Consideration of a Global Vertical Reference System (GVRS) in the IERS Conventions

Johannes Ihde

Federal Agency for Cartography and Geodesy (BKG)

Chair of IAG ICP1.2 (2003-2007)
Vertical Reference Frames

IERS Workshop on Convention Sevres
September 20-21, 2007
IAG ICP1.2 Vertical Reference Frames
(2003 – 2007)
(Jointly by Commissions 1 and 2)

Main objectives of ICP1.2
• provide the fundamentals for the installation of a unified global vertical reference frame and
• study the consistent modelling of both, geometric and gravimetric parameters for GVRS.
Consideration of a Global Vertical Reference System (GVRS) in the IERS Conventions

Outline

I. Status and Results of IAG ICP1.2 VRF

II. GVRS Definition

III. Realization of Vertical Reference Frames (VRF)

IV. Permanent Tide

V. Numerical Standards

VI. Conclusions
I. Status and Results of IAG ICP 1.2

- Final report of ICP1.2 with conclusions for continuation
- Draft Conventions for the Definition and Realization of a Conventional Vertical Reference System (CVRS)

- Draft CVRS conventions are
 - a general concept for the definition and realization of a GVRS
 - aligned to the IERS 2003 conventions structure and philosophy,
 - uses parts of the IERS 2003 conventions.

- ICP1.2 is recognizing the need for conventions for the definition and realization of an absolute gravity reference system (IGSN71 - IAG WG in preparation).
Contents of the Draft Conventions for the Definition and Realization of a CVRS

Scope

Normative References
1. General Definitions and Numerical Standards
 1.1 Permanent Tide
 1.2 Numerical Standards
2. Conventional Vertical Reference System and Frame (CVRS, CVRF)
 2.1 Concepts and Terminology
 2.1.1 Basic Concepts
 2.1.2 International Vertical Reference System (IVRS)
 2.1.3 The Realization of the IVRS – The International Vertical Reference Frame (IVRF)
 2.2 IVRF Products

3. Unification of VRF - Relationships between IVRS, Regional, and Local VRS
 3.1 Continental and Regional VRF
 3.2 Chart datums
 3.3 General Relationships
Deficiencies

• Establishment of an information system describing the various regional VRS and their relations to an GVRS.

• Clarifying the relationships between an GVRS and the ITRS: Basic relations between ITRS and GVRS conventions, parameters, realization, models, reductions).
II. GVRS Definition

The International Vertical Reference System (IVRS/GVRS) definition fulfils the following conventions:

1. The vertical datum is defined as the equipotential surface for which the Earth gravity field potential is constant:

 \[W_0 = \text{const.} \]

 (The vertical datum defines the relationship of the physical heights to the Earth body. Earth gravity field potential \(W_0 \) shall be conventional – realized by a conventional value.)

2. The unit of length is the meter (SI). The unit of time is the second (SI). This scale is consistent with the TCG time coordinate for a geocentric local frame, in agreement with IAU and IUGG (1991) resolutions. This is obtained by appropriate relativistic modelling.
3. The vertical coordinates are the differences $-\Delta W_P$ between the potential W_P of the Earth gravity field at the considered points P and the potential of the CVRS conventional zero level W_0. The potential difference $-\Delta W_P$ is also designated as geopotential number c_P:

$$-\Delta W_P = c_P = W_0 - W_P.$$

The potential difference can directly be derived by levelling in combination with gravity reductions, or indirectly by applying the disturbance potential in connection with geodetic space observations

$$W_P = U_P + T_P.$$

4. The CVRS is a zero tidal system, in agreement with the IAG Resolution No 16 adopted in Hamburg in 1983.

(A no-net-rotation condition is no necessary)
III. Realization of Vertical Reference Frames (VRF)

Two possible procedures:

\[W_p = W_0 - c_p \quad \text{(levelling)} \quad \text{from an adjustment of a levelling network} \]

(only on continents)

\[W_p = U_p + T_p \quad \text{(BVP)} \quad \text{from a new GGM (EGM07, or a combined CHAMP/GRACE models (CG01C))} \]

(general global)

\[\zeta = \frac{T_p}{\gamma_Q} = \frac{W_p - U_p}{\gamma_Q} \]

and GPS heights \(h_p \)

\[H_n = h_p - \zeta \]
Realization of a Global Vertical Reference System

- GVRF recommendations

• A global network of stations with geocentric coordinates in ITRS (chapter 4) and geopotential numbers referred to a global gravity model (GGM), which has to be geocentric

• The GGM for GVRS shall conventional (CGGM)

• ITRF and CGGM has to be based on a set of consistent conventional numerical standards (chapter 1.2).

• The GVRS level is realized by a conventional W_0 value.

• Changes of the vertical components can be observed with respect to the conventional GVRS level by relevant observation techniques: GNSS, tide gauges, permanent (SG) and periodical (AG) gravity stations.
IVRF - an integrated network

Stations of IGS TIGA-PP and GGP (and absolute gravimeter)

- GPS/tide gauge stations
- super-conducting gravimeter stations
IV. Permanent tide

Vertical components and tidal systems

<table>
<thead>
<tr>
<th>gravity</th>
<th>geoid</th>
<th>levelling height</th>
<th>altimetry</th>
<th>mean sea level</th>
<th>position</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g/\Delta g$</td>
<td>W/N</td>
<td>ΔH</td>
<td>h</td>
<td>msl</td>
<td>X/h</td>
</tr>
</tbody>
</table>

Mean tidal system

Mean/zero crust

(Stokes is not valid if masses outside the Earth surface)

Δg_m N_m ΔH_m
Relation to N_m for oceanographic studies h_{msl}

Zero tidal system

Mean/zero crust

(Recommended by IAG Res. No. 16, 1983)

Δg_z N_z ΔH_z
Δg_n N_n
(EGG97)
(EGM96)
Relation to N_n for oceanographic studies h_{msl}

Tide-free system

Tide-free crust

(unobservable, far away from the real earth shape – there is no reason for the non tidal/tide-free concept)

Δg_n N_n
(EGM96)
X_n
ITRFxx, ETRS89
Figure 1.2. Treatment of observations for tidal effects in the geopotential (see Chapter 6).
V. Numerical Standards

Conflict:
In IERS 2003 conventions are two sets of parameters of a level ellipsoid in use: In chapter 1.2 numerical standards and in chapter 4. the GRS 80.

Geodetic Reference System 1980 (GRS 80) defines major parameters for geodetic reference systems related to a level ellipsoid

• Agreed by IUGG, IAG and IAU.
• Recommended by IAG for the conversion of ITRF Cartesian coordinates to ellipsoidal coordinates.
• Worldwide use for many map projections and million of coordinates.
Numerical Standards

• At the IUGG General Assembly 1991 in Vienna new values for the geocentric gravitational constant GM and the semi-major axis a of the level ellipsoid were recommended.

• Since this time these parameters have been used in global gravity models e.g. EGM96
Numerical Standards

IERS 2003 conventions

- defines numerical standards (chapter 1.2)

- recommends in chapters 4.1.4 and 4.2.5 recommended the use of GRS80 for transformations

- For global gravity models, various inconsistent values are used in practice

- The gravitational constants GM of GRS80 and IERS 2003 conventions differ in the metric system by about 0.9 m. The semi-major axis of both standards differs by 0.4 m.
Sets of conventional parameters (of level ellipsoids)

<table>
<thead>
<tr>
<th>Ellipsoid</th>
<th>Semi-major axis a in m</th>
<th>Flattening f^{-1}</th>
<th>Geocentric gravitational constant GM in $10^8 m^3s^{-2}$</th>
<th>U_0/W_0 in $m^2 \cdot s^{-2}$</th>
<th>γ_0 in $m \cdot s^{-2}$</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int. Ell. 1930 (Hayford)</td>
<td>6 378 388</td>
<td>297</td>
<td>3 986 329</td>
<td></td>
<td></td>
<td>IERS 2003 Recom. in chapters 4.1.4 and 4.2.5</td>
</tr>
<tr>
<td>GRS 67</td>
<td>6 378 160</td>
<td>298.247</td>
<td>3 986 030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRS 80</td>
<td>6 378 137</td>
<td>298.257222101</td>
<td>3 986 005</td>
<td>6 263 6860.850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WGS 84</td>
<td>6 378 137</td>
<td>298.25722356</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IUGG 91</td>
<td>6 378 136.3 0.5</td>
<td>3 986 004.41 0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IERS 2003 Conventions</td>
<td>6 378 136.6 0.1</td>
<td>298.25642 0.00001</td>
<td>3 986 004.418 0.008</td>
<td>6 263 6856.0 0.5</td>
<td>(9.78032 666)</td>
<td>IERS 2003 Num. stand. chapter 1.2</td>
</tr>
<tr>
<td>(zero tide)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGM96 (tide free)</td>
<td>6 378 136.3</td>
<td></td>
<td>3 986 004.415</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EIGEN CG01C (tide free)</td>
<td>6 378 136.46</td>
<td></td>
<td>3 986 004.415</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP1.2, DGFI</td>
<td></td>
<td></td>
<td></td>
<td>62 636 853,4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Angular velocity of the Earth rotation ω

| $7 292 115$ | 10^{-11} rad s^{-1} |
IAG ICP1.2 recommends:

• The IAG needs to remove this inconsistency in view to the development of integrated geodetic applications (cf., Hipkin, 2002).

• Investigations if there is a need change the W_0 value?
Should the W_0 value be changed?

The consequences have to be considered!

Carl Calvert, EUREF 2007
VI. Conclusions

- Realization of a GVRS is mainly a combination of different products of existing IAG services

- IAG has to clarify inconsistencies in the numerical parameters and data reduction for integrated geodetic applications in the IERS Conventions

- Draft GVRS conventions are available for consideration

- Where is the right place for GVRS conventions – IERS conventions?

- Continuation of work – proposed is an IAG Inter-Commission Working Group for GVRS

- Development of parts of IERS conventions to an International Standard? (numerical standards)