Consultative Committee for Amount of Substance

Metrology in Chemistry - CCQM

Robert Kaarls

President CCQM

24th meeting of the CGPM, 17 – 21 October 2011, Paris, France
Demanding Metrological Traceability

- Industry, services, fair traders, consumer protection, society
- Legislators, Regulators
- JCTLM (BIPM, IFCC, ILAC, WHO, in-vitro diagnostics industry)
- Codex Alimentarius Commission, HACCP, animal health, plant protection, microbiological measurements
- WMO Global Atmospheric Watch, climate change
- Pharmacopeia (USP, EDQM, JP, a.o; 2008 workshop at BIPM)
- World Anti Doping Agency – WADA
- Forensics authorities and security authorities
- ISO, sector specific standardization bodies
- Conformity Assessment and Accreditation Bodies
 (ILAC Arrangements, e.g. based on ISO 17025, 15189, 15195, WADA, etc.)

Addressing traceability and measurement uncertainty
CCQM - Metrology in Chemistry

- **High purity Chemicals** (inorganic and organic compounds, metals, isotopics, other)
- **Inorganic solutions** (elemental, anionic, other)
- **Organic solutions** (PAHs, PCBs, pesticides, other)
- **Gases** (high purity, environmental, fuel, forensic, medical, other)
- **Water** (fresh water, contaminated water, sea water, other)
- **pH**
- **Electrolytic conductivity**
- **Metals and Metal alloys** (ferrous metals, non-ferrous metals, precious metals, other)
- **Advanced materials** (semiconductors, superconductors, polymers and plastics, ceramics, other)
CCQM - Metrology in Chemistry

- Biological fluids and materials (blood serum, renal fluids, hair, tissues, bone, botanical materials, other)
- Food (nutritional constituents, contaminants, GMOs, other)
- Fuels (coal and coke, petroleum products, bio-mass, other)
- Sediments, Soils, Ores and Particulates (sediments, soils, ores, particulates, other)
- Other Materials (cements, paints, textiles, glasses, thin films, coatings, insulating materials, rubber, adhesives, other)
- Surfaces, films and engineered nanomaterials (inorganic, organic, biomaterials, other)
- Micro-biological pathogens (bacteria, viruses, fungi, yeast, mould)
CCQM - Metrology in Chemistry

CCQM Working Groups (>250 experts)

• Key Comparisons and CMC Quality NMLA, L. Mackay
• Organic Analysis NIST, W. May
• Inorganic Analysis LGC, M. Sargent
• Gas Analysis NPL, M. Milton
• Electro-chemical Analysis SMU, M. Mariassy
• Surface Analysis BAM, W. Unger
• Bio-Analysis LGC, H. Parkes
• 3 ad hoc WGs (EET, KCRV, redefinition SI)
• 1 Advisory Group (BIPM Program of Work)
• 1 ad hoc Steering Group (micro-biology)

CCQM - Metrology in Chemistry (1993)

Aim and tasks
- worldwide comparability, through traceability to SI, or if not (yet) possible to other internationally agreed references,
- primary and other methods of higher order, databases and
- primary (pure) reference materials and
- validation of traceable methods/procedures/meas. uncertainty
- Pilot study comparisons and Key Comparisons
 - Key Comparisons testing core competencies
 - Key Comparisons of deliverables, like CRMs
 - Key Comparisons of challenging components and matrices
 - Pilot Study Comparisons (benchmarking, research, try out, newcomers, etc.)
- >90 Key Comparisons and >130 Pilot study comparisons
- >4800 chemical CMCs (out of ~24000)
A model for Primary Calibrator Comparisons
How far does the light shine? Testing core competencies

![Diagram showing molecular weight and log KOW for various analytes across different calibrator comparisons.]

- **CMC Analytes**: Various analytes categorized based on molecular weight and log KOW for structural complexity.
- **CCQM-P20.f (2007/2008)**: Analytes like Digoxin, Oxytetracycline, Folic Acid, etc., highlighted.
- **CCQM-P20.e (2006/2007)**: Analytes like Aldrin, Atrazine, Estradiol, etc., with different structural complexities.

Key analytes illustrated include:
- **PCBs**: Polychlorinated biphenyls
- **PAHs**: Polycyclic aromatic hydrocarbons
- **OCs**: Organochlorines
- **Nonachlor Folic Acid**: Specific analytes for testing
- **Chlorpyrifos**: Important pesticide
- **Dioxidin**: Essential drug
- **Theophylline**: Vital compound
- **Xylene**: Common solvent
- **Creatinine**: Biochemical marker

Legend for analytes across different calibrator comparisons:
- **CMC Analytes**: Various analytes categorized based on molecular weight and log KOW for structural complexity.
- **CCQM-P20.f (2007/2008)**: Analytes like Digoxin, Oxytetracycline, Folic Acid, etc., highlighted.
- **CCQM-P20.e (2006/2007)**: Analytes like Aldrin, Atrazine, Estradiol, etc., with different structural complexities.

BIPM (Bureau International des Poids et Mesures) logo is present at the bottom right.
Current measurement problems

- **Measurand not understood** (insufficient knowledge of what the measurand, intended to be measured, should be, and not sure what is really measured)
- **Measurand is method/procedure defined**
- **“reference” methods are not metrologically sound** (higher order reference methods, e.g. based on growth of micro-organisms and colony counts)
- **Insufficient global harmonization of measurement methods** (e.g. moisture in grains and cereals; in coop. with OIML, ISO, Codex A.)
- **Measurement uncertainty** (based on repeatability and reproducibility, instead of the GUM)
- **No calibration chain/hierarchy**
- **Lack of CRMs**
- **Commutability problems**
CCQM stakeholder and expert cooperation

- WHO, WMO, ILAC, JCTLM (IFCC and ILAC)

- CCQM workshops with industry associations, relevant expert laboratories, industries, regulators, EQAS and PT providers, and standardization bodies

- Addressing the “Grand Challenges” in society and economy (EU, APEC, USA, Japan, a.o. with focus areas on food safety, health care, environmental control/climate change, energy, advanced and nano materials)
A Context for the Complexity of Chemical Measurements

(By courtesy of NIST)

• According to a study released by the Council for Chemical Research, chemistry is core or important to virtually all industrial sectors and technology areas

• For metrology in chemistry the task is to determine the quantity of a specific chemical entity and not merely "amount of substance"

• Chemical measurements are multidimensional
 – a large number of chemical entities (>10^5)
 – in a broad range of matrices (10^7)
 – and mass fractions ranging from <10^{-12} to 1
CCQM-K43.1 As, Hg and Me-Hg in marine fish (swordfish), year 2007

Mercurio

![Graph of Hg content in marine fish](image)

Figure 2: CCQM-K43.1: Hg in marine fish (swordfish). (The results of CMQ-FC: $k=2.18$)

Arsenico

![Graph of As content in marine fish](image)

Figure 1: CCQM-K43.1: As in marine fish (swordfish). (The results of CMQ-FC: $k=1.96$)

CCQM-P12.1 Cu, Fe, Pb and Cd in wine, year 2006

Hierro

![Graph of Fe content in wine](image)

Figure 2: CCQM-P12.1 participants’ measurement results for iron

The horizontal lines represent the KCRV and associated uncertainty. Solid, red diamonds represent results obtained using IDMS.

Cobre

![Graph of Cu content in wine](image)

Figure 3: CCQM-P12.1 participants’ measurement results for copper

The horizontal lines represent the KCRV and associated uncertainty. Solid, red diamonds represent results obtained using IDMS.
Trade, Health and Food Safety

Recent examples of temporary closure of markets due to the presence of residues

- Antibiotics in pork, Japan
- Antibiotics in meat, Korea
- Antibiotics in salmon, Japan
- Crystal violet in salmon, EU
- Leucomalachite green in salmon, Chinese Taipei
- Amphenicol in salmon, Canada
- Dioxin in pig meat, South Korea
- Melamine in milk
- Carbaryl in wine
- Cd in mussels
- Hg and nitrate in swordfish
- Patulin in apple and azinphos-methyl in pears and grapes
- Etc.
Why need of reliable micro-biological measurements?

- Already for many years requested by a number of NMI s
- 2008 world export volume of food products > 1100 billion USD
- Estimated that 20% to 30% of total world food production is lost due to microbial spoilage

USA CDC statistics on food-borne illnesses indicate:

- 48 million illnesses per year due to food-borne pathogens, of which
- 128 000 hospitalizations and 3000 deaths
- It means every year 1 in 6 Americans are affected

Food poisoning in the EU (EFSA 2009 figures)

<table>
<thead>
<tr>
<th></th>
<th>EU 2009</th>
<th>USA 2011 estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella</td>
<td>108 614</td>
<td>1 027 561</td>
</tr>
<tr>
<td>Campylobacter</td>
<td>198 252</td>
<td>845 024</td>
</tr>
<tr>
<td>Listeria</td>
<td>1 645</td>
<td>255 death</td>
</tr>
<tr>
<td>VTEC E.coli</td>
<td>3 573</td>
<td>2 100 hospitalized</td>
</tr>
</tbody>
</table>

(sources CDC statistics and Campden BRI)
Microbial Stakeholder Steering Group (chair: NIST, L. Locascio)

- Sampling
- Cell/organism growth
- Viable colony count
- Viable non-culturable organisms

- Detection
- Isolation
- Identification

- Characterization

- Enumeration/counting and different units, like cfu (colony-forming unit, a measure of viable bacterial or fungal numbers), cfu/g, cfu/ml

- Slow laboratory methods versus rapid methods
- “Reference” methods are based on growth of organisms
- Immunoassay, DNA based tests (e.g. PCR)
CCQM-P68: Anabolic Steroids in Urine

Participants’ Methodologies and Results (in collaboration with WADA)

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Method Summary</th>
<th>Instrumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMI A</td>
<td>Addition of D₄-NNA, enzyme hydrolysis, solvent extraction, HPLC fractionation, TMS derivatisation</td>
<td>GC/HRMS</td>
</tr>
<tr>
<td>GL of HKSAR</td>
<td>Addition of D₄-NNA, enzyme hydrolysis, SPE and liq-liq extraction, TMS derivatisation</td>
<td>GC/HRMS</td>
</tr>
<tr>
<td>LGC</td>
<td>Addition of D₄-NNAG, enzyme hydrolysis, solvent extraction, HPLC fractionation, TMS derivatisation</td>
<td>GC/MS</td>
</tr>
<tr>
<td>NIST</td>
<td>Addition of D₄-NNA, enzyme hydrolysis, solvent extraction</td>
<td>LC/MS/MS</td>
</tr>
</tbody>
</table>

Mean value: 2.15 ng/g ± 0.06 ng/g

RSD 1.7%
International Units (IU) versus SI

- IU are arbitrary units defined by a batch of biological reference material
- The batch has been defined by the WHO as an International Standard (IS) for a particular biological
- These IS/RMs have a limited life time and need regularly to be replaced by a new IS, defining new IU for the same biological
- The magnitude of the IU defined by successive IS/RMs differ and are not comparable
- The measurand is defined on the basis of what it does in the human body and not on the basis of what it is
- SI traceable insulin would ensure better therapeutic drug characterization, cheaper production and consistent dose of insulin for diabetes patients world wide

(e.g. in the US ~26 million people suffer diabetes; 4 million taking daily insulin; estimated overall costs in 2007: 174 billion US dollars)
Reference Measurement Systems for Peptides and Proteins
(joint activities by BIPM, NIST, other NMIs, WHO/NI BSC, IFCC, pharmacopoeia, industry)

Diagnostic: Growth hormone deficiency
International Reference Reagent 3.1 µg/ampoule

Therapeutic: Carbohydrate Metabolism Control
1st International Standard 26 IU/mg

Blood pressure regulation

IGF-1
Insulin
Angiotensin
Theophylline
Driver- Gas Metrology Programme: Climate Change Gases

Radiative Forcing Components

<table>
<thead>
<tr>
<th>RF Terms</th>
<th>RF values (W m⁻²)</th>
<th>Spatial scale</th>
<th>LOSU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-lived greenhouse gases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>1.86 [1.49 to 1.83]</td>
<td>Global</td>
<td>High</td>
</tr>
<tr>
<td>CH₄</td>
<td>0.48 [0.43 to 0.53]</td>
<td>Global</td>
<td>High</td>
</tr>
<tr>
<td>N₂O</td>
<td>0.16 [0.14 to 0.18]</td>
<td>Global</td>
<td>High</td>
</tr>
<tr>
<td>Halocarbons</td>
<td>0.34 [0.31 to 0.37]</td>
<td>Global</td>
<td>High</td>
</tr>
<tr>
<td>Stratospheric water vapour from CH₄</td>
<td></td>
<td>Continental</td>
<td>Low</td>
</tr>
<tr>
<td>Surface albedo</td>
<td></td>
<td>Global</td>
<td>Low</td>
</tr>
<tr>
<td>Black carbon on snow</td>
<td></td>
<td>Continental</td>
<td>Low</td>
</tr>
<tr>
<td>Total aerosol</td>
<td></td>
<td>Continental</td>
<td>Low</td>
</tr>
<tr>
<td>Direct effect</td>
<td></td>
<td>Continental</td>
<td>Low</td>
</tr>
<tr>
<td>Cloud albedo effect</td>
<td></td>
<td>Continental</td>
<td>Low</td>
</tr>
<tr>
<td>Linear contrails</td>
<td></td>
<td>Continental</td>
<td>Low</td>
</tr>
<tr>
<td>Solar irradiance</td>
<td></td>
<td>Global</td>
<td>Low</td>
</tr>
<tr>
<td>Total net anthropogenic</td>
<td>1.6 [0.6 to 2.4]</td>
<td>Global</td>
<td>Low</td>
</tr>
</tbody>
</table>

- **CO₂, CH₄, N₂O:**
- **Halocarbons:**
- **Water vapour:**
- **N₂O:**
- **O₂:**
- **Ozone:**
- **VOCs:**
- **NF₃:**

Quantification & Control
CCQM-P41, Methane 1.8 \(\mu \text{mol/mol} \) (2003)

1.7 % difference from gravimetric value

WMO scale is being revised
Joint Committee on Traceability in Laboratory Medicine - JCTLM

Principal promotors
- CIPM/BIPM
- IFCC
- ILAC

Supported by
- WHO
- Regulators (FDA, EC, Japan)
- CRM producers (NIST, IRMM, a.o.)
- Reference laboratories (CDC, DGKS, etc.)
- PT and QA organisations (CAP, EQA, etc.)
- Written Standards (NCCLS, JCCLS, ISO)
- IVD industry (ADVAMED, EDMA, JARC)
- Other stakeholders

By courtesy of RELA-IFCC
DGKL-RFB
EQAS 2010
JCTLM WG 1 Measurand/Analyte-Based Review Teams

Chair: Willie May, NIST and Heinz Schimmel, IRMM

<table>
<thead>
<tr>
<th>Measurand/Analyte</th>
<th>Team Lead</th>
<th>Organization</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coagulation Factors</td>
<td>Elaine Gray</td>
<td>NIBSC</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Drugs</td>
<td>Andre Henrion</td>
<td>PTB</td>
<td>Germany</td>
</tr>
<tr>
<td>Electrolytes/Blood Gases</td>
<td>Brigitte Toussaint</td>
<td>IRMM</td>
<td>European Union</td>
</tr>
<tr>
<td>Enzymes</td>
<td>Mauro Panteghini</td>
<td>University of Milan</td>
<td>Italy</td>
</tr>
<tr>
<td>Metabolites/Substrates</td>
<td>Michael Welch</td>
<td>NIST</td>
<td>United States</td>
</tr>
<tr>
<td>Nucleic Acids</td>
<td>Helen Parkes</td>
<td>LGC</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Non-Peptide Hormones</td>
<td>Heinz Schimmel</td>
<td>IRMM</td>
<td>European Union</td>
</tr>
<tr>
<td>Proteins</td>
<td>David Bunk</td>
<td>NIST</td>
<td>United States</td>
</tr>
<tr>
<td>Blood Groupings</td>
<td>Susan Thorpe</td>
<td>NIBSC</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Microbial Serology</td>
<td>Claude Giroud</td>
<td>Bio-Rad Laboratories</td>
<td>United States</td>
</tr>
<tr>
<td>Vitamins</td>
<td>Katherine Sharpless</td>
<td>NIST</td>
<td>United States</td>
</tr>
<tr>
<td>Non-electrolyte Metals</td>
<td>Lee Yu</td>
<td>NIST</td>
<td>United States</td>
</tr>
<tr>
<td>Blood cell counting</td>
<td>Lili Wang</td>
<td>NIST</td>
<td>United States</td>
</tr>
<tr>
<td>Quality System</td>
<td>Craig M Jackson</td>
<td>HDC</td>
<td>United States</td>
</tr>
</tbody>
</table>

Review Teams established with worldwide representation from Laboratory Accreditation Organizations, National Metrology Institutes, Professional Societies, and IVD Industry in order to facilitate a fair and transparent review process.
CCQM workshops and other relevant workshops

- “Pharma and Bio Pharma Workshop”, December 2008 (in cooperation with USP, NIBSC, multinational pharmaceutical industry, regulators (EDQM), clinical chemistry/hospitals)
- “Metrology for Forensics”, April 2010 (regional networks of Forensics Sciences Institutes, police organizations and accreditors)
- “Metrology and the Need for Reliable Traceable Microbiological Measurements to Ensure Food Quality and Safety”, April 2011 (APEC, IDF, multinational food industries, regulators, CRM producers, PT providers, testing laboratories, standardization bodies, a.o.)
- BIPM “Physiological Quantities and SI Units”, Nov. 2009, BIPM (WHO International standards and International Units)
- BIPM “Metrology at the nanoscale”, February 2010 at the BIPM (nanobiotechnology, toxicological testing, personalized medicine, aerosols)
CCQM-K61
Quantitation of a linearised plasmid DNA

The graph shows the degrees of equivalence between participant results and KCRV. Error bars show uncertainties at $k=2$ or (for NMIA) the same level of confidence assuming a lognormal distribution.

The graph shows the degrees of equivalence between participant results and KCRV. Error bars show uncertainties at $k=2$ or (for NMIA) the same level of confidence assuming a lognormal distribution.
CCQM meetings and other issues of concern

- CCQM Working Group workshops (addressing sector specific issues, technology and method/procedural issues)
- CCQM Working Group Joint meetings (addressing inter-disciplinary issues)
- “Study of Measurement Service and Comparison Needs for an International Measurement Infrastructure for the Biosciences and Biotechnology: Input for the BIPM Work Programme” (Marriott J., O’Connor G., Parkes H., LGC)
- International transportation of chemical samples
- Accreditation of CRM producers; Metrology in Chemistry (inter-)national Infrastructure
CCQM meetings and other issues of concern

- Availability of pure primary reference materials/calibrators, e.g. isotopes, complex organic compounds
- Availability of essential complementary measurement technologies, like reactors for Neutron or photon Activation Analysis, Glow discharge Mass spectrometry, coulometry, etc.
- Measurement Uncertainty, statistics and Degrees of Equivalence
- Isotope ratio measurements of enriched and natural silicon
- “Mise-en-pratique” for the realization of the mole
- Counting/enumeration to be included in the SI brochure
THANK YOU

Acknowledgment
All NMI's, DI's and other international organizations cooperating with the BIPM and the CCQM

www.bipm.org