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Abstract 

There is a widespread belief that covariances - at least 
for practical applications - are too intricate to evaluate 
and have only effects so marginal that they can normally 
be neglected without danger. In order to counter this 
opinion, we show for two specific cases, which are 
successive differences and smoothing of originally 
uncorrelated data, that the evaluation of the respective 
variances, covariances and correlation factors is indeed 
very simple. A potentially useful application to the 
accurate measurement of the masses of radioactive sources 
by the pycnometer method is sketched. 

1. Introduction 

Whereas the evaluation of variances has become common practice in 
the handling of experimental data, since they are needed for indicating 
the uncertainty of measurements, covariances are still considered by many 
engineers and even physicists as quantities about which they normally 
will not have much to worry. In addition, since covariances have the 
reputation of being difficult to handle and to use, they are often even 
not mentioned - as few people look for unnecessary complications. 

Such a practice causes little or no "damage w~en applied to results 
of measurements which, for good reasons, may be considered independent of 
each other, but there are obviously many others, and for them neglecting 
a correlation can lead to serious errors. 

It is the purpose of this note to illustrate by two examples which, 
although very simple, are still of a certain practical interest, how the 
respective variances and covariances can be readily determined. It will 
turn out that both examples, which at first sight seem to have little 
in common, lead to nearly identical formulae (at least for a special set 
of weighting factors). 
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2. Successive differences 

Let us start with a series of uncorrelated results xl ± 01' x2 ± 02' 
•.. , xN ± ON' where the quantities ok denote the corresponding estimated 
(sample) standard deviations, and with N »1. From these data we first 
form the quantities 

with k ;;. 1 , (1) 

i.e. the successive differences of the original measurements. We can now 
go on forming differences of higher order, for instance 

2Dk 1Dk - 1Dk+1 (xk - xk+1) - (xk+1 - xk+2) 

xk - 2xk+1 + xk+2 , 

and likewise (2) 

3Dk 2Dk - 2Dk+1 xk - 3xk+1 + 3xk+2 - xk+3 , 

4Dk 3Dk - 3Dk+1 xk - 4xk+1 + 6xk+2 - 4xk+3 + xk+4 

etc. 

This suggests that the general formula for differences of order n is( 
given by 

This basic expression 
Starting from (3), we 
the definition n+1Dk 

n 

n+1Dk L (-l)j 
j=O 
n 

L (-l)j 
j=l 

n+1 

L (-l)j 
j=O 

as expected. 

n 

L (-l)j (j) xk+j 
j=O 

(3) 

can be readily proved by mathematical induction. 
evaluate the difference of order n+1 according to 
= nDk - nDk+1 and find 

n+1 
(~) xk+j - L (_1)j-1 (j~l) xk+j J 

j=l 
.' Pt," ...... \ ;1; 

[(~) + (j~ 1) ] xk+j + xk - (_l)n xk+n+1 J 

(n~l) 
J xk+j , for n ;;. 1 , 

We note that by means of the so-called Blissard calculus [lJ, where 
indices are treated like powers during all intermediate formal 
operations, eq. (3) could be simplified to nDk = xk(l-x)n, but no use 
will be made of this symbolic notation in what follows. 
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For the evaluation of the variances we take advantage of the fact that 
the original quantities xk are uncorrelated; simple error propagation 
then leads to 

n 

l: 
j=O 

( n)2 2 
j crk+j' 

In order to evaluate the covariances, we first form the sum 

n n 

l: (-l)j (j) xk+j + l: (-l)j (j) xk+r+j 
j=O j=O 

n+r 
l: [(-l)j (j) + (_l)j-r (j~r)J xk+j 

j=O 

Its variance is easily seen to be 

n+r 

l: 
j=O 

On the other hand, the definition of nSr also allows us to write 

n 

l: (I!) 2 2 + crk+j 
j=O 

J 

+ 

and hence, with (6), 

= 

n 

(_l)r L (j) (j~r) cr~+j • 
j=r 

n 

l: 
j=O 

(n) 2 2 2 C ( ) j O'k+r+j + ov ••• 

n+r 

l: 
j=r 

( n)2 2 j-r O'k+j + ••• , 

n+r 
l: [(j)2 + (j~r)2J cr~+j} 

~~ FO, ;Ii 

n+r 
l: [ ••• ] cr~+j} 

j=O 

(4) 

(5 ) 

(6 ) 

(7) 

(8 ) 
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Two special cases may be of interest, namely 

- for r > n: Cov (nDk' nDk+r) 0, 
(9) 

- for n: Cov (nDk' nDn+k) = (-l)n 2 r = an+k 

For the frequent situation where all initial data may be assumed to have 
the same precision, thus ~ = a, for any value of k, the relations (4) 
and (8) can be simplified. This is achieved by means of the identity 

n 

L (j) (j~r) 
j=r 

for 0 :>; r :>; n , 

which can be readily deduced from formulae given in [2J. 

We then obtain 

n 
Var (nDk) a2 L (~)2 (2n) a2 

J n 

and 
j=O 
n 

Cov (nDk' nDk+r) (_l)r a2 L (j) (j~r) (_l)r (2 n) a2 
n-r ' 

j=r 

independently of k. For numerical values see Table 1. 

Table 1 ,... Some numerical values for the variances and covariances 
successive differences (for data of equal precision) 

Cov (nDk, nDk+r)/a2 
n Var (nDk)/a2 

r = 1 r = 2 r = 3 r = 4 r = 5 

1 2 -1 ;J; ., ".," .~-\ 

2 6 -4 1 

3 20 -15 6 -1 

4 70 -56 28 -8 1 

5 252 -210 120 -45 10 -1 

6 924 -792 495 -220 66 -12 

(10) 

(11) 

(12) 

of 

r = 6 

1 
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It is also straightforward to evaluate the correlation coefficient, which 
is defined here by 

Substitution of (11) and (12) first leads to 

Since 

we then obtain 

Pn r , 

The simplest cases are 

- for r = 1: Pn 1 , 

- for r 2: Pn 2 , 

- for r = 3: Pn,3 

= 

(_l)r (~_~) 

2n (2n-1) (n+1) n ••• (n-r+1) 

(n+r) ••• (n+1) n! 
n(n-1) ••• (n-r+1) (2 n n) __________ _ 

(n+r) (n+r-1) ••• (n+1) 

n 

n+1 

r 
IT 

j=l 

n (n-1) 

(n+1) (n+2) 
n (n-1) 

n+1-j 

n+j 

(n-2) 

(n+1) (n+2) (n+3) 

For n »1 the limiting value of the correlation coefficient is thus 
(-l)r, as might have been expected." ., >, " 

(13) 

(15 ) 

We may note, in passing, that the differences nDk 
starting point for the evaluation of the variance 
xk' for instance by forming the quantity 

can also serve as a 
of the original series 

<nD~> 

where < ... ) denotes the mean for the sample of values xk available. 
The numerical value of the denominator can be found in Table 1. While 
n = 1 corresponds to the so-called Allan variance, the case n = 2 would 
lead to the alternative form 

N-2 

L (xk - 2 xk+1 + xk+2)2 
k=l 

6 (N - 2) 
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3. Repeated smoothings 

The smoothing of experimental data is a rather common, but also quite 
controversial, procedure: smoothed data may look much "better" to the 
naive eye, but this apparent improvement has been obtained at the price 
of irreversible systematic distortions. In what follows we shall study 
only one aspect of this deformation, and no doubt the simplest one, as 
it can be expressed in a quantitative way by traditional statistical 
concepts. It will turn out that the reduction of the variance is obtained 
at the price of increased correlation between the smoothed values. 

Smoothings can be performed in many ways. One of the most popular 
approaches, outlined in [3], consists of the local adjustment of a 
suitable polynomial. Apart from the general shortcomings mentioned above, 
this method suffers from the arbitrariness in choosing range and order of 
the polynomial. In addition, it leads to rather awkward numerical 
smoothing factors which re~uire extensive tabulations (for the correction 
of many errors in [3] see L4]*). The evaluation of variances and 
covariances of measured values that have been smoothed in this way is 
possible, but leads to cumbersome expressions which cannot be simplified 
in general. Therefore we shall not illustrate this approach here. 
Instead, there exists an alternative with a much simpler algebraic 
structure; the virtues of this so-called "binomial smoothing" have been 
well described recently in [5] to which we refer the interested reader 
for all details. f 

Our short presentation consists of two parts. We first develop a simple 
scheme for successive averages of adjacent values, and for this we can 
take advantage of the close analogy that exists with successive 
differences, the subject treated in the previous section. In a second 
step we shall establish the link with binomial smoothing. 

Let us again start with a series of uncorrelated measurements xl' x2 ' 
••• , xN' the respective variances af, ai, ... of which are supposed to be 
known. In close analogy with (1) successive mean values are formed, first 
from the original data with 

:'; 

and then similarly for "higher" averages (n ~ 2) 

1 
2 (n-1Yk + n-1Yk+1) • 

* We take this opportunity to correct a misprint in [4], where in 
Table 5, for p = 3 or 4 and m = 4, one should read iN = 2 220, 
instead of 2 200. 

(16) 



7 

When written more explicitly, this results in 

etc. 

1 
2Yk = 4 (Xk + 2Xk+1 + xk+2) 

1 
- (xk + 3xk+1 + 3xk+2 + xk+3) 
8 

1 
= - (xk + 4xk+1 + 6xk+2 + 4xk+3 + xk+4) , 

16 . 

It is easy to see that the general expression for the nth averaging is 

with variance 

1 n 
- - L (j) xk+j , 

2n j=O 

1 n 

L 
4n j=O 

(17) 

(18) 

Since (17) has essentially the same structure as (3), we can readily fake 
advantage of the previously established formula (12) for the covariance, 
with the result that 

For original data xk of equal precision Ok 
expressions 

1 
a2 Var (nYk) _ (2 n) 

n 
4n 

1 
Cov (nYk' nYk+r) .:::-. ~'(2 n ) 

n-r 
4n 

(19) 

a this leads to the simple 

and (20) 

:'Q (21) 0; . 

Likewise we now obtain for the correlation coefficient, with the help 
of (14), 

r 
IT 

j=l 

n+1-j 

n+j 
(22) 
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As schematically represented in the upper part of Fig. 1, each averaging 
process results in a "shift to the right". Hence, it is clearly not 
possible to consider all data nYk as smoothings of some original value 
x j • In order to reestablish this important link, we have to put for the 
smoothed values 

(23) 

as shown in the lower part of Fig. 1. With this labeling it is possible 
to consider mSk as the smoothed value, of order m, which corresponds to 
the original result xk. 

Since for a finite set of measurements xk ' with 1 ~ k ~ N, smoothed 
values mSk are only available for the range 

m+1 ~ k ~ N-m (24 ) 

various recipes have been proposed for handling the situation at the 
extremes. Perhaps the simplest prescription consists in taking, instead 
of mSk' the values based on the smoothing of the highest order available, 
i.e. (with oSk == xk) 

for 

and 

for N-m+1 ~ k ~ N • 

With the notation introduced in (23), the previous formulae (17), 
(18) and (19) now become 

Var 

Cov 

1 2m 
L (2jm) xk-m+j 

4m j=O 

1 2m 

L (2.m)2 (mSk) 
16m J 

j=O .' 

1 2m 

L (mSk' mSk+r) = 
16m j=r 

2 
Of-m+j 

fJl,I" ,-~. \ ;'1 

(2.m) (3-~) 2 
ak-m+j J 

For measurements xk of equal precision a, the relations (27) and 
(28) can be simplified to 

1 
Var (mSk) = _ (4m) a2 and m 2m 

16 

Cov (mSk' mSk+r) 
1 4m a2 = - (2m-r) , 

16m 

I 

(25) 

(26 ) 

(27) 

(28 ) 

(29 ) 

(30) 
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and for the correlation coefficient we find 

r 
IT 

j=l 

2m+l-j 

2m+j 
(31) 

These are the basic relations for the binomial smoothing filter. While 
(26) is equivalent to eq. 9 in [SJ, the expressions for the variance and 
the covariance seem to be new. 

original 
data 

first 
average 

second 
a:verage 

third 
average 

fourth 
average 

original 
data 

first 
smoothing 

second 
smoothing 

X\ /\ /\ /X\ ;X\ /X\ 
l
Y
\ )Y\ /Y\ /Y\ )\~ / 

2Y\ /\ )Y\ )Y\ /\ 
3\ /3\ /3Y\ /Y\ / 

4Y\ ;4Y\ )Y\ /4Y\ 

Fig. 1 - Schematic representation of the interdependencies between 
successive averaging processes, for the two schemes described 
in the text. Note, for instance, that 2SS' the second smoothed 
value of the original xS' is identical with 4Y3. 
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4. Note on a possible application 

Since smoothings are so commonly done (and mostly without the 
necessary precautions), there is no need here for a particular 
illustration. On the other hand, differences are less often formed and 
one might therefore suspect that the developments outlined in section 2 
are at most of theoretical interest. The practical example sketched in 
what follows will show that this is not the case. 

For any absolute measurement of the activity of radioactive substances, 
the mass of the source prepared for its determination has to be known 
accurately. The seemingly obvious approach would consist in measuring 
directly the mass of a source freshly deposited on an appropriate 
support, but this technique has been .completely abandoned for many years 
because the initial evaporation of a drop cannot be observed, and simple 
extrapolations to time zero are known to be biased. Therefore, all 
metrological laboratories nowadays use the "pycnometer method", in which 
the source mass (m) is obtained from the difference in the weight of the 
pycnometer (M) before and after deposition of the source, i.e. 

= with l~k~N. (32) 

This is completely analogous to (1) and it therefore follows that 
successive" masses mk and ~+1 are correlated. This must also apply to 

the actually measured quantity "specific activity", defined by f 

(33) 

where ak is the activity for source number k. Uncertainties may also be 
associated with ak. Since the measuring techniques, at least for small 
and moderate count rates, are assumed to be well under control, it is 
unlikely that the intrinsic measurement of ak will be responsible for a 
significant contribution to the total uncertainty; on the other hand, 
possible inhomogeneities in the solution, which are very difficult 
to detect, cannot be safely excluded, but they would produce random 
deviations with no correlation between the sources. The different 
statistical behaviour of the uncertainties according to their origin 
should make it possible to separate.,t\tem., essentially by forming 
combinations of values of zk with their immedlate or remote "neighbours" 
zk'. The technical details of the suggested approach to detect in this 
way the uncertainty component due to weighing will be given in a 
subsequent report. 
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