BIPM Capacity Building & Knowledge Transfer Programme
2018 BIPM - TÜBİTAK UME Project Placement

REPORT

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Determination of the Solid Density of Mass Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>The calibration of mass standards is highly affected by the densities of the artifacts used. Research was performed on the accurate determination of the density of mass standards using two different techniques.</td>
</tr>
<tr>
<td>Author, NMI</td>
<td>Dagmawi Woldetensai Berhe, NMIE, Ethiopia</td>
</tr>
<tr>
<td>Mentor at TÜBİTAK UME</td>
<td>Sevda Kacmaz, Mass Laboratory, TUBITAK UME, Turkey</td>
</tr>
<tr>
<td>Date</td>
<td>01 April- 30 June 2018</td>
</tr>
</tbody>
</table>

Abstract

Research was conducted on the methods and system for solid density measurements to gain in-depth knowledge and experience in the area with the aim of improving the accuracy of mass measurements performed at the National Metrology Institute of Ethiopia (NMIE).

Alternative hydrostatic techniques comparing the test weight with a reference weight: (i) two different reference weights weighed in air and (ii) reference weights weighed in air and in the liquid are used in the study. The first technique is carried out manually and the second automatically. This report presents the result of the comparisons of the test weight with two different reference weights weighed in air, one with the test weight in air and the other with the test weight in water.

Motivation & Introduction

In the performance of high level mass calibrations, the accuracy is affected by the density of the artifacts used. It is necessary to know the value of the density of the mass artifacts to make buoyancy corrections during mass calibration. The NMIE Mass and Volume Laboratory sought training on this subject in a well-equipped external laboratory in order to gain knowledge and experience in line with the aim of improving the accuracy of its mass calibration services. The BIPM and the National Metrology Institute of Turkey (TÜBİTAK UME) joint training initiative entitled 2018 "BIPM - TÜBİTAK UME project placements" presented a good opportunity to obtain the required knowledge and experience.

The hydrostatic measurement system apparatus installed in the NMIE Mass and Volume Laboratory, some years ago, is suitable for both hydrometer calibration and solid density measurement in a limited range. However, it has not been used for the measurement of solid density due to a lack of required knowledge and experience. The objective of the research was to gain theoretical knowledge and practical experience to carry out measurements to determine solid density, understand the measurement system, identify system elements, develop the necessary calibration procedures and then to perform measurements.

The overall intention of establishing the capability to measure the density of weights at NMIE is to enable the calibration of weights at higher accuracies (E1 and E2 accuracy level).
For the work described in this report, a 1 kg weight of accuracy class E1 was calibrated in distilled water by using UME hydrostatic weighing system, consisting of a PR1003 Mettler balance and a thermostatic bath.

Research

The measurement of solid density was carried out by means of two comparisons: one in which the reference weight and test weight were both measured in air, and another one in which the reference weights were measured in air while the test weight was measured in water. These were performed based on OIML R 111-1-e04, B.7.4.2, Method A1. This technique was chosen to provide good technical experience through exercising each step manually. For the measurement, UME class E1 1 kg (id No. 003) was used as a test standard while class E1 1 kg weight (id No. 01) and combination of weights 500 g, 200 g, 100 g, 50 g, 20 g, 2 g, 1 g, 200 mg, 100 mg, 50 mg, 20 mg, 10 mg, 10 mg* (id No. 003) were used as reference mass standards for (in air) and (in water) measurements respectively.

![Fig.1. Manual Solid Density measurement system at UME](image)
Measurement principle

For each comparison measurement, the difference Δm, between test weight and reference weight is the difference in their apparent weight (balance indication) values (I).

$$\Delta m = I_T - I_R$$

$I_T =$ balance indication value of the test weight and

$I_R =$ balance indication value of the reference weight.

For in air comparisons, 3 series of measurements with 6 cycles each (total 18 ABBA) were carried out and the average weighing difference, Avg. (Δma), was calculated:

<table>
<thead>
<tr>
<th>Series</th>
<th>Avg. diff (g)</th>
<th>St. Dev. (g)</th>
<th>Avg. pressure (hPa)</th>
<th>Avg. Temp (°C)</th>
<th>Avg. Rh (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.006091</td>
<td>0.0000009</td>
<td>993.73</td>
<td>19.97</td>
<td>54.78</td>
</tr>
<tr>
<td>2</td>
<td>-0.006091</td>
<td>0.0000008</td>
<td>993.53</td>
<td>19.98</td>
<td>54.22</td>
</tr>
<tr>
<td>3</td>
<td>-0.006095</td>
<td>0.0000003</td>
<td>993.33</td>
<td>20.00</td>
<td>54.13</td>
</tr>
<tr>
<td>Avg.(Δma)</td>
<td>-0.0006092</td>
<td>STDV 0.0000002</td>
<td>Avg.</td>
<td>993.52</td>
<td>19.98</td>
</tr>
</tbody>
</table>

For in water comparisons, 2 series of measurements with 3 cycles each (total 6 ABBA) were performed and the average weighing difference, Avg. (Δmw), was calculated:

<table>
<thead>
<tr>
<th>Series</th>
<th>Avg. diff (g)</th>
<th>St. Dev. (g)</th>
<th>Avg. pressure (hPa)</th>
<th>Avg. Temp (°C)</th>
<th>Avg. Rh (%)</th>
<th>Avg. water temp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01067</td>
<td>0.00076</td>
<td>999.650</td>
<td>21.383</td>
<td>50.483</td>
<td>19.488</td>
</tr>
<tr>
<td>2</td>
<td>0.01050</td>
<td>0.00150</td>
<td>1000.083</td>
<td>21.233</td>
<td>52.050</td>
<td>19.553</td>
</tr>
<tr>
<td>Avg.(Δmw)</td>
<td>0.01059</td>
<td>STDV 0.0001202</td>
<td>Avg.</td>
<td>999.867</td>
<td>21.308</td>
<td>51.267</td>
</tr>
</tbody>
</table>

Data Analysis

Model Equation

The density of the test weight at 20 °C is calculated as follows:

$$\rho_{T,20} = \left(\frac{M_{Ra} + \Delta M_a + \rho_a \times (V_{T,20} - V_{Ra,20})}{V_{T,20}} \right)$$

Where,
M_{Ra} = 999.99981 \text{ g}, \text{ the value of reference standard used in air comparison}

\Delta M_a = l_{Ra} - l_{Ra} = -0.0006092 \text{ g}, \text{ the weighing difference in air comparison}

\rho_a = 1.175472795 \text{ kgm}^{-3}, \text{ density of air}

V_{Ra,20} = 124.8318 \text{ cm}^3, \text{ Volume of reference standard at reference temperature}

\begin{align*}
V_T &= \frac{(M_{Ra} - \rho_a V_{Ra} + \Delta M_a) - (M_{Rw} - \rho'_a V_{Rw} - M_P + \Delta M_w)}{\rho_w - \rho_a} = 126.9452 \text{ cm}^3
\end{align*}

But,

\begin{align*}
V_{T,20} &= V_T \times (1 + (20 - t) \times \beta)
\end{align*}

V_{T,20} = (126.9456 \pm 0.01220) \text{ cm}^3, \text{ volume of test standard at reference temperature}

Where

\begin{align*}
V_T &= \text{ volume of test reference at observed temperature, } t \\
M_{Rw} &= 873.3899294 \text{ g, value of reference standard used in water comparison} \\
\rho'_a &= 1.1774160 \text{ kgm}^{-3}, \text{ value of air density during in } - \text{ water comparison} \\
V_{Rw} &= 108.5055 \text{ cm}^3, \text{ Volume of reference standard used during in } - \text{ water comparison} \\
M_P &= 0, \text{ weight of additional suspension pan (if any)} \\
\Delta M_w &= 0.0105850 \text{ g, weighing difference during in } - \text{ water comparison} \\
t &= 21.308 \text{ o}_C, \text{ observed temperature} \\
\beta &= 6.15 \times 10^{-6} \text{C}^{-1}, \text{Coefficient of cubical expansion of the test weight material}
\end{align*}

\begin{align*}
\rho_{T,20} &= 7877.40573 \text{ kgm}^{-3}
\end{align*}

Uncertainty

\begin{align*}
U_{\rho,20} &= U_{V,20} \times \rho_{T,20} = 0.00076 \text{ gcm}^{-3}
\end{align*}
Conclusions and Future Work

As a result of the work performed, it was found that the theoretical and technical capability of personnel in charge, preparation of test weight, availability of different tools and accessories, preparation of appropriate standard weights, selection of appropriate balance, controlling the temperature of the bath (thermostatic bath), availability of appropriate deionized or distilled water, environmental monitoring devices and water thermometer, stable laboratory environment are factors which affect the accuracy of the mass measurements.

The knowledge and experience gained through this study will be used to carry out measurement of the density of a 1 kg E1 class standard weight, assuring the achievement of the objective of the program. Further, the experience gained would be used to establish a solid density measurement system at NMIE.

Acknowledgements

I am greatly thankful to all those people who have given me any kind of assistance in the making of this project. I express my gratitude to Ms. Sevda Kacmaz, who has through her vast experience and knowledge has been able to guide me.

I express my gratitude to BIPM and TUBITAK UME who gave me the chance to take part in this Capacity Building and Knowledge Transfer Program (CBKT).

I am also thankful to my Institute (NMIE) and the World Bank Project (piu) for providing my travel facility and support.