Note on the decay correction required for a radionuclide ^{N}X in presence of its metastable state $^{N}X_{m}$.

C. Michotte, Bureau International des Poids et Mesures, F-92 312 Sèvres Cedex.

INTRODUCTION

When measuring a radioactive source composed of a radionuclide ^{N}X together with its metastable state $^{N}X_{m}$ decaying to the ground state, special attention should be given to the decay correction. Indeed the activity A of the radionuclide ^{N}X is the summation of the usual decaying activity A_{D} of the initial ^{N}X with the growing activity A_{G} of the ^{N}X coming from the disintegration of the metastable state to the ground state.

If t_{0} is the time of production of the source (which is often not known by the user), the usual decay correction $A_{D}(t) = A_{D,0} \exp[-(t-t_{0})/\tau]$ allows an easy calculation of the correction D for any time difference $\Delta t = t_{2} - t_{1}$:

$$A_{D}(t_{2}) = A_{D}(t_{1}) \exp[-(t_{2}-t_{0})/\tau] / \exp[-(t_{1}-t_{0})/\tau] = A_{D}(t_{1}) \exp[-\Delta t/\tau] = A_{D}(t_{1}) D(t_{1}, t_{2})$$ (1).

On the other hand, the correction for the growing activity of ^{N}X coming from the metastable state is given by

$$A_{G}(t) = A_{m,0} \{ \exp[-(t-t_{0})/\tau_{m}] - \exp[-(t-t_{0})/\tau] \} \tau_{m} / (\tau_{m}-\tau)$$ (2),

where $A_{m,0}$ is the activity of the metastable state at the time t_{0} [1]. The correction for a time difference Δt is then

$$A_{G}(t_{2}) = A_{G}(t_{1}) \{ \exp[-(t_{2}-t_{0})/\tau_{m}] - \exp[-(t_{2}-t_{0})/\tau] \} / \{ \exp[-(t_{1}-t_{0})/\tau_{m}] - \exp[-(t_{1}-t_{0})/\tau] \}
= A_{G}(t_{1}) G(t_{0}, t_{1}, t_{2})$$ (3).

Depending on the respective half-lives τ and τ_{m} of both states, the equilibrium (constant activity ratio) between $^{N}X_{m}$ and the daughter ^{N}X may or may not be reached:

- In case of τ smaller than τ_{m} equilibrium is reached after a transition period. At equilibrium, the activity of the daughter ^{N}X can be deduced from the activity of the parent $^{N}X_{m}$ and, in consequence, the calculation of $G(t_{0}, t_{1}, t_{2})$ is avoided. Indeed, it can be seen from (2) that when $(t-t_{0}) >> \tau$, the second term $\exp[-(t-t_{0})/\tau]$ tends to zero faster than the first term and, in consequence, the daughter ^{N}X is decaying following the simple exponential law with the half-life of the metastable state.

- Obviously, in case of τ larger than τ_{m} equilibrium cannot be reached and the time t_{0} of the source production is needed to calculate $G(t_{0}, t_{1}, t_{2})$. In the extreme case of $\tau >> \tau_{m}$, the metastable state rapidly decays to the ground state and the source, then composed of pure ^{N}X, decays normally following the simple exponential law.

In this short report, it is demonstrated that, perhaps surprisingly, the decay correction for the total activity $A = A_{D} + A_{G}$ is independent of t_{0}. No conditions on the respective half-lifes of ^{N}X and $^{N}X_{m}$ are imposed.
DEMONSTRATION

By definition, \(\lambda = 1/\tau \) and \(\lambda_m = 1/\tau_m \).

If \(A_m(t) \) is the activity of \(N^X^m \) and the ratio \(R(t) = A_m(t) / A(t) = A_m(t) / (A_D(t) + A_G(t)) \), we have:

\[
\begin{align*}
A_D(t) &= A_{D,0} e^{-\lambda (t-t_0)} \\
A_m(t) &= A_{m,0} e^{-\lambda_m (t-t_0)} \\
A_G(t) &= B A_{m,0} e^{-\lambda_m (t-t_0)} \left(\frac{\lambda}{\lambda - \lambda_m} (1 - e^{(\lambda_m - \lambda)(t-t_0)}) \right)
\end{align*}
\]

(4)

where the index 0 relates to the time \(t_0 \) of production of the source. The last equation is the general relation calculating the activity of a daughter radionuclide from the activity of the parent [1] and is equivalent to equation (2). The factor \(B \) corresponds to a possible branching ratio when the metastable state decays only partially to the ground state.

If the quantities \(A \) and \(R \) are known at a time \(t_1 \), the total activity \(A \) at any time \(t_2 \) is given by \(A(t_2) = A(t_2) + A_G(t_2) \):

\[
\begin{align*}
A(t_2) &= A_D(t_1) e^{-\lambda \Delta t} + B A_m(t_1) e^{-\lambda_m \Delta t} \left(\frac{\lambda}{\lambda - \lambda_m} (1 - e^{(\lambda_m - \lambda)(t_2-t_0)}) \right) \\
&= (A(t_1) - A_G(t_1)) e^{-\lambda \Delta t} \\
&+ BR(t_1) A(t_1) \left(\frac{\lambda}{\lambda - \lambda_m} e^{-\lambda_m \Delta t} (1 - e^{(\lambda_m - \lambda)(t_2-t_0)}) \right) \\
&= A(t_1) e^{-\lambda \Delta t} - BR(t_1) A(t_1) \left(\frac{\lambda}{\lambda - \lambda_m} (1 - e^{(\lambda_m - \lambda)(t_2-t_0)}) \right) e^{-\lambda \Delta t} \\
&+ BR(t_1) A(t_1) \left(\frac{\lambda}{\lambda - \lambda_m} (e^{-\lambda_m \Delta t} - e^{-\lambda \Delta t}) e^{(\lambda_m - \lambda)(t_2-t_0)}) \right) \\
&= A(t_1) \left[e^{-\lambda \Delta t} + BR(t_1) \left(\frac{\lambda}{\lambda - \lambda_m} (e^{-\lambda_m \Delta t} - e^{-\lambda \Delta t}) \right) \right] \\
&= A(t_1) C(t_1, t_2, R(t_1))
\end{align*}
\]

(5)

Expression (5) shows a first term corresponding to the simple case of pure \(N^X \) decay. The second term may reach non-negligible values as shown in the numerical examples below. This term is independent of \(t_0 \), showing the advantage of using (5) to calculate the decay correction \(C \) for the total activity \(A \), instead of calculating the decay for the initial \(N^X \) only and evaluating a correction for the contribution of the \(N^X^m \) decay.
In conclusion, when measuring a radioactive source composed of a radionuclide ^{N}X together with its metastable state $^{N}X^{m}$ decaying to the ground state with a branching ratio B, the decay correction for the total activity of ^{N}X is given by $C(t_1, t_2, R(t_1))$ for any time difference, i.e. whether equilibrium is reached or not. This expression is independent of the time of source production and is valid for any values of τ and τ_m. Finally, given that the measured quantity is usually the total activity of ^{N}X, i.e. A_D and A_G are generally not determined independently, equation (5) is particularly convenient.

NUMERICAL EXAMPLES

1. 133Xe ($\lambda = 0.1322 \text{ d}^{-1}$) containing some 133Xem ($\lambda_m = 0.3168 \text{ d}^{-1}$):

 if $R(t_1) = 10^{-3}$ and $\Delta t = -10 \text{ d}$, the ratio of the second to the first term in (5) is equal to 3.8×10^{-3}.

2. 177Lu ($\lambda = 0.1043 \text{ d}^{-1}$) containing some 177Lum ($\lambda_m = 4.321 \times 10^{-3} \text{ d}^{-1}$), $B = 0.217$:

 if $R(t_1) = 10^{-3}$ and $\Delta t = 20 \text{ d}$, the ratio of the second to the first term in (5) is equal to 1.5×10^{-3}.