0005 radians, which has a negligible effect 
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on the effective area. If a gauge bar is used, an angular uncertainty of 0.01 radians is reasonable, which 

leads to an uncertainty in the effective area of approximately 0.01 %. 

 

 

Figure 7. Geometry for misaligned apertures. 

 

 

4.1.3.3 Distance between the apertures 

To determine the distance between the apertures, a gauge bar of known length can be placed in 

between the two apertures and the apertures moved towards the bar, or a tubular vernier inside 

micrometer with adjustable extension rods can be used so that the gauge just touch the faces. Care 

must be taken not to damage the apertures when they are brought to touch the ends of the gauge bar. 

For higher accuracy, interferometry can be used. Since the geometric factor varies with the square of 

the distance between the apertures, lower uncertainties are achieved (for a given accuracy in the 

distance measurement) when the distance between the apertures is increased [12, 13]. 

 

4.1.3.4 Uncertainty associated with the geometric factor 

The geometric factor is given by Eq. (5). If we define the variables 

 

  
2

2 2 2 2 2

1 2 1 24r r d r r      (18) 

and 

 
2 2 2

1 2r r d     , (19) 

then 

 
2 2

1 22 r r
g




 . (20) 

 

The sensitivity coefficients are given by: 
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Thus, the uncertainty in g (in m
2
 sr), given the uncertainties in the radii and distances (in m), is: 

 

 

1 2
2 2 2

1 2

1 2

( ) ( ) ( ) ( )
        

               

g g g
u g u r u r u d

r r d
. (24) 

 

Note that the uncertainty in each radius is likely to be half that in the corresponding diameter 

measurement. For further calculation, it is useful to turn Eq. (24) into a relative uncertainty. This is 

done by dividing it by the value of g: 

 

  rel

( )u g
u g

g
 . (25) 

 

It should be noted that the area of an aperture and the diffraction from the aperture edge can change 

with time. Damage to the edge of an aperture will affect both the area and the amount of light 

diffracted from the edge. 

 

Note that for both the irradiance method and the hybrid method of calibrating the filter radiometer, the 

area of the filter radiometer’s aperture is taken into account in the irradiance responsivity 

determination. 

  

4.1.3.5 Variation for irradiance and hybrid approach calibrations 

For the hybrid and irradiance calibration approaches, the significant apertures are those on the trap 

detector and the additional aperture introduced (the lens aperture for the hybrid method or the source 

aperture for the irradiance method). The aperture on the filter radiometer is also important, but its 

absolute area does not need to be known with the same accuracy – although it is essential that it is 

stable. 

 

The irradiance of the monochromatic irradiance field is measured with the trap detector (with its 

aperture). The irradiance responsivity of the filter radiometer, ,FREs , is then determined by comparison 

with that of the trap detector using: 

 

 
cal,FR

,FR ,trap trap

cal,trap

( )
( ) ( )

( )
E

S
s s A

S


 


 , (26) 

 

where cal,FR ( )S   is the signal on the filter radiometer during calibration, cal,trap( )S   is the signal on the 

trap detector, and ,trap trap ,trap( ) ( )Es A s    is the irradiance responsivity of the trap detector, 

determined from the flux responsivity ,trap( )s   and the trap aperture area trapA . 

 

When the filter radiometer is used, then the radiance responsivity is required, as in Eq. (9) or Eq. (10). 

The overall geometric term in combining Eq. (26) and Eq. (10) is 
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With the terms  and  as defined in Eqs (18) and (19), the equivalent of Eq. (24) is: 
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  (28) 

 

 

4.1.3.6 Uncertainties 

Table 3 gives the normal and best uncertainties associated with the calculation of the geometric factor. 

 

 

Table 3. Uncertainties associated with the calculation of the geometric factor. 

Quantity 

Standard uncertainty 

(relative, % or 

absolute) 

Sensitivity 

coefficient for 

relative 

radiance 

Relative standard 

uncertainty in 

radiance 

Comments 

 Normal Best  Normal Best  

Aperture 

radius 

1 µm 

(radius) 

0.5 µm 

(radius) 

Eqs. (20) and 

(21) 

0.02 % 0.01 % Relative uncertainty in 

radiance based here on 

3 mm and 5 mm 

apertures, 500 mm apart. 

Distance 0.25 mm 10 µm Eq. (22) 0.1 % 0.004 % Relative uncertainty 

depends on absolute 

distance and aperture 

areas. 

Aperture 

co-

alignment 

0.01 % 0.0001 % 1 0.01 % 0.0001 %  

Aperture 

angular 

alignment 

0.01 % Negligible 1 0.01 % 0  

Aperture 

non-

roundness 

0.06 µm 

(radius) 

0.02 µm 

(radius) 

Eqs. (20) and 

(21) 
0.004 % 0.001 % Relative uncertainty in 

radiance based here on 

3 mm and 5 mm 

apertures, 500 mm apart. 

Aperture 

changes 

since 

calibration 

0.02 % 

(area) 

Negligible 1 0.02 % 0 From potential damage 

and thermal expansion. 
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4.1.4 Wavelength scale 

The filters in a filter radiometer are used to select a specific spectral region for the measurements of 

the blackbody radiances. Tuneable lasers or broadband sources with monochromators are used to 

determine either the relative or the absolute spectral responsivities of filter radiometers, and the 

wavelength uncertainties of these sources must be determined. If the wavelengths of the spectral 

responsivity determinations are in error, then, due to the spectral dependence of the Planck function, 

the calculated temperatures will also be in error. 

 

Laser-based methods rely upon wavemeters to determine the wavelengths of the laser radiation. These 

wavemeters use interferometers with an internal laser that acts as a reference to determine the 

wavelength of the radiation. Wavemeters have the lowest uncertainties in the wavelength assignments 

but can only be used with coherent radiation, such as that from a laser. 

 

Monochromators, which use gratings or prisms, are calibrated for their wavelength scales using a set 

of low-pressure atomic emission lamps. Atomic emission sources, such as Hg, Ne, Ar, Kr, and others, 

are used to generate a sufficient number of known spectral peaks. The wavelengths at which these 

atomic emission transitions occur are well known and published in atomic-transition databases. The 

uncertainty of these transition assignments is about 0.01 pm [7]. For the calibration of 

monochromators, these emission lamps should be placed in integrating spheres so that an angularly- 

and spatially-uniform radiation can be input into the monochromator. The radiation from the 

integrating sphere must fill both the fore optics and the internal optics of the monochromator. Care 

should also be taken to place the exit of the integrating sphere source at the position of the lamp or the 

broadband source that is typically used to illuminate the monochromator. If the emission source is 

shifted from the position of the broadband source, the wavelength calibration will be shifted due to the 

different angular position of the atomic emission source as compared to that of the broadband source. 

 

The angular positions of the grating or prism disperser can be measured using an optical rotary 

encoder attached to the shaft of the threaded rod or, preferably, an angular encoder. The spectral peak 

position is determined using the centroid calculated from the measured spectral signal. The centroid 

can shift depending on the wavelength extent over which the summation is performed. A symmetric 

wavelength interval should be chosen for the summation range for the centroid calculations. 

 

The wavelength accuracy of monochromators can be improved by using a piece-wise polynomial fit, 

which minimises the residuals of the fit. The order of the polynomial can be increased until the 

residuals from the fit do not decrease in substantive ways. 

 

The uncertainties of the wavelength calibrations are determined from the standard deviation of the 

residuals of the polynomial fitting function from the actual atomic emission line wavelength 

assignments. The wavelength accuracies can be further checked using a spectrograph that has also 

been calibrated for wavelength measurements. 

 

The laser-based method, where the laser wavelengths are determined using a wavemeter, will not 

require any corrections. Table 4 gives the normal and best uncertainties for monochromator and laser-

based measurement systems. 

 

 

Table 4. Uncertainties in wavelengths measured using both laser-based and monochromator-based systems. 
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Quantity Standard uncertainty 

 Normal Best 

Laser wavelengths 3.0 pm 0.1 pm 

Monochromator 

wavelengths 
100 pm 20 pm 

4.1.5 Out-of-band radiation 

Out-of-band (OOB) suppression of radiation is more critical for thermodynamic temperature 

measurements than for measurements under ITS-90. This is because under ITS-90 the ratio of the 

radiances of two blackbodies is measured and the OOB error for each measurement partially cancels. 

However, for thermodynamic measurement, the filter radiometer is calibrated using an integrating 

sphere that is illuminated using a monochromatic source. In this case, the radiance of the integrating 

sphere is compared to the radiance of a blackbody. OOB radiation will cause the response of the filter 

radiometer in front of the blackbody to be higher than expected, because the radiance of a blackbody is 

integrated over the full bandwidth of the detector, which is not the case during calibration with the 

monochromatic source. The transmittance in the far wings of the spectral responsivity should, 

therefore, be evaluated to estimate the OOB correction. 

 

Unaccounted-for OOB transmittance causes the measured signal to be higher than expected by the 

factor OOBK  (see Eq. (12)), given by 
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  (29) 

 

where 1  and 2  are the practical wavelength limits over which the integral in Eq. (13) is evaluated. 

 

To avoid OOB corrections, the requirements for OOB suppression depend on the centre wavelength of 

the spectral responsivity function and the spectral bandpass. The OOB analysis given here is for a 

filter radiometer with a spectral filter centred at 650 nm and a spectral bandwidth of 10 nm used with a 

Si detector, which is a common configuration used in national metrology institutes (NMIs). Note that 

the OOB analysis can be carried out using relative spectral responsivities. 

 

A spectral filter should be measured separately prior to its incorporation into a radiometer, to 

determine whether its OOB suppression is sufficient. Depending on the filter radiometer design, 

possible radiation leakage around the filter could be perceived as OOB radiation even though the light 

path does not go directly through the filter. A comparison of the expected component-wise 

responsivity and the actual spectral responsivity of the filter radiometer as a whole is helpful in 

assessing any possible light leakage in the filter radiometer. 
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Measurements of the OOB response of spectral responsivities to high optical densities are difficult to 

perform using traditional monochromator and lamp sources because of their low power outputs, and 

measurements of filter response to optical densities higher than 5 (OD5) using commercial 

spectrophotometers are challenging. Some filter manufacturers have recently started offering better 

than OD6 OOB suppression [14]. Custom-designed transmittance setups using high-power 

supercontinuum lasers and monochromators have led to OOB measurements down to OD8 [15] and 

even OD11 [16]. 

The temperature error, T, resulting from uncorrected OOB radiation can be calculated as 

 

  
2

0
OOB

2

1
n T

T K
c


   , (30) 

 

where 0  is the mean wavelength of the filter radiometer’s spectral responsivity, and the 

monochromatic and Wien’s approximations have been used. Assuming a filter radiometer consisting 

of a 10 nm bandwidth rectangular spectral filter centred at 650 nm, with a Si photodiode that is 

sensitive to radiation within its entire spectral range from 200 nm to 1100 nm, Eq. (29) can be used to 

calculate the value of OOBK . The worst case is when the OOB radiation is flat across the entire spectral 

range, in which case the value of OOB 1K   at 1300 K is given by OD1136 10 and at 3000 K is given 

by OD76.51 10 , where OD is the optical density value of the filter. This gives rise to temperature 

errors, given by Eq. (30), of OD86700 10  K  at 1300 K and OD31106 10  at 3000 K (e.g., 

temperature errors of 0.87 K and 0.31 K, respectively, for a filter with OOB suppression of OD5). 

Thus, OOB suppression beyond OD7 will result in errors less than about 9 mK at 1300 K and about 

3 mK at 3000 K. 

 

An alternative method to determine the OOB correction is to use a notch filter to cut out the in-band 

signal of the filter radiometer. The value of OOBK  can then be determined by measuring the filter 

radiometer signal, S, with and without the notch filter in place: 

 

 with notch filter
OOB

without notch filter

1
S

K
S

  . (31) 

 

This method relies on high transmittance of the notch filter outside the notch region and low 

transmittance inside. Corrections to Eq. (31) can be made if these transmittances are known. 

 

4.1.6 Stray light 

Stray light is defined as detected photons that do not propagate along a straight line from the source to 

the radiometer. Optical diffusion by the molecules of the atmosphere is neglected here, and stray light 

is considered to originate only from optical diffusion of the source used to illuminate the radiometer. 

Stray light causes the detected flux, ( )d , to differ from that given by Eq. (6); note the explicit 

dependence here of  on the distance, d, between the source and detector apertures. The stray detected 

flux, stray ( )d , may be defined as:  

 

 stray 0( ) ( ) ( )d d d   , (32) 
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where 0( )d  is the stray-light-free flux given by Eq. (6): 

 

 0 0( )d g L  , (33) 

 

where 0L  is the radiance of the source. 

 

In the absence of stray light, the detected flux is given by 0( ) ( )d d  . At the other extreme, the 

stray light would be maximised if the optical beam were enclosed within a perfect light pipe. In this 

case, the detected flux would be constant and independent of d. The real situation will be somewhere 

between these two extremes, and we can propose that the stray light is approximately inversely 

proportional to d: 

 

 stray 0( )d kdg L  , (34) 

 

where k is a constant (note that the geometric factor, g, given by Eq. (5), is approximately inversely 

proportional to 2d  when the aperture separation is much greater than the radii of the two apertures). 

 

Equation (32) can be converted to the filter radiometer signal (as in Eq. (13)): 

 

 0 stray( ) ( ) ( )S d S d S d  , (35) 

 

where ( )S d  is the total measured signal as a function of distance, 0( )S d  is the stray-light-free 

component of the signal, and stray ( )S d  is the component of the signal corresponding to the stray light. 

Using Eqs (33) and (34), Eq. (35), after dividing both sides by g, can be written 

 

  0( ) ( )
1

S d S d
kd

g g
  . (36) 

 

Note that the quantity 0( )S d g  is independent of d, so fitting a straight line to the measured signal 

divided by g as a function of distance allows 0S  and k to be evaluated from the intercept and slope, 

respectively. The correction factor for stray light, strayK  (see Eq. (12)), is given by: 

 

 stray 1K kd  , (37) 

 

where d is the distance used for the blackbody temperature measurement. 

 

The uncertainty in the value of k can be determined using the standard formulae for straight-line 

fitting, and depends on the sampling of the distance d: 
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where the distance has been sampled at N values, id , and it has been assumed that the uncertainty 

 ( )u S d g  is the same for each measurement and the uncertainties in the distance measurements are 

negligible. Thus, the relative uncertainty in the stray-light correction factor, strayK , is 

 

 

1 2
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. (39) 

 

 

4.1.7 Diffraction and aperture scatter 

Diffraction effects at the apertures lead to a deviation  between the measured radiation flux, radΦ , and 

the flux calculated by means of geometrical optics, 
geomΦ : 

 

  rad geomΦ 1 Φ  . (40) 

 

Generally, the deviation  is small for a large ratio of aperture diameter to wavelength [17], but can 

have a positive or negative sign. For typical experimental setups in radiometry, where the radiation 

overfills the aperture,  becomes positive and is generally << 1. 

 

For the different calibration approaches, diffraction will be considered in different places: 

 For the power method, diffraction is significant for the apertures used during the blackbody 

measurement. 

 For the irradiance method, diffraction is significant for the apertures used during the 

blackbody measurement. 

 For the hybrid method, diffraction effects are part of the absolute SSE and are not considered 

separately. 

 For the radiance method, diffraction is significant for the apertures used with the trap detector 

for calibration. Diffraction in the filter radiometer is part of the relative SSE and is not 

considered separately. 

 

Diffraction occurs for both of the two apertures that define the optical geometry. As both effects are 

small, they can be treated independently, and the two corrections add to give: 

 

 
aperture,1+2 aperture,1 aperture,2    . (41) 

 

Hence, the following two cases can be treated separately: 

1. Diffraction at the filter radiometer’s aperture: the furnace aperture acts as a source and the 

photodiode as an under-filled detector. 

2. Diffraction at the furnace aperture: the opening of the blackbody radiator acts as a source and 

the filter radiometer aperture as an over-filled detector. 
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Invoking the reciprocity theorem of Kirchhoff, the deviation due to diffraction does not change if the 

source and detector are exchanged. Therefore, the two cases can be treated as equivalent. References 

[18, 19] give both exact solutions and approximations for this diffraction problem. 

 

For a blackbody source, the diffraction correction must be calculated for all wavelengths measured. 

The radiometers typically used only have a small bandpass of 10 nm to 20 nm. The diffraction 

correction  is inversely proportional to the wavelength and varies little across the bandpass. For 

simplification, often only the centre wavelength of the interference filter is used in the calculation of 

the correction. While a furnace aperture diameter of 20 mm is typically used for the standard 

measurement of a high-temperature blackbody’s temperature using a filter radiometer, a large eutectic 

fixed-point cell with 8 mm cavity diameter requires a furnace aperture of 3 mm in diameter, which 

results in a considerably larger diffraction effect because of the smaller furnace aperture. 

 

By changing the distance between the two apertures, the chosen approximation for the diffraction 

correction can be experimentally tested and an uncertainty of the correction can be deduced. This has 

been found to be of the order of 2  10
–4

.  

 

4.2 Sources of Uncertainty Specific to the Calibration Scheme 

4.2.1 Power approach 

In order to measure temperature using a filter radiometer (FR) calibrated via the power method, two 

steps are required. First, the power responsivity of the FR needs to be determined. Then, the 

measurement geometry is defined using two apertures of known areas and known separation (see 

Figure 1). 

 

To calibrate the absolute spectral responsivity of a filter radiometer using the power method, a beam 

of quasi-monochromatic radiation under-fills the FR aperture and a transfer detector (trap or single 

element) is used as a reference. The transfer detector will have had its spectral responsivity calibrated 

with respect to an absolute standard (cryogenic radiometer or other absolutely-calibrated detector). 

Typically, a monochromator is used to provide the quasi-monochromatic beam and mirrors are used to 

image the monochromator’s output slits onto the FR and the transfer detector. The transfer detector is 

used to measure the power in the beam and then the FR is moved into place in front of the beam and 

its output is measured. The monochromator wavelength is changed, and the measurements are 

repeated until the wavelength range of the FR has been measured (see Figure 8). 
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Figure 8. Calibration and use setups for the power method. 

With the power responsivity known, apertures can be added to the system to enable the radiance 

measurement to be made, which can then be converted to temperature. Equation (13) can be solved 

iteratively to obtain the temperature, with the radiance responsivity defined by Eq. (8). 

 

Additionally, it is necessary to know or verify the uniformity of the FR and transfer detector since the 

calibration geometry is different from the in-use measurement geometry. This can be done by rastering 

a focused beam across the entrance aperture of the FR. Boivin [20] has described this method for trap- 

and single-element Si detectors and found a uniformity of 0.05 %. For a filter radiometer it is also 

important that the filter is uniform.  

 

4.2.1.1 Sources of uncertainty for the power method 

The common sources of uncertainty, described in Section 4.1, apply to the power method as follows: 

 The uncertainty in the power responsivity of the trap detector impacts directly on the 

uncertainty in the power responsivity of the filter radiometer. 

 The uncertainty in the gain of the transimpedance amplifiers must be considered for the trap 

amplifier during calibration and, if a different gain is used for calibration and use of the filter 

radiometer because of different signal levels, for the filter radiometer as well. 

 The geometric factor is derived from the two apertures added to the system for measuring a 

blackbody. The uncertainty analysis follows that described in Section 4.1.3.4, and the 

uncertainty in the geometric factor is given by Eq. (24). 

 The wavelength scale is based on the monochromator used to provide the quasi-

monochromatic beam. 

 Out-of-band transmittance must be considered, as described in Section 4.1.5. 

 Stray light is relatively straightforward to control during calibration because the 

monochromator provides a beam of radiation. 

 

In addition, it is necessary to consider: 

 The uncertainty associated with the uniformity of the filter radiometer and the average 

response over the area illuminated by the calibration beam and the area of the aperture used. 

 Diffraction at the apertures during the blackbody measurement. 

 

4.2.2 Irradiance approach 

The spectral irradiance responsivity of the filter radiometer with mounted aperture is determined with 

a calibrated trap detector together with a calibrated entrance aperture defining the effective area of the 

trap detector. The spectral irradiance responsivity can be determined with a monochromator-based 

[5, 6] or a laser-based [3, 21] system. During use, an additional aperture is added in front of the 



28 

 

blackbody to define the solid angle necessary to convert from irradiance to radiance (see Figure 2). 

Absolute primary thermometry from the Zn point upwards has been performed by this method 

[22–26]. However, diffraction losses increase drastically for a decreasing diameter of the furnace 

aperture, so the method has been adapted, as in the hybrid method below, for determining the 

temperature of small sources (e.g., high-temperature fixed points (HTFPs)) [27–29]. 

 

 

 

4.2.2.1 Sources of uncertainty for the irradiance method 

The common sources of uncertainty, described in Section 4.1, apply to the irradiance method as 

follows: 

 The uncertainty in the power responsivity of the trap detector impacts directly on the 

uncertainty in the irradiance responsivity of the filter radiometer. 

 The uncertainty in the gain of the transimpedance amplifiers must be considered for the trap 

amplifier during calibration and, if a different gain is used for calibration and use of the filter 

radiometer because of different signal levels, for the filter radiometer as well. 

 The geometric factor is derived from the filter radiometer and the aperture added to the system 

for measuring a blackbody. However, because the radiometer is calibrated for irradiance 

responsivity, the aperture on the trap detector is more significant than that on the filter 

radiometer. The uncertainty analysis follows that described in Section 4.1.3.5, and the 

uncertainty in the geometric factor is given by Eq. (28). 

 The wavelength scale is based on the monochromator or laser used to provide the irradiance 

field used in the calibration. 

 Out-of-band transmittance must be considered, as described in Section 4.1.5. 

 The significance of stray light in the calibration depends on the method used to generate the 

irradiance field. 

 

In addition, it is necessary to consider: 

 The uncertainty associated with the uniformity of the irradiance field used and the relative 

sizes of the filter radiometer and trap apertures (and how much they are aligned in the same 

position within that irradiance field). 

 Diffraction at the apertures during the blackbody measurement. 

 

4.2.3 Hybrid approach 

The irradiance approach can be applied to smaller blackbody cavities by introducing a single lens to 

create the hybrid method [30]. The calibration is usually performed “in parts”, with the irradiance 

responsivity of the filter radiometer determined as above, and the transmittance of the lens determined 

separately [3, 31]. Again, an additional aperture is added to the lens to form the geometric system for 

radiance (see Figure 3). Formally, the method can be considered equivalent to the irradiance method 

above, but is capable of measuring sources with small apertures. Note that here it is important that the 

irradiance field is formed by a light source converging with the same geometry as the lens provides – 

this ensures that the filter is illuminated with the same range of angles in calibration and use. Usually 

this is achieved by imaging a source, e.g., a laser-illuminated integrating sphere, using the same lens 

system.  
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The calibration process assumes that the same irradiance is measured by the trap detector and filter 

radiometer. This relies on the spatial uniformity of the source and any differences, or potential 

differences, in the sizes of the two apertures and their position within the uniform irradiance field. The 

source also needs to be stable between the trap measurement and the filter radiometer measurement. 

Angular uniformity is less critical, although it is important that the irradiance field matches the 

geometry that will be used for measurements with the lens so that the filter is illuminated with the 

same range of angles. 

 

Generally, the irradiance field is created by imaging a small aperture on an integrating sphere. There is 

usually a compromise to be made, where a larger integrating sphere will create a more spatially 

uniform image but will have a lower irradiance level for the same input laser power, and this will 

make the signal more noisy and limit how far into the wings of the filter radiometer spectral 

responsivity measurements can be made. 

 

With a hybrid-mode calibration, with the irradiance field created by imaging a sphere exit port, stray 

light can generally be very well limited by placing the imaging lens in a large baffle screen. After the 

lens, the main light is well controlled and unlikely to scatter. Dark readings can be taken by closing the 

lens. The hybrid-mode calibration, therefore, has very low sensitivity to stray light. 

 

The lens transmittance of a simple uncoated lens can be reasonably predicted from the Fresnel 

equations. More accurate results can be obtained [31] by treating the Fresnel prediction as a relative 

spectral transmittance and making measurements at a single wavelength to provide an absolute 

scaling. 

 

In most applications, the size-of-source effect (see Section 6.1.2) is a relative effect: the instrument is 

sensitive to the difference in the size (and lateral uniformity) of the test and reference sources. For the 

hybrid method it is an absolute effect. Because the filter radiometer is calibrated without a lens, there 

is no reference source size
2
, and what matters is the absolute size-of-source effect, i.e., the difference 

when viewing the test source compared to an infinite uniform source. This is difficult to estimate, and 

it is even more difficult to estimate an uncertainty for it, although for a hybrid-mode calibration this is 

often the dominant uncertainty. It is necessary to make SSE characteristic measurements out to 

sufficiently large sources that the SSE characteristic of the instrument flattens off.  

 

One solution [32], which avoids the use of an absolute SSE, is to calibrate the lens transmittance and 

SSE simultaneously by making measurements of a large-aperture radiance source both with and 

without the lens. If the SSE and lens transmittance are determined separately, they have typical normal 

standard uncertainties of 0.06 % and 0.04 %, respectively [30]. If they are measured together then 

smaller standard uncertainties are achievable [32]. 

 

4.2.3.1 Sources of uncertainty for the hybrid method 

The common sources of uncertainty, described in Section 4.1, apply to the hybrid method as follows: 

 The uncertainty in the power responsivity of the trap detector impacts directly on the 

uncertainty in the irradiance responsivity of the filter radiometer. 

                                       
2
 Note, that a lens may be used in creating the irradiance source for the calibration. But since both the trap 

detector and filter radiometer are on the same side of that lens, any SSE is cancelled in calibration. 
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 The uncertainty in the gain of the transimpedance amplifiers must be considered for the trap 

amplifier during calibration and, if a different gain is used for calibration and use of the filter 

radiometer because of different signal levels, for the filter radiometer as well. 

 The geometric factor is derived from the filter radiometer and the lens apertures. However, 

because the radiometer is calibrated for irradiance responsivity, the aperture on the trap 

detector is more significant than that on the filter radiometer. The uncertainty analysis follows 

that described in Section 4.1.3.5, and the uncertainty in the geometric factor is given by 

Eq. (28). 

 The wavelength scale is based on the laser used to provide the irradiance field. 

 Out-of-band transmittance must be considered, as described in Section 4.1.5. 

 Stray light is relatively straightforward to control during calibration because the lens used to 

obtain the same geometry for calibration and filter radiometer use controls the direction of 

radiation.  

In addition, it is necessary to consider: 

 The uncertainty associated with the uniformity of the irradiance field and the relative sizes of 

the filter radiometer and trap apertures (and how much they are aligned in the same position 

within that irradiance field). 

 The calibration of the transmittance of the lens. 

 The absolute SSE. 

 

4.2.4 Radiance approach 

An appropriately designed imaging radiometer can be calibrated in absolute mode as a radiance-mode 

filter radiometer. The more complex optical system of the thermometer (e.g., several lenses and 

appropriate baffling) can lead to an extremely low size-of-source effect [33–35]. 

 

The calibration of such a system is by comparison with a source of known radiance, as shown in 

Figure 4. The instrument can then be used to determine the blackbody radiance directly. Examples of 

the method can be found in [34–36]. Briefly, the radiation thermometer is calibrated against a 

cryogenic radiometer by the use of silicon trap detectors that are calibrated for power responsivity at 

selected wavelengths. The full responsivity is then determined by interpolation. The spatial uniformity 

of the trap detector is utilised to obtain the irradiance responsivity from the power responsivity in 

conjunction with a precision aperture. If the geometric parameters, such as the aperture area and the 

distance between the integrating sphere and the trap detector, are known, then the spectral irradiance 

of the sphere source can be assigned. If the area of the precision aperture on the integrating sphere is 

known, then the spectral radiance of the sphere can be determined. Radiation thermometers are 

calibrated as a system without separately measuring the transmittance of the lenses and characteristics 

of the components. The calibrations are performed at many different wavelengths with stabilised 

lasers.  

 

The common sources of uncertainty, described in Section 4.1, apply to the radiance method as follows: 

 The uncertainty in the power responsivity of the trap detector impacts directly on the 

uncertainty in the radiance responsivity of the filter radiometer. 

 The uncertainty in the gain of the transimpedance amplifiers must be considered for the trap 

amplifier during calibration and, if a different gain is used for calibration and use of the filter 

radiometer because of different signal levels, for the filter radiometer as well. 
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 The geometric factor is derived from the two apertures added to the trap detector and the 

integrating sphere for measuring the monochromatic radiance source. The uncertainty analysis 

follows that described in Section 4.1.3.4, and the uncertainty in the geometric factor is given 

by Eq. (24). 

 The wavelength scale is based on the laser used to illuminate the radiance source. 

 Out-of-band transmittance must be considered, as described in Section 4.1.5. 

 Stray light can be challenging to control, especially if the first aperture is mounted on the 

integrating sphere.  

 

In addition, it is necessary to consider: 

 The uncertainty associated with the uniformity of the integrating sphere – both spatial and 

angular uniformity. 

 Diffraction at the apertures used to measure the integrating sphere. This is reduced when the 

first aperture is closer to the integrating sphere (but in turn this increases stray light). 
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5. Other Characteristics of the Filter Radiometer 

5.1 Spectral Selection and Filtering 

The spectral selection for the filter radiometer can be made with interference filters, with glass filters, 

or with a monochromator (prism or grating). There are uncertainties associated with both the 

calibration and use of the filter radiometer that depend on the chosen filtering approach. 

 

5.1.1 Glass and interference filters 

Interference filters applied as wavelength selecting elements in filter radiometers are susceptible to 

changes in their spectral transmittance properties (i.e., the centre wavelength and the integrated 

transmittance), mainly due to modifications of the optical pathlengths within the constituent dielectric 

material thin layers [37]. These modifications have their origin in filter temperature changes, angular 

incidence dependence, water vapour absorption, and irreversible changes due to ageing.  

 

For the assessment of the uncertainty contributions due to these effects, Eq. (13) in Section 2.5 is used: 

 

 
b

0

( ) ( , )S K s L T d  


  . (42) 

 

For filter radiometers with narrowband interference filters, S can be approximated as: 

 

  b 0 b 0

0

( , ) ( ) , sS KL T s d KL T I   
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  , (43) 

 

where sI  is the integrated spectral responsivity and 0  is the mean wavelength according to: 
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When the spectral responsivity is symmetric, 0  is equal to the centre wavelength. 

 

5.1.1.1 Sensitivity to temperature 

Typically [1], with increasing temperature, the mean wavelength of an interference filter is shifted 

towards longer wavelengths whilst the integrated transmittance sI  decreases (see Table 5). When 

considered as a unit with a silicon photodiode detector (i.e., a filter radiometer) and operated close to 

the bandgap wavelength range of the detector, the temperature coefficient of the integrated spectral 

responsivity is dominated by the temperature coefficient of the detector (see Table 6). 
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Table 5. Change in integrated transmittance, 
sI , and mean wavelength, 

0 , per temperature change for a range 

of interference filters. 

Interference Filter   s sI I T  (K
–1

) 0 T  (pm·K
–1

)

IF450 –3.4  10
–4

 15 

IF500 –3.1  10
–4

 17 

IF650 –4.3  10
–4

 20 

IF800 –7.9  10
–5

 26 

IF900 –9.0  10
–5

 27 

 

 

Table 6. As for Table 5, but including the temperature coefficient of a silicon photodiode (i.e., for a complete 

filter radiometer). 

Filter Radiometer   s sI I T (K
–1

) 
0 T  (pm·K

–1
)

FR800 –2.8  10
–4

 33 

FR900 0.2  10
–4

 30 

FR1000 13.5  10
–4

 35 

 

 

Under the assumption that Wien’s approximation to Planck’s law can be applied (VIS/NIR spectral 

range), when measuring a blackbody at the temperature T, the change, T, in the measured 

temperature due to a filter/detector temperature-change-caused centre wavelength shift 0  is equal 

to: 

 

  0
0

0 2

5 1
T n T

T
c






 
    

 
. (45) 

 

The associated uncertainty can then be calculated by assuming that the interference filter/detector 

temperature can be controlled within ±200 mK (normal) or ±50 mK (best). Extensive details on how 

uncertainties in the properties of the filter radiometer’s spectral responsivity propagate to the measured 

temperature are given in Appendices A and B. 

 

5.1.1.2 Sensitivity to angle of incidence 

As the transmittance and the centre wavelength of an interference filter change with the angle of 

incidence of the optical radiation, and, in general, the beam geometry during calibration (e.g., 

collimated) is different from that during the application (e.g., divergent/convergent), these changes 

must be taken into account in the uncertainty budget. For incident angles, , smaller than 20°, the 

centre wavelength change, 0 , can be expressed as [38]: 
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
 


   , (46) 

where µeff is the “effective refractive index” of the interference filter. Equation (45) can be used to 

convert this to a change in measured temperature. 

 

5.1.1.3 Stability/Ageing 

The stability of interference filters with respect to observed ageing effects, in terms of the shift of the 

centre wavelength and modifications of the spectral transmittance, has its origin in: 

 modifications of the structure of the dielectric thin film layers [39]; 

 absorption of water (moisture) by the dielectric thin film layers [40]; 

 contamination of the interference filter’s outer surfaces. 

 

The first effect can be ascribed to crystal growth in the (initially amorphous) deposited thin film 

dielectric layers. This time-dependent irreversible process causes a change of the refractive index and, 

hence, a shift of the centre wavelength towards longer wavelengths. The magnitude of the wavelength 

shift, which can be up to 1 % of the centre wavelength, depends on the thermal history (i.e., the 

substrate temperature during the manufacturing process of the interference filter). By choosing an 

adequate substrate temperature (> 130 °C) during the thin film deposition process, and/or if the 

interference filter undergoes a subsequent heat treatment (~90 °C), the wavelength shift can be 

minimised [39]. Considering that interference filter technology has evolved, especially in terms of 

process control, and that the timescale of the described effect is of the order of tens of hours, the 

wavelength shift due to a crystallization process within the dielectric thin film layers can be neglected 

when assessing the mid- and long-term stability. 

 

Due to the “sponge-like” fractal structure of the deposited thin film dielectric layers, the layers have a 

10 % to 20 % (depending on the layer material) void space porosity, which makes them susceptible to 

the absorption of water. By absorbing moisture, the refractive index increases and consequently the 

centre wavelength is shifted towards longer wavelengths. Under the assumption that this process is 

reversible, it has been shown [40] that if interference filters previously exposed to environmental 

humidity undergo a thermal treatment (heating up to 70 °C), the water can be removed from the pores 

of the layers. This leads to a decrease of the refractive index and, consequently, the centre wavelength 

will shift back towards shorter wavelengths. Depending on the layer materials, the magnitude of the 

observed wavelength shift varies from 0.1 % to 0.5 % of the centre wavelength. If the interference 

filter is sealed against environmental humidity, the observed wavelength shift is considerably lower 

(< 0.01 % of the centre wavelength). 

 

A different way to assess the stability of interference filters was followed in [41], and comprised an 

analysis of the calibration history of four different filter radiometers (FR) equipped with sealed, 

narrowband interference filters (centre wavelengths at 677 nm, 802 nm, 903 nm, and 1003 nm, 

FWHM: 14 nm to 24 nm) in terms of the temporal change of the centre wavelength and the integrated 

spectral responsivity over a period of approximately 8 years. Over this period, the FRs were routinely 

used to measure the thermodynamic temperature of blackbodies in the temperature range from 

1000 °C to 3000 °C. When not being used, the FRs were kept under cleanroom conditions but not 

under humidity-controlled conditions; i.e., they were exposed to the seasonal humidity variation of the 

laboratory. For the period investigated, all the FRs displayed a linear shift of the centre wavelength 

towards longer wavelengths, ranging from 0.038 nm per year to 0.067 nm per year, corresponding to a 
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maximum relative wavelength change of 0.01 % per year. Except for one FR, the integrated spectral 

responsivity over the bandpass of all the FRs did not change significantly; the relative changes 

observed in the assessed time interval were within the uncertainty of the calibration. For the FR with 

the centre wavelength at 677 nm, a sudden relative drop of 2 × 10
–3

 in the integrated spectral 

responsivity was observed. After cleaning of the interference filter, the integrated responsivity 

returned to the previous value, revealing contamination as the origin of the observed effect. 

 

5.1.1.4 Fluorescence 

Depending on the type of filter glass selected as the substrate in the interference filter, and on the 

spectral distribution of the radiation source the interference filter is exposed to during its application, 

the interference filter can display a significant fluorescence effect originating from the glass substrate 

and/or the optical cement. Although glass manufacturers specify in their catalogues whether the filter 

glasses are (non-)fluorescent, except for custom-made interference filters, details on the internal 

glass/optical cement setup of interference filters are not always available from the filter manufacturer. 

If fluorescence is suspected, that is if an apparent increasing transmittance towards shorter 

wavelengths is observed during the filter characterisation, special experimental care must be taken 

when these interference filters are applied in conjunction with high-temperature blackbodies. 

Generally, there is no analytical correction possible, but several (experimental) solutions have been 

presented to minimise the problem [42]. The most accessible solution from the radiation thermometry 

point of view is the following: because the fluorescent radiation is emitted in all directions, 

independently of the (directional) incoming radiation from the source, a careful design of the detector 

optical layout (i.e., the position of the interference filter) can minimise the contribution of fluorescence 

to the detector signal. 

 

5.1.2 Monochromator-based filtering 

The spectral selection can be achieved by a monochromator. The advantages of a monochromator are 

that it offers the possibility of adapting to the spectral range in which a monochromatic source (laser) 

is available, and the ease of the wavelength calibration using spectral lamps if multiple laser 

wavelengths are not accessible. The disadvantages are mainly the poor stability, the out-of-band stray 

light, and the large dimensions and weight, which make it difficult to transport. 

 

Radiance comparators based on monochromators can be absolutely calibrated against a reference trap 

detector (with the necessary apertures of known area and distance, forming an ensemble called a 

“radiance meter” or “spectroradiometer”), but this calibration may not be valid for long periods due to 

insufficient stability of the monochromator. The radiance measurement would, therefore, become part 

of the measurement scheme in all cases. This method was applied in the past to the measurement of 

the thermodynamic temperature of the fixed point of copper [3, 4]. It is a direct radiance measurement 

method using a tuneable laser associated with an integrating sphere as a monochromatic source with a 

Lambertian distribution of the radiation. 

 

The determination of the spectral responsivity of the monochromator with the corresponding slits (in 

other words, the slit function) is a major part of the measurement process.  

 

5.1.2.1 Slit scattering function  

The spectral responsivity of the spectroradiometer depends on the orientation of its optical grating via 

its slit scattering function slit eff(   )R   , where the effective wavelength eff  is defined by averaging 
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the slit scattering function distribution, ( )R  , weighted by the wavelength (i.e., eff  is the mean 

wavelength of the slit function): 

 0
eff

0

( )  

( )  

R d

R d

  



 









. (47) 

 

Because the spectral width of the slit scattering function of the monochromator is typically narrow (a 

few nm), the optical responsivity, opt ( )R  , of the monochromator should not vary significantly 

throughout the bandwidth. Within this approximation, one can write the spectral responsivity of the 

spectroradiometer as a product of the slit scattering function of the monochromator multiplied by a 

smooth optical responsivity: 

 

 eff slit eff opt(( , ( )  ))R R R     . (48) 

 

The slit scattering function of the spectroradiometer slit eff(   )R    is recorded with a laser of radiance 

laser 0 laser laser( ) ( ) ( )L L      , where laser  is the laser wavelength (in air) and  is the Dirac delta 

function, and can be defined as a function of the voltage delivered by the spectroradiometer: 
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where laser laser eff ( )U    is the voltage delivered by the spectroradiometer viewing the laser source 

tuned to eff  and with intensity 0 eff( )I  : 

 

 0 laser laser laser eff eff

0

 ( ) ( )I U d   


  . (50) 

 

With this definition, the slit scattering function of the spectroradiometer has a unit integral over optical 

wavelengths.  

 

5.1.2.2 Optical responsivity 

From the definition of the slit scattering function, one can express the optical responsivity, opt laser( )R  , 

of the spectroradiometer calibrated with the integrating sphere radiance at the laser wavelength: 

 

 0 laser
opt laser

0 laser

( )
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
 . (51) 

 

The optical responsivity of the spectroradiometer (see Figure 9) is then extrapolated to another 

wavelength  using an ITS-90 fixed-point blackbody of known temperature (e.g., copper, at 

T90  1357.77 K): 
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The spectral responsivity of the spectroradiometer can be fully expressed from the measurement 

variables: 
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This relative method used to calibrate the optical responsivity of the spectroradiometer is not critical 

as the determination of the thermodynamic temperature of the blackbody is performed at the laser 

wavelength. In these conditions, laser laser laser 0 laser(0) ( )( , )R U L   . 

 

 

 
Figure 9. Optical responsivity of a spectroradiometer. 

 

 

5.1.2.3 Out-of-band stray light 

The Czerny Turner monochromator is subject to stray light outside its narrow detection bandwidth. 

While the optical diffusion level remains negligible (about a few parts in 10
6
), its summation over the 

full visible spectrum range represents a non-negligible fraction (about one part in 10
3
) of the detected 

optical power. The out-of-band stray light correction depends on the temperature, T, of the blackbody, 

and on the measurement wavelength, eff , selected by the spectroradiometer. The out-of-band stray 

light can be defined as the signal coming from outside of the detection bandwidth used to compute the 

thermodynamic temperature. As the spectroradiometer spectral responsivity is recorded in a spectral 

bandwidth eff eff[ , ]     , the signal part coming from outside of this spectral band must be 

corrected. The voltage b eff( , )U T  delivered by the spectroradiometer viewing a blackbody is then 

composed of an in-band signal voltage 
0

b eff( , )U T  and an out-of-band voltage OOB eff( , )U T : 

 

 
0
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and 
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OOB eff eff eff
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 



   . (56) 

 

The value of out-of-band stray light depends on the wavelength range,  chosen for the computation 

of the thermodynamic temperature. Its measurement is performed with a continuous wave, fixed 

wavelength laser whose beam is injected into an integrating sphere to produce a quasi-Lambertian 

light distribution. As laser light is coherent, optical diffusion on the integrating sphere wall produces 

optical speckle that enhances detection noise. The speckle pattern is filtered by time-averaging after 

the laser beam passes through a multimode optical fibre that is agitated by an ultrasonic bath. This 

method is limited by a signal-to-noise ratio of about 10
5
, while 10

6
 is required. Repeating the 

recording and averaging of the slit scattering function over a whole day helps to lower the noise power 

by one order of magnitude. The computed out-of-band stray light correction is given in Table 7. The 

out-of-band correction factor (see Eq. (12)) is defined as: 

 

 OOB eff
OOB eff 0

b eff

(
( ),

)

,
1
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)U T
K T

U T





  . (57) 

 

 

Table 7. Temperature correction (expressed in kelvin) caused by out-of-band stray light with effective detection 

wavelength  and blackbody temperature T.  

 \ T 1358 K 1500 K 2000 K 2750 K 

730 nm –0.127 –0.128 –0.164 –0.263 

830 nm –0.084 –0.098 –0.159 –0.289 

910 nm –0.071 –0.086 –0.150 –0.285 

 

 

Table 8. Typical corrections and uncertainties related to the use of a monochromator-based spectroradiometer. 

Component 
Component 

value 

Uncertainty 

value 

Uncertainty 

unit 

Sensitivity 

value 

Sensitivity 

unit 

Temperature 

uncertainty at the 

copper point (K) 

eff 8.000043  10
–7

 1.0  10
–11

 m 1.7  10
9
 K.m

–1
 0.017 

Int(eff) 2.9215  10
–8

 5.3  10
–12

 V.W
–1

.m
3
.sr

1
 3.5  10

9
 K.V

–1
.W.m

–3
.sr

–1
 0.018 

KOOB 1.0007 2.0  10
–4

 no unit 105 K 0.021 
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6. Measurement of Sources 

6.1 Sources of Uncertainty due to the Filter Radiometer 

6.1.1 Size-of-source characteristic 

The size-of-source effect (SSE) arises from scattering and diffraction of radiation and from aberrations 

within the optical/aperture system of a filter radiometer. This characteristic of the optical design of the 

filter radiometer causes some radiation from within the target area (nominal field-of-view) to be lost 

and some radiation from outside the nominal field-of-view to be detected. The filter radiometer signal 

will show a dependence on the size of the target (and on changes in the radiance distribution 

surrounding the target), hence the term ‘size-of-source effect’. When using a calibrated filter 

radiometer, a correction needs to be applied to the measured signal, as typically the source under test 

and the source used in the calibration are not the same size and do not have the same surrounding 

spatial radiance distribution. 

  

In order to quantify the size-of-source characteristic of a filter radiometer, the parameter SSE ( )q r  is 

introduced [43], such that SSE ( )q r dr  represents the fraction of radiation originating from an annulus of 

infinitesimal width dr, at a distance r from the centre of the field of view, that is scattered into the 

field-of-view. Three equivalent methods have been introduced to measure the size-of-source 

characteristic [43], each of which measures a slightly different quantity and is related to SSE ( )q r dr  in a 

different way. These methods can be categorised as either direct or indirect methods [43, 44]. The 

direct method, which involves increasing the size of an aperture in front of a large uniform source, 

relies implicitly on the very high stability of that source. The indirect methods, which block the direct 

illumination within the instrument’s field-of-view, are less sensitive to the stability of the source used. 

 

For an instrument calibrated using the radiance method, the necessary correction depends on the 

difference in size (and radiance distribution) of the calibration source (the aperture on the integrating 

sphere) and the test source (the furnace and fixed-point or variable-temperature blackbody) and the 

size-of-source characteristic. 

 

For an instrument calibrated using the hybrid method, the necessary correction depends on the 

absolute SSE [32]; i.e., the difference between the measured signal and that obtained from an infinitely 

large source, where the radiation scattered out of the field-of-view is balanced by light scattered into 

the field-of-view. 

 

For an instrument calibrated with the irradiance or power method, the size-of-source characteristic is 

determined by the diffraction loss at the apertures. This is discussed in Section 4.1.7. 

 

Filter radiometers and pyrometers can be designed to minimise the size-of-source characteristic [45], 

and size-of-source characteristics of ~10
–5

 are achievable. This requires introducing a second, 

collimating lens after the second aperture and placing a baffle aperture, the so-called Lyot stop, in the 

collimated beam at a precise location. 

 

In general, the size-of-source characteristic will be lower for an instrument designed for the radiance-

method calibration than for an instrument designed for the hybrid-method calibration. The size-of-

source characteristic can be reduced by selecting a lens with low scattering [46], and by using lenses 

that are anti-reflection coated. A high-quality achromatic lens, with minimal spherical aberration and 
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coma will also have a smaller size-of-source characteristic. It should be noted, however, that for the 

hybrid method, such lenses will need their transmittance calibrated at all wavelengths.  

 

6.1.2 Size-of-source effect 

The size-of-source effect (SSE) arises from the combination of the instrument size-of-source 

characteristic and the uniformity of the observed source. 

 

The SSE correction [47], in its general form, is given by  

 

 
cal eff,cal eff,use1 ( ) ( )S R R S      , (58) 

 

where calS  is the corrected signal, S  is the measured signal and ( )R  is the SSE quantity, related to 

SSE ( )q r , determined by any one of the direct or indirect methods available. 

 

eff ,useR  is the effective radius of the target, and eff ,calR  is the effective radius of the calibration target, 

which will be infinite for irradiance-method calibrations. The effective radius of a given source can be 

calculated using 

 

  eff 0 1

10

1
( ) ( ) ( ) ( )

N

i i i

i

R R R R S
S

    



   , (59) 

 

where it is assumed that the surroundings of the source can be divided into N  distinct adjacent 

annular isothermal regions with radii iR , whose signals measured by the filter radiometer are iS , and 

0R  and 0S  are the radius and measured signal, respectively, of the isothermal region of which the 

target is a part. Inherent in Eqs (58) and (59) is an assumption that the SSE quantity  is small (close 

to 0 for indirect methods or close to 1 for direct methods). Alternative correction equations, which 

depend on the particular SSE measurement method used, are available if this is not the case [47]. 

 

The uncertainty in eff( )R  can be calculated by propagating the uncertainties in ( )R  and R  through 

Eq. (59). This can be achieved by first fitting a function to the measured SSE data to approximate 

( )R . A wide range of appropriate functions can be found in [48], and the uncertainty in the fitted 

function,  ( )u R , can be determined using the method in [49]. The uncertainty in eff( )R  is then 

given by: 
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  (60) 

 

where 1 0NS    by definition. 
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The size-of-source effect introduces a scaling factor to the measured signal. Rearranging Eq. (58) 

gives the scaling factor, SSEK : 

 
SSE

cal eff,cal eff,use

1

1 ( ) ( )

S
K

S R R 
 

 
.  (61) 

 

The relative uncertainty associated with the radiance measured by the filter radiometer due to the SSE 

is equal to 
SSE SSE( )u K K . Normal and best relative uncertainties are 0.01 % and 0.002 %, respectively. 

Note that for the hybrid method, eff,calR   ; that it, the SSE characteristic must be measured out to a 

sufficient source diameter that it flattens off.  

 

6.1.3 Linearity 

Equation (13) for the output signal of a filter radiometer is only valid if the instrument, including the 

amplifier, responds linearly to input flux. Any departures from linearity should be corrected for by 

including the correction factor linK  from Eq. (12). 

 

Methods for measuring linearity are roughly divided into two groups – ‘dual-aperture’ and 

‘combinatorial’ methods [50]. Dual-aperture methods compare the sum of two signals when two 

individual apertures are successively illuminated with the combined signal obtained when both 

apertures are simultaneously illuminated. The flux levels are progressively increased to cover the 

range of signals expected in use, and the measured non-linearity values accumulate with increasing 

flux. The most common dual-aperture method is a flux-doubling method, in which it is arranged that 

the two individual signals are approximately equal, and the signal levels progressively double until the 

highest signal level is reached. This method tends to produce fairly sparse data. 

 

If the linearity factor in Eq. (12) is defined as a continuous function of the measured signal, 

lin meas1 ( )K S , then the linearised measured signal is simply given by 

 

 meas meas( )S S S . (62) 

 

The function meas( )S  is determined from a number of discrete linearity values, i , which in turn are 

accumulated from a set of measured linearity values meas,i For the flux-doubling method, it can be 

shown that after k doublings, the linearity value is given by [50] 

 

 0 meas,

1

k

k j

j

  


  , (63) 

 

where 0  is the linearity value at the lowest signal level. The value of 0  can be arbitrarily set to 1 for 

the lowest signal measured during calibration of the filter radiometer. The values of k  can be 

interpolated to generate the continuous function meas( )S . Because the values of k  accumulate 

according to Eq. (63), the uncertainties in their values are highly correlated. The uncertainties are 

given by [50] 
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1 2

2 2

1 meas,( ) ( ) ( )  for 2 to j j ju u u j N  
     , (64) 

 

where there are N discrete linearity measurements, and 0( ) 0u    and 1 meas,1( ) ( )u u  . The 

correlation coefficients, ( , )j kr   , between each of the uncertainty components are 

 

 

1 2

1 2

( )  for 
( , )

( )  for .
j k

j k j k
r

k j j k
 

 
 


 (65) 

 

Combinatorial methods, on the other hand, use several filters and multiple paths to generate a large 

number of inter-related flux levels covering the expected range of signal values [51, 52]. Non-linearity 

values are determined directly by comparing the measured signals with a model of the ideal signals 

using least-squares fitting techniques with the filter transmittances as adjustable parameters: 

 

 
ideal

meas,

( )j

j

j

S

S


  , (66) 

 

where j  is the flux level for the jth measurement. The j  values can again be interpolated to obtain 

the continuous linearity function meas( )S . 

 

6.1.4 Instrument temperature sensitivity (room temperature and heating from furnace) 

As discussed in Section 5.1.1.1, filter radiometers are sensitive to their operating temperature and this 

sensitivity depends on the type of filter and the detector, as interference filters will react differently 

than glass filters to changes in temperature. FRs generally have some means of temperature 

stabilisation, but there will be some residual sensitivity. In [1], Boivin et al. determined the sensitivity 

of the spectral responsivity to changes in operating temperature for glass-filter-based FRs. By 

measuring the responsivity of the FR with the operating temperature of the integrated thermoelectric 

cooler set to 20 °C and then 40 °C, the temperature sensitivity was determined. The responsivity and 

change in responsivity with operating temperature is shown in Figure 10.  

 

If the FR is used to determine the temperature of a blackbody, the change in responsivity of the FR 

with operating temperature will lead to a change in the measured blackbody temperature. Figure 11 

shows the change in measured blackbody temperature for a 1 K change in FR operating temperature. 

With the thermoelectric system described in [1], temperature stability of 0.05 K is achievable. 
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Figure 10. Responsivity (blue) and the change in responsivity with temperature (red) for a glass filter, Si 

detector filter radiometer with a central wavelength near 650 nm. 

 

 

 
Figure 11. Change in the measured temperature (of a blackbody, for example) indicated by 650 nm, glass filter-

based FR per degree of FR operating temperature change. 

 

 

6.2 Sources of Uncertainty Due to the Source 

6.2.1 Blackbody emissivity 

The Monte-Carlo method is usually used for estimating a high-temperature blackbody’s effective 

emissivity [53–55]. The uncertainty in the emissivity can by estimated using the same method by 

varying the cavity’s surface reflectance and temperature distributions. Typical emissivities of large-

area variable-temperature blackbodies in the visible are in the range from 0.999 to 0.9997 with a 
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standard uncertainty of 0.0002 to 0.0005 [56–58]. The typical emissivity of HTFPs is 0.9997 with a 

standard uncertainty of 0.0001 to 0.0002 [59, 60]. In the case of HTFP thermodynamic temperature 

measurement, the influence of the furnace cavity on the FP blackbody cavity must be taken into 

account [61]. 

 

The blackbody emissivity and the blackbody temperature measured with a filter radiometer are related 

by Eq. (12). However, for estimation of the temperature uncertainty component associated with the 

emissivity, we can assume that the filter radiometer spectral bandpass is narrow enough that the 

monochromatic approximation can be applied. For typical wavelengths and temperatures, the Wien 

approximation can also be applied. Therefore, the corresponding temperature uncertainty component 

arising from the emissivity uncertainty is given by  

 

  
2

0
rel BB

2

( )
n T

u T u
с




 , (67) 

 

where T and BB  are the temperature and effective emissivity, respectively, of the blackbody, and 

rel BB( )u   is the relative uncertainty in the effective emissivity.  

 

When using the irradiance method, a variable-temperature blackbody (VTBB) is used as an 

intermediator between an irradiance-mode filter radiometer and a radiation thermometer. The filter 

radiometer [62, 63] is used for measuring the thermodynamic temperature of the blackbody and then, 

immediately after that, the blackbody is used for calibration of the radiation thermometer, which later 

is used for HTFP radiance temperature measurement. In this case the emissivity of the VTBB must be 

taken into account. Applying the monochromatic and Wien approximations, the signals of the filter 

radiometer, FRS , and the radiation thermometer, RTS , can be expressed as  
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  (68) 

 

and 

 1 2
RT eff ,RT BB 0,RT 2 5

0,RT 0,RT VTBB

( ) exp
с с

S R
n n T

 
 

 
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 
, (69) 

 

where 0,FR  and 0,RT  are the mean wavelengths of the filter radiometer and radiation thermometer, 

respectively, eff ,FRR  and eff ,RTR  are effective responsivity of the filter radiometer and radiation 

thermometer, BB 0,FR( )   and BB 0,RT( )   are the emissivities of VTBB at the mean wavelength of the 

filter radiometer and radiation thermometer, and VTBBT  is the temperature of the VTBB. Therefore, the 

thermometer signal, RTS , is related to the filter radiometer signal, FRS , by: 
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which is proportional to: 

 
BB 0,RT BB

RT

BB 0,FR BB 0,FR

( )
1

( ) ( )
S

  

   

 
    

 
, (71) 

 

where BB  is the difference between the emissivities at the two wavelengths. Because BB 0,( )FR   is 

very close to unity, Eq. (71) can be rewritten as  

 

  RT BB1S   . (72) 

 

The radiance of the HTFP blackbody, HTFP 0, HTFP( , )RTL T , will be proportional to the radiation 

thermometer signal when it’s used for the HTFP measurement. Note that HTFP VTBBT T , because the 

temperature of the VTBB is intentionally kept as close as possible to the temperature of the HTFP. 

Therefore, 

  

  HTFP 0,RT HTFP RT BB( , ) 1L T S    , (73) 

 

and the HTFP blackbody radiance uncertainty component associated with the emissivity of the VTBB 

equals the uncertainty in the difference between the VTBB emissivity at the mean wavelength of the 

filter radiometer and the VTBB emissivity at the mean wavelength of the radiation thermometer: 

 

 
BB HTFP BB( ) ( )u L u   . (74) 

 

Filter radiometers and radiation thermometers are usually visible or near IR instruments. The 

emissivity of a VTBB in this spectral range does not depend strongly on wavelength and the variation 

is usually in the range 0.0001 to 0.0002. Therefore, the uncertainty BB( )u   can be estimated as 

0.0001 in the typical case, and even lower for the best case.  

 

Therefore, the irradiance method, in comparison with the radiance and hybrid methods, has an 

additional uncertainty component related to the VTBB emissivity; however, this component is 

relatively small.  

 

6.2.2 For variable temperature blackbodies 

The stability and uniformity of a large-area variable-temperature blackbody (VTBB) must be taken 

into account when the irradiance (or power) method is applied for determining a HTPF’s 

thermodynamic temperature; i.e., when an irradiance-mode filter radiometer (FR) is used for 

measuring the thermodynamic temperature of the VTBB and then a radiation thermometer (RT) is 

calibrated against the VTBB source.  

 

6.2.2.1 VTBB stability 

To minimise the effect of the VTBB instability, the FR and RT should measure the blackbody 

immediately after each other; i.e., the duration between the measurements with the FR and the RT 

should be as short as possible. Typically, a cycle of two measurements takes several minutes. 
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Two methods of VTBB stabilisation can be used: active, with optical feedback; and passive, with a 

constant blackbody electric current. Figure 12 shows typical stabilisation curves of the actively 

stabilised VNIIOFI-made blackbody BB3500MP. Stabilisation behaviour can change depending on 

the history of the blackbody (for instance, whether it was heated up or cooled down just before 

stabilisation). The usual instability characteristic is a monotonic drift. One can see that in the worst 

case, the drift has a rate of about 0.02 % (in terms of radiance at 650 nm) per 5 minutes, and the noise 

instability is less than 0.004 % (calculated as the standard deviation of 10 consecutive measurements). 

The passive stabilisation method features smaller noise but can suffer from unpredictable random 

change of the drift direction. To avoid this indeterminacy, it is recommended that a slight current ramp 

is applied, leading to a monotonic temperature drift. The best stability result [64] achieved with this 

technique is 0.2 K/h at a temperature of about 3000 K [65]; i.e., 0.05 % in terms of spectral radiance at 

650 nm, which is comparable with the best results for the active method. 
 

Assuming linear drift of the blackbody, the following measurement sequence is recommended: 

RT – FR – RT (or FR – RT – FR). In this case, the mean value of two RT measurements (before and 

after) corresponds to the FR measurement without any corrections for the blackbody stability. The 

difference RT RT,after RT,beforeT T T    between the blackbody temperature measured by the RT before 

and after the FR can be used for evaluating the upper limit of the uncertainty component associated 

with VTBB stability: 

 

 RT
VTBB,stab

12

T
u


 . (75) 

 

During the WP5 (InK WP1) for HTFP temperature measurements at VNIIOFI, RTT  varied from 

0.01 K to 0.05 K. Therefore, the corresponding uncertainty component was typically within 0.01 K 

(0.009 % in terms of radiance at 650 nm at the temperature level corresponding to the Co-C point).  

 

 

 
Figure 12. Typical stability of the actively stabilised VTBB of the BB3500 type.  
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6.2.2.2 VTBB uniformity 

A VTBB is generally not perfectly uniform. The FR and RT may view different areas of the VTBB’s 

cavity bottom. Therefore, the uncertainty component VTBB,uniformu  (and maybe a correction factor) 

associated with the VTBB uniformity must be estimated. To minimise the correction and associated 

uncertainty, the blackbody must be as uniform as possible and the geometry of the measurements 

(diameters of apertures, RT optics, and measurement distances) must be chosen in such a way that 

both detectors (RT and FR) see as close as possible the same area of the cavity bottom. The uniformity 

should be measured and then used for an estimation of the uncertainty.  

 

As an example, Figure 13 shows the uniformity, plotted as a radiance distribution along the cavity 

bottom in the horizontal direction, of the blackbody BB3500M used at VNIIOFI as the VTBB for 

WP5 (WP1 of InK). The FR had an aperture of 5 mm and was positioned at a distance of 720 mm 

from the blackbody aperture (BB aperture), whose diameter was 8 mm; the distance from the BB 

aperture to the blackbody bottom was 350 mm. The RT had an effective lens aperture of 34 mm and 

was focused at the BB aperture; the distance from the RT lens to the BB aperture was 750 mm. So, the 

FR and RT detectors saw at the BB bottom circular areas with diameters of about 14 mm and 16 mm, 

respectively; i.e., the RT saw a larger area. To check the influence of this difference, the RT was 

moved towards the BB aperture by about 40 mm without re-focusing, so it saw in this position an area 

of about 14 mm (similar to that of the FR). The difference between the RT temperature readings, 

RT,unT , taken in the two RT positions was 0.04 K, 0.03 K, and less than 0.01 K for temperatures 

corresponding to the Co-C, Pt-C, and Re-C eutectic points, respectively. These values were applied as 

corrections, and the uncertainty component associated with the blackbody uniformity was estimated as 

0.02 K for Co-C and Pt-C, and 0.01 K for Re-C, using an approximate relation: 

 

 RT,un

VTBB,uniform
3

T
u


 . (76) 

 

The experiment described above and Figure 13 show that the uniformity of 0.2 % within the observed 

area leads to reasonably low uncertainties in the case where both detectors (FR and RT) observe 

comparable areas of the cavity bottom.  

 

The VTBB uniformity results presented in Figure 13 are comparable with that published elsewhere 

[66]. Therefore, based on the above example we can conclude that the normal uncertainty associated 

with VTBB uniformity is within 0.02 %, and for the best case is less than 0.01 %, in terms of radiance 

in the visible.  
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Figure 13. Cavity bottom uniformity of the blackbody BB3500M measured at VNIIOFI for Co-C, Pt-C, Re-C, 

and Cu points. The measurements were carried out at a wavelength of 900 nm for the Cu point, and 650 nm for 

the other three points. 

 

 

6.2.3 For fixed-points 

There are a number of effects related to pure-metal or eutectic fixed-points that lead to uncertainties in 

the measured temperatures of these fixed points. In addition to the uncertainty in effective emissivity 

discussed above, these include impurities, cavity-bottom temperature drop, and plateau identification. 

These uncertainties have been described for pure-metal fixed points in [67]. For the eutectic fixed-

points additional uncertainties include structure effect, identification of the point of inflection or 

identification of the liquidus point, stability, furnace effect, and uncertainties of unknown origin. 

These are discussed in detail for Co-C, Pt-C, and Re-C in [68].  
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7. Example Uncertainty Budgets 

7.1 Uncertainty Components for Each Calibration Scheme 

Following the format of Figure 5, Table 9 lists all the uncertainty components and which calibration 

scheme they apply to. 

 

 

Table 9. Uncertainty components required for each method – power, irradiance, hybrid, and radiance. 

Uncertainty Component Power Irradiance Hybrid Radiance 

Filter Radiometer Calibration 

Wavelength scale     

Stray light in calibration     

Responsivity of trap detector     

Out-of-band effects     

Amplification of photocurrent     

Geometric factor 

Distance     

FR aperture area     

Source aperture area     

Transfer/trap aperture 

area 
    

Aperture co-alignment     

Aperture non-

roundness 
    

Aperture change     

Noise     

FR spatial uniformity     

Ageing and repeatability of trap detector     

Temperature of trap detector     

Diffraction     

Lens transmittance     

Absolute SSE     

Uniformity of irradiance field     

SSE     

Measurement of Blackbody 

Linearity     

FR temperature stability     

Effective emissivity of blackbody     

Source uniformity     

Source stability     

Fixed point transition definition     
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7.2 Uncertainty Values 

Tables 10 and 11 give values for each uncertainty component listed in Table 9, largely taken from the 

uncertainty budgets in the supplementary information for the work reported in [69]. These values are 

categorised as being “normal” and “best”; however, given the complexity of primary radiometry, even 

the “normal” uncertainties are not easily obtainable at any NMI. 

 

 

Table 10. Typical contributions to the uncertainty budget for the calibration of a filter radiometer. All 

uncertainties are standard uncertainties. 

Uncertainty Component 
Normal 

Uncertainty 

Best 

Uncertainty 
Notes 

Filter Radiometer Calibration 

Wavelength scale 100 pm 0.1 pm 

Normal uncertainty for 

monochromator and best for 

laser system. 

Stray light in calibration 0.01 % 0.0003 % 
Based on the stray light 

values reported in [69]. 

Responsivity of trap detector 0.07 % 0.013 % 

Absolute calibration 

traceable to a cryogenic 

radiometer. 

Out-of-band effects 0.025 % 0.01 % 
Based on the OOB values 

reported in [69]. 

Amplification of photocurrent 0.0026 % 0.001 %  

Geometric factor 

Distance 0.1 % 0.004 % 

All expressed as 

uncertainties in radiance, as 

per Table 3. 

FR aperture radius 0.02 % 0.01 % 

Source aperture radius 0.02 % 0.01 % 

Transfer/trap aperture 

radius 
0.02 % 0.01 % 

Aperture co-alignment 0.01 % 0.0001 % 

Aperture non-

roundness 
0.004 % 0.001 % 

Aperture change 0.02 % 0 

Noise 0.05% 0.01%  

FR spatial uniformity 0.02 % 0.02 % 

Only for the power method 

since the FR is calibrated 

under-filled and used 

overfilled. 

Ageing and repeatability of trap detector 0.03 % 0.01 % 
0.01 % per year has been 

measured [41]. 

Temperature of trap detector 0.01 % 0.003 % 
Based on the sensitivities 

reported in [69]. 

Diffraction 0.07 % 0.001 % 
Diffraction at source/trap/FR 

depending on the method. 

Lens transmittance 0.02 % 0.02 %  

Uniformity of irradiance field 0.03 % 0.013 %  

SSE 0.01 % 0.002 % 
Based on the SSEs reported 

in [69]. 
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Table 11. Typical contributions to the uncertainty budget for the measurement of a blackbody. All uncertainties 

are standard uncertainties. 

Uncertainty Component 
Normal 

Uncertainty 

Best 

Uncertainty 
Notes 

Measurement of Blackbody 

Linearity 0.01 % 0.002 %  

FR temperature stability 0.01 % 0.002 %  

Effective emissivity of blackbody 0.008 % 0.008 %  

Source uniformity 0.02 % 0.01 % For VTBB. 

Source stability 0.12 % 0.03 % For VTBB. 

Fixed-point transition definition See [67, 68] See [67, 68]  

 

 

Figures 14 and 15 show plots of the propagated uncertainties for measurements of a variable-

temperature blackbody over the range 1000 °C to 3000 °C for each of the four calibration schemes, for 

the normal and best uncertainties, respectively, based on the values given in Tables 10 and 11. These 

curves have been calculated assuming there are no correlations between any of the uncertainty 

components. There is little difference between each of the schemes. 

 

 

 

Figure 14. Uncertainties for each calibration scheme, propagated from the normal values given in Tables 10 and 

11. 
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Figure 15. Uncertainties for each calibration scheme, propagated from the best values given in Tables 10 and 11. 
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Appendix A. Uncertainty Propagation Based on the Integral 

A.1 Concepts 

The method of propagating uncertainties directly through the integral in Eq. (13) is described in detail 

in [70] and has also been published in [57, 71, 72]. This method calculates the sensitivity coefficients 

in terms of signal directly from the practical numerical implementation of Eq. (13), and uses implicit 

differentiation to convert these into sensitivity coefficients in terms of temperature. 

 

In practice, Eq. (13) is solved by introducing the numerical summation (trapezium rule): 
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 (77) 

 

where the spectral responsivity has been sampled at N wavelengths (not necessarily at equal 

wavelength intervals) with measured wavelength–spectral responsivity pairs ( , )i is , and  
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 (78) 

 

For a given measured value of S, the value of T is determined iteratively by repeatedly evaluating the 

right-hand side of Eq. (77) with different trial values of T until the right-hand side is equal to S. The 

most efficient method of doing this is to use the Newton-Raphson algorithm as given by Eq. (14) and 

outlined in [8]. 

 

Regardless of the algorithm used to solve Eq. (77) for T, the uncertainty in the value of T can be 

determined directly from Eq. (77) as a function of the uncertainties in the measured ( , )i is  values and 

the uncertainties in K and S. In order to calculate the appropriate sensitivity coefficients, it will be 

assumed that the errors in the measurements can be separated into purely random components (that is, 

components that vary independently from measurement to measurement; e.g., measurement noise) and 

purely systematic components (that is, fully correlated components that are constant from one 

measurement to the next; e.g., uniformity of reference source, alignment, wavelength scale offset). 

(Partially correlated components will not be considered explicitly, but can easily be accommodated 

using the sensitivity coefficients derived below.) Thus, the wavelength and responsivity measurements 

can be modelled as: 

 

 true, ran, sysi i i        (79) 

and 

 true, ran, sys(1 )i i is s s s   , (80) 

 

where true,i  and true,is  are the unknown true values of the i
th
 wavelength and i

th
 responsivity, 

respectively, ran,i  is the unknown random error in the i
th
 wavelength, sys  is the unknown systematic 
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error common to all wavelengths, ran,is  is the unknown random error in the i
th
 responsivity, and syss  is 

the unknown systematic error common to all responsivity measurements. Note that the wavelength 

errors are expressed as absolute values, while the responsivity errors are relative values. All of these 

errors have expectation values of zero, and are characterised by uncertainties ran,( )iu  , sys( )u  , 

rel ran,( )iu s , and rel sys( )u s , respectively. Thus, the expectation value of true,i  is i  and the expectation 

value of true,is  is is . There is no need to separate the uncertainties in K and S into random and 

systematic components since the sensitivity coefficients for the random and systematic errors are the 

same as each other. Thus, there will be single combined uncertainties u(K) and u(S). 

 

Substituting Eqs (79) and (80) into Eqs (77) and (78) and differentiating with respect to each of ran,i , 

sys , ran,is , syss , K, and T gives: 
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  (81) 
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and 
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The sensitivity coefficients for temperature are obtained by applying the rule for implicit 

differentiation: 

 

 
ran,ran, ii

T S S

T

  
 

 
, (89) 

 
syssys
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1T
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. (94) 

 

The uncertainty in temperature is given by the GUM law for propagation of uncertainty as 
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  (95) 

 

with the addition of any correlated components. For example, the uncertainties u(K) and u(S) may be 

partially correlated. 

 

A.2 GUM Tree Calculator (GTC) 

While the equations in Appendix A.1 look fearsome, with care they can be easily implemented in a 

software language of choice or in a spreadsheet application. Alternatively, a powerful technique, 

known as GUM Tree Calculator (GTC), which can automatically propagate uncertainties through any 

equation or series of inter-related equations, can be used. GTC can also propagate uncertainties 

through iterative algorithms, such as the Newton-Raphson algorithm. GTC is described in [73] and is 

available for download from the MSL website [74]. GTC can be used as an interactive calculator, or as 

a batch processing tool. It is self-contained (requiring no supporting software) and programmable 

using the Python language. 
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GTC uses a special data type, called an uncertain number, to represent quantities that have been 

measured, or estimated in some way. They are the key feature of GTC that distinguishes it from other 

data processing tools. An uncertain number in GTC is a variable data structure containing a value, a 

standard uncertainty, and a number of degrees of freedom. Correlation coefficients for any two 

uncertain numbers can also be assigned. Thus, when propagating uncertainties through Eq. (77), each 

of the i  and is  measurements are treated as uncertain numbers with both random and systematic 

uncertainty components. When using Python, for example, coding of Eq. (77) is carried out with these 

uncertain-number variables in the same way that the integral would be coded using normal single-

value variables. Then the Newton-Raphson algorithm (or any other suitable algorithm) can be applied, 

using the same uncertain-number variables, to determine the value of T. GTC automatically 

propagates the uncertainties through these calculations, using the method of automatic differentiation, 

which uses the chain rule of calculus, to implement the GUM propagation law. GTC will deliver a 

value, standard uncertainty, and number of degrees of freedom for T, and also provide a complete 

uncertainty budget if required. 

 

A.3 How to Apply the Method for Different Sources of Uncertainty 

This method is applied by calculating the sensitivity coefficients in Eqs (89) to (94) and combining the 

uncertainty components using Eq. (95). The appropriate sensitivity coefficients for common sources of 

uncertainty are calculated as follows. 

 

Effect Notes Calculation 

Spectral responsivity of trap 

detector, 
traps   

If spectral in ( )s  , possibly affects 

all of ran,( )iu  , sys( )u   rel ran,( )iu s , 

and rel sys( )u s . Otherwise in K. 

Eqs (89) to (92) 

 

or 

 

trap trap

trap trap

T K T

s s K

K K

 

  


  






  

T

K




 from Eq. (93).  

 

Geometric factor, g Uncertainty associated with 

geometric factor given by Eqs (24) 

and (28). Then in K. 

K K

g g





  

T

K




 from Eq. (93).  

Amplifier gain, G  In K. K K

G G





  

T

K




 from Eq. (93).  

Wavelength scale accuracy This produces uncertainty 

components ran,( )iu   and sys( )u  . 

However, if the accuracy can be 

considered a spectral offset, it can be 

considered a simple uncertainty 

component sys( )u   only.  

Eqs (89) and (90). 
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Filter stability This will affect the shape of ( )s   

and hence possibly all of 

ran,( )iu  , sys( )u   rel ran,( )iu s , and 

rel sys( )u s .  

Eqs (89) to (92). 

Instrument stability and noise This affects the measured signal, S.  Eq. (94). 

Size-of source effect, 
SSEK   In K. 

SSE SSE

K K

K K





  

T

K




 from Eq. (93).   

Linearity, 
linK   In K. 

lin lin

K K

K K





  

T

K




 from Eq. (93).   

Blackbody emissivity,   In S when measuring a blackbody at 

an unknown temperature. 

T S T

S

S S

 

 

  

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




  

T

S




 from Eq. (94).  

Blackbody stability, ability to 

define melt and similar 

As above.   

Hybrid method: lens 

transmittance 

If spectral in ( )s  , possibly affects 

all of ran,( )iu  , sys( )u   rel ran,( )iu s , 

and rel sys( )u s . But normally K. 

Eqs (87) to (92) 

 

or 
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K
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 

 
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
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




  

T

K




 from Eq. (93).  

 

Power method: uniformity of 

detector 

These can all be considered as a 

relative uncertainty within K. 

T

K




 from Eq. (93). 

Radiance method: angular 

uniformity of the calibration 

source 

Irradiance/hybrid method: spatial 

uniformity of the calibration 

irradiance field 
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Appendix B. Uncertainty Propagation Based on Key Spectral Parameters 

B.1 Concepts 

An alternative method of propagating the uncertainties in the spectral responsivity measurements to 

the measured temperature redefines the integral in Eq. (13) in terms of key spectral parameters of the 

filter radiometer. This method is most fully described in [75]. 

 

For the purpose of calculating temperature and its uncertainty, the measurement equation, Eq. (13), 

can be approximated by the Planck version of the Sakuma–Hattori equation [76]: 
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where A, B, and C are parameters related to the optical properties of the filter radiometer. This 

approximation is valid for small
3
 values of the relative bandwidth, 0r   , of the spectral 

responsivity [77]. In this case [78] 
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where 0  and  are the mean wavelength and standard deviation (which is a measure of the 

bandwidth), respectively, of the spectral responsivity (as measured in air), n is the refractive index of 

air, and K (as described in Section 2.5) includes any optical, geometrical, and electrical quantities not 

included in 

( )s  .  

 

An advantage of using the approximation given by equation (96) is that it can be rearranged to give T 

directly as a function of S: 

 

 2
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c B
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C A
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S

 
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 

, (100) 

 

so that once A, B, and C have been calculated from H, 0 , and , Eq. (100) can be used to calculate 

the temperature directly from subsequent measurements of S. 

                                       
3
 The approximation, when the relative bandwidth is less than 0.01, e.g., for a 650 nm filter radiometer with 

bandwidth (full-width at half maximum) less than about 20 nm, typically creates an error smaller than 3 mK over 

the temperature range 600 °C to 3000 °C. 
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The values of H, 0 , and  can be calculated from ( )s   through the following integrals [78]: 
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Equations (96) to (99) and (101) to (103) form the basis of the uncertainty analysis. Uncertainties in 

the values of H, 0 , and , and additionally n and 2c , can be propagated through Eq. (96) using the 

following sensitivity coefficients: 
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T c n



   

   
      

   
, (106) 

 

 0

2

2 1
T T n TPS S

n Tn n c

   
    

   
, (107) 

 

 
22 2

T TS S

c Tc c

  
  

 
, (108) 

 

where 

 

 
2

0

1 exp
c

P
n T

 
   

 
. (109) 

 

All of these components are determined during the calibration of the filter radiometer. Additionally, 

the uncertainty in measuring S during use when determining the unknown temperature is propagated to 

T by the sensitivity coefficient 
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2

0

2

1 1T n T P

S S T c S


 

  
 . (110) 

 

The approximations indicated by the  symbol in Eqs (104) to (107) and Eq. (110) arise from 

neglecting terms in the derivatives of order 
2r  or higher (narrowband approximation). Additionally, 

the Wien approximation can be applied by replacing P with 1.  

 

Each of the uncertainty components discussed in the main text can be identified with one of the six 

sensitivity coefficients of Eqs (104) to (108) or Eq. (110), and contribute towards one of the 

uncertainty values 
0( )u  , ( )u  , ( )u H , ( )u n , 

2( )u c , or ( )u S . The total standard uncertainty in the 

calculated value of T is evaluated from the GUM formula: 

 

 

2 22 2 2 2

2

0 2

0 2

( ) ( ) ( ) ( ) ( ) ( ) ( )
T T T T T T

u T u u u H u n u c u S
H n c S

 
 

               
               

              
 (111) 

 

with the addition of any correlated components. The narrowband and Wien approximations indicated 

above introduce insignificant error (typically less than 3 mK) into the calculated value of the total 

standard uncertainty for realistic values of the parameters. Because the uncertainties u(n) and 2( )u c  

are small, the fourth and fifth terms in Eq. (111) are negligible and can be removed from the equation. 

In fact, after the redefinition of the SI in 2019, 2( )u c  will be identically zero, since 2c hc k  and h, c, 

and k will all have defined values. Similarly, the component of uncertainty in H due to 1c  is also 

negligible, and will be identically zero after the redefinition since 
2

1 2c hc . 

 

The uncertainties ( )u H , 
0( )u  , and ( )u   can be derived from the uncertainties ran,( )iu  , sys( )u  , 

rel ran,( )iu s , rel sys( )u s , and u(K) in a similar fashion to the method in Appendix A. That is, each of the 

integrals in Eqs (101) to (103) can be expressed as numerical summations (given by the trapezium 

rule) in terms of the measured ( , )i is  pairs, and the appropriate sensitivity coefficients calculated. 

 

The sensitivity coefficients for H are: 

 

 

1 2

1
1 1

ran,

1

if 1

   if 1
2

if ,

i i

i

N N

s s i
H Kc

s s i N

s s i N


 



  
 

   
   

  (112) 

 

 
sys

0
H







, (113) 

 

 1

ran, 2
i i

i

H Kc
s

s






, (114) 
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sys

H
H

s





, (115) 

and 

 
H H

K K





, (116) 

 

where i  is given by Eq. (78) in Appendix A. The uncertainty u(H) is then obtained from: 

 

 

2 2

2 2 2 2 2

ran, rel ran, rel sys rel

1 ran, ran,

( ) ( ) ( ) ( ) ( )
N

i i

i i i

H H
u H u u s H u s H u K

s




     
                

 .  (117) 

 

The sensitivity coefficients for 0  are: 

 

 

1 1 1 1 0 2 2 0

0 1
1 1 0 1 1 0
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    
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 (118) 

 

 0

sys

1








, (119) 

 

 0 1
0

ran,

( )
2

i i
i

i

Kc s

s H

 
 


 


, (120) 

and 

 0

sys

0
s





. (121) 

 

Note that in Eqs (118) and (120) 

1

1

0

( )Kc H s d 


 

  
 
 , the inverse of the area under the spectral 

responsivity curve (i.e., 0 ran,i    and 0 ran,is   are independent of K and 1c , as expected from 

Eqs (102) and (103)). The uncertainty 0( )u   is then obtained from: 

 

 

2 2

2 20 0
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N
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u u u s u
s

 
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               

 .  (122) 

 

The sensitivity coefficients for   are: 
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 (123) 
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0








, (124) 

 

 2 21
0
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i

i

s Kc

s H

 
  




    

 , (125) 

and 

 
sys

0
s





. (126) 

 

Again, ran,i    and ran,is   are independent of K and 1c  since 1Kc H  is equal to the inverse of 

the area under the spectral responsivity curve. The uncertainty ( )u   is obtained from: 
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N
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i i i

u u u s
s
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              

 .  (127) 

 

Finally, because H, 0 , and   are all calculated from the same ( , )i is  data, their uncertainties will be 

correlated. For any two of these quantities, 1X  and 2X , the covariance is: 
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  (128) 

 

Thus 

 

 2 20 0
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and 
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These correlated components should be added to Eq. (111) when calculating the total uncertainty in 

the value of T. The additional terms to be added to 
2( )u T  are: 

 

 0 0

0 0

2 ( , ) ( , ) ( , )
T T T T T T

u H u H u
H H

   
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  
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 . (132) 
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However, in practice, these terms are generally negligible compared to those in Eq. (111) and can be 

ignored. 

 

Once again, GUM Tree Calculator (GTC), as described in Appendix A.2, can be used to automatically 

propagate the uncertainties in the ( , )i is  and K measurements through Eqs (101) to (103) to give 

( )u H , 
0( )u  , and ( )u   directly, which can then be used in Eq. (111). 

 

 

B.2 How to Apply the Method for Different Sources of Uncertainty 

This method is applied by calculating the integral quantities of Eqs (101) to (103) and then the 

sensitivity coefficients in Eqs (104) to (108) and Eq. (110). The appropriate sensitivity coefficients for 

common sources of uncertainty are calculated as follows. 

 

 

Effect Notes Calculation 

Spectral responsivity of trap 

detector, 
traps   

If spectral in ( )s  , which affects 

the central wavelength and 

bandwidth.  

Contributes to H as a component 

in K.  

T

H




 from Eq. (104).  

 

Geometric factor, g Uncertainty associated with 

geometric factor given by Eqs (24) 

and (28). Then in H through K. 

H H

g g





  

T

H




 from Eq. (104).  

Amplifier gain, G  In H through K. H H

G G





  

T

H




 from Eq. (104).  

Wavelength scale accuracy This produces an uncertainty assoc. 

with both 
0  and . However, if 

the accuracy can be considered a 

spectral offset, it can be considered 

a simple uncertainty associated 

with 0  only.  

Eqs (105) and (106). 

Filter stability This will affect the shape of ( )s   

and hence both 0  and . It is best 

modelled to estimate an uncertainty 

associated with those.  

Eqs (105) and (106). 

Instrument stability and noise This affects the measured signal, S.  Eq. (110). 

Size-of source effect, SSEK   In H through K. 

SSE SSE

SSE SSE

T H T

K K H

H H

K K

  


  






  

T

H




 from Eq. (104).  
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Linearity, 
linK   In H through K. 

lin lin

lin lin

T H T

K K H

H H

K K

  


  






  

T

H




 from Eq. (104). 

Blackbody emissivity,   In S when measuring a blackbody 

at an unknown temperature. 

T S T

S

S S

 

 

  


  






  

T

S




 from Eq. (110).  

Blackbody stability, ability to 

define melt and similar 

As above.   

Hybrid method: lens 

transmittance 

If spectral in ( )s  , which affects 

the central wavelength and 

bandwidth. But normally in H 

through K. 

abs abs

abs abs

T H T

H

H H

 

 

  


  






  

T

H




 from Eq. (104).  

 

Power method: uniformity of 

detector 

These can all be considered as a 

relative uncertainty in H through K. 

T

H




 from Eq. (104).  

 Radiance method: angular 

uniformity of the calibration 

source 

Irradiance/hybrid method: spatial 

uniformity of the calibration 

irradiance field 

 

Note that many sources of uncertainty will be expressed as relative uncertainties rather than absolute 

uncertainties (with units). All uncertainties in the equations above are absolute uncertainties. However, 

as an example, consider an amplifier gain. From the table above, this is: 

 

 
2
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2

T H T n T

G G H Gc
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. (133) 

 

Therefore, the uncertainty in temperature due to amplifier gain is  
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 (134) 

 

where the term ( )u G G  is the relative uncertainty in the gain.  
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