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Abstract 

A convergent power series y = f(x) can be reversed to an 
equivalent series of the form x = g(y) by the use of 
well-established formulae which connect the coefficients 
of the corresponding developments. Some simple observations 
on symmetries are discussed which appear when the formulae 
are expressed in the form of recursions for the 
coefficients. Similarly, the respective effects of sign 
changes are described and illustrated by examples. 

1. Introduction 

Let us consider a convergent power series of the type 

The corresponding reversed series, with x expressed in powers of 
y = Y - a, can be written as 

x 

(1) 

(2) 

where the problem consists in finding the new coefficients in terms of 
the old ones. Elementary, but tedious, rearrangements yield for the first 
few of them the expressions (for a f 0) 

"I ~,. ,,,. > 

A l/a , 

B = -b/a 3 

C = (2b 2 - ac)/a 5 (3) 

D (5abc - a 2b - 5b 3)/a 7 

E (6a 2bd + 3a 2c 2 + 14b 4 - a 3e - 21ab 2c)/a 9 , 

The first seven coefficients (written in this notation) can be readily 
found in tables of mathematical formulae (e.g. in [lJ or [2J). 



Z 

By an appropriate change of variables it is always possible to achieve 
a = 1 and a = 0, which simplifies the expressions. In addition, the 
problem of the changing signs can be avoided by writing the original 
formulae (1) and (Z) in a slightly different (but equivalent) way, namely 
by putting 

co 

y = x (1 - I bn xn) , (4) 

n=l 

and for the reversed series 

co 

x y (1 - I C n yn) . (5) 
n=l 

The previous relations (3) then appear in the simpler form 

- cl b1 

- Cz bZ + Zb 2 
1 

- c3 b 3 + 5b1bZ + 5bf ' 

(6 ) 

- c4 b4 + 6b 1 b3 + 3b 2 + Z ZlbfbZ + 14bi ' 

Expressions for the coefficients cn up to order 1Z have been published 
a long time ago by Van Orstrand [3]. The only (very minor) difference 
lies in our choice of the sign of cn (which is opposite to the convention 
used in [3]); the reason for this apparently unmotivated change will 
become obvious at a later stage (section Z). 

It is possible to give a 
question, although in an 
Accordin~ to [4] we have 

- c n 

with the conditions that 

general expression for the coefficients in 
operational rather than in a very explicit form. 

k 

k! n k. 
IT b. J 

IT k .! j=l J 
j J 

and 

n • 

(7) 

(8) 
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The numbers k. are non-negative integers and the range of the summation, 
denoted symbolically by <k j > ' extends over all p(n) partitions of n 
(see for instance [2]). Hence c4' for example, includes only 5 terms, 
whereas for cIO we have already p(IO) = 42. An explicit tabulation of the 
full expressions for these coefficients therefore rapidly becomes a 
rather cumbersome task. 

We may mention that P. Carre (BIPM) has recently set up a computer 
program which evaluates and prints out the explicit form of (7) for a 
given order n, i.e. the complete sequence of products of coefficients b j , 
with the appropriate factors and powers. In Table I we reproduce for 
illustration the set corresponding to -cIO' 

Table I - Computer outprint of the formulae for the coefficients of 
a reversed power series. The example chosen gives the 
expression for -cIO (by courtesy of the author). 

B<1 0) 
12 * B(1) * B(9) 
12 * 8(2) * 8(8) 
12 * 8(3) * 8(7) 
12 * B(4) * 8(6) 

6 * B(5)**2 
78 *·B(1)**2 * B(8) 

156 * B(l) * B(2) * B(7) 
156 * B(1) * B(3) * B(6) 
156 * B(l) * B(4) * B(5) 
78 * B(2)**2 * B(6) 

156 * B(2) * B(3) * 8(5) 
78 * 8(2) * B~4)**2 
78 * 8(3)**2 * 8(4) 

364 * B(1)**3 * B(7) 
1092 * 8(1)**2 * B(2) * B(6) 
1092 * B(1)**2 * B(3) * B(5) 

546 * B(1)**2 * B(4)**2 
1092 * B(l) *.8(2)**2 * B(5) 
2184 * 8(1) * B(2) * B(3) * 8(4) 

364 * 8(1) * B(3)**3 
364 * 8(2)**3 * B(4) 
546 * B(2)**2 *B(3)**2 

1365 * 8(1)**4 * B(6) 
5460 * B(1)**3·. ~~2) * e~5) 
5460 * 8(1)**3 * 8(3) * g(4) 
8190 * B(1)**2 * B(2)**2 * B(4) 
8190 * B(1)**2 * 8(2) * 8(3)**2 
5460 * B(l) * B(2)**3 * B(3) 

27.3 * B(2)**5 
4368 * B(1)**5 * 8(5) 

21840 * B(1)**4 * B(2) * B(4) 
10920 * 8(1)**4 * 8(3)**2 
43680 * B(1)**3 * 8(2)**2 * B(3) 
10920 * 8(1)**2 * 8(2)**4 
12376 * B(1)**6 * 8(4) 
74256 * 8(1)**5 * 8(2) * B(3) 
61880 * B(1)**4 * B(2)**3 
31824 * B(1)**7 * B(3) 

111384 * B(1)**6 * B(2)**2 
75582 * B(1)**8 * B(2) 
16796 * B(1)**10 
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It will be obvious that such an approach (which is practically only 
limited by the length of the paper) is a most efficient method of 
obtaining reliable formulae for coefficients beyond those given in 
Van Orstrand's table (which was found to be free of misprints). 
Otherwise, the danger of errors creeping into a traditional evaluation 
"by hand" would no doubt prevent the safe use of higher coefficients. 

After these introductory remarks we should like to make some simple 
observations. 

2. Emergence of a strange symmetry 

For evaluating numerically the new set of coefficients c n ' the 
relations given in (6) or (for Cs to c12) those listed in [3] can be 
used. However, this is clearly not the only possible approach, and 
perhaps not the simplest either, for this depends on the explicit form 
of the coefficients (which may be available in the form of fractions). 
In this context it will be useful to remember the similar situation which 
we have studied recently for the square root of a power series [S], where 
it turned out that an explicit expression in terms of the original 
coefficients is rather complicated (eq. 12), whereas a general recursion 
formula which makes use of all the new coefficients already determined 
(eq. la) is much simpler. It therefore seems worthwhile to check this 
possibility. f 

If we modify (6) by replacing successively on the right-hand side of 
a relation for -cn all the coefficients bj by their equivalents expressed 
in terms of Cj' except for bn , we arrive, after some elementary 
rearrangements, at the expressions 

- cl b1 

- c2 b 2 + 2c 2 
1 

- c3 b3 + SC1c 2 + Sc 3 1 

(9 ) 

- c4 b4 + 6c1c3 + 3c~.+ ~'21cfc2'; 14c 4 
1 , 

This set of equations looks strikingly similar to (6), and by forming 
bn + cn we find the surprising relations 

-(b 1+c1) o = 0, 

-(b2+c2) = 
(la) 

-(b3+c3) 
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It therefore seems that in any expression of cn ' as given either by (6) 
or by (9), we can simply replace all the coefficients bjbY Cj (for 
j < n) and obtain thereby new valid relations, which are just the 
required recursion formulae for cn • This is a rather surprising 
observation - at least at first sight. 

At second sight, however, the mystery is quickly resolved. In view of the 
complete symmetry between the forms expressed by (4) and (5) it is 
obvious that a reversion of (5) into (4) would give relations identical 
with those in (6), but with bj everywhere replaced by cr Thus (after 
changing sides of cn and bn) we find 

- b l cl 

- b2 = c2 + 2c 2 
I 

- b3 = c3 + 5clc2 + 5c 3 
I 

- b4 c4 + 6c1c3 + 3c 2 + 2 21cfc 2 + 14ci ' 

but this set is clearly identical* with (9). Hence, the surmised rule for 
replacing the coefficients in (6) is generally valid, and so are the 
identities given in (10). 

Although the new set of equations (9) is not of a simpler structure than 
the original one (6), it allows additional checks to be performed, and 
this may be very useful in lengthy numerical evaluations. 

3. A similar situation 

In retrospect, it can be easily seen that the above considerations 
could have been applied to the inversion of a power series as well. 
Indeed, if we start with a series of the form 

8 (11) 

the first coefficients bn of the inverted series 

1/8 (12) 

* We may note that this is only so because of the sign convention chosen 
in (5). 



6 

are known [S] to be given by 

- b1 = a1 

- b2 a2 + a 2 
1 

- b3 = a3 + 2a1a2 + a 3 
1 

(13) 

- b4 a4 + 2a1a3 + a 2 + 2 3ara2 + a 4 
1 

Since a double inversion leaves S invariant, we can simply exchange in 
(13) all aj by b j , and this then leads (after changing sides of an and 
bn) to the relat10ns 

- b1 a1 

- b2 a2 + b 2 
1 

b 3 
(14) 

- b3 a3 + 2b 1b2 + 1 

- b4 a4 + 2b 1b3 + b 2 + 2 3brb2 + b 4 
1 

These recursion formulae for the coefficients b j exhibit the same 
"symmetries" (compared to (13» as those we have observed above for the 
reversion problem, and they are obviously there for the same reason. 

4. The case of a geometric series 

Let ,!S come back to the reversion "problen( described in the 
introduction. A particularly simple situation'arises for the special case 
where bn = -1, for any value of n. It will be interesting to see if and 
how an application of the general relation (7) can verify our 
expectation. 

As (4) now leads to (for x 2 < 1) 

00 00 x 
y x (1+ I xn) I xn 

n=l n=l 1 - x 
(lSa) 

we s imply have the reversion 

y 00 

x = y [1 + I (_y)n] 
1 + Y n=l 

(lSb) 
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hence, in the notation of (5), 

(15c) 

We now look at the general formula (7~ and try to perform the summation. 
For a fixed value of k the factor (n~ ) can be kept apart and we 

obviously have 

k. 
IT b. J 
j J 

The evaluation of the sum 

(16) 

n 

where k (17 ) 

is complicated by the fact that for the summation we have also to take 
into account the condition 

n 

n • (18) 

In the traditional language of combinatorics, the expression k!/(ITkj!) 
corresponds to the number of partitions of k "balls" into n "cells", 
if these are to contain kl' k2' "', k n "balls" (with 0 , k j 'k). 

The problem can be simplified by looking at it in a different way. As may 
be seen from (7), k is in our case the number of coefficients bj which 
appear as factors in a term. For instance, for n = 5 and k = 3 these are 
b 1b 2b2 and b 1b 1b 3• They are thus all of the form 

k k ;11 >' ~, 1 IT b. with jr - n . 
r=1 

Jr r=1 
(19) 

Since jr > 0 for all k factors, we may now consider this as an occupancy 
problem, where we look for the number of different combinations in which 
n "balls" can be put into k non-empty "cells". For the original formula 
(7), this approach corresponds to allocating the "indices" j to the k 
"factors" b j , where the constraints are now automatically taken into 
account. As is well known, the rolution to this problem is given by the 
simple binomial coefficient (k=I)' Therefore, the summation (17) can now 
be performed and it turns out to be 

(kn - 1) 1 • (20) 

For an instructive discussion of occupancy problems see for instance [6J. 



8 

A subdivision of the sum appearing in (7) for constant values 
therefore leads to 

1 n 
- cn = I Cn,k n+1 k=l 

where cn,k' according to (16) and (20), is given by 

c n,k 

of k 

Combining this with (15c) leads us to the rather surprising relation 

n 
(-1) 

(21a) 

(21b) 

(22) 

In the tabulations of formulae to which we have ready access we could not 
find (22), although it must be strongly suspected to be an identity. 
Indeed, a proof seems possible along the following lines. 

vIe start with the elementary recurrence relation 

(123) 

and use for the first term on the right-hand side the decomposition [7J 

m 

I (_l)m+k (n~k) (k) 
k=O 

Hence, the second term yields likewise (since (m~l) 0) 

m 
I (_1)m+k-1 (n~k) (mk1) 

k=O 
~,1 "",. ,"V. \ 

Therefore (23) now becomes 

m 

I (_l)m+k [(k) - (mk1)J (n~k) 
k=O 

m 

I (_l)m+k (k=i) (ntk) • 
k=l 

By putting m = n we finally obtain 

n 

n+1 = (_l)n I (_l)k (k=i) (ntk) , 
k=l 

(24a) 

(24b) 

(25 ) 
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or also 

1 n 

I (_I)k (ntk) n-l 
(k-l) (_1)n , 

n+l k=1 

which proves (22) and thereby confirms (15). 

5. Possible further applications 

The complicated structure of (7) severely restricts the number of 
potential direct applications; the apparently innocent case of a 
geometric series, treated in the previous section, well illustrates the 
situation and provides little encouragement for tackling more complicated 
examples. As possible candidates one might think of some trigonometric 
functions. Thus, for instance, if sin x is put into the form (4), i.e. 

y sin x = x (1 - I 
k=1 

we have b2n 

whereas all coefficients with odd index vanish. 

Its reversion is known to be 

<X> 

x = arc sin y 

where now 

(2n-l)!! 
c2n 

(2n+l) (2n)!! 

Another pair is given by (for x 2 < n 2/4) 

y tg x and 

with the respective coefficients 

b2n 

22n(22n_l) 

IB2nl (2n) ! 

(_l)n-l 
and c2n = 

2n+1 

Bernoulli numbers (see e.g. [2]). 

(_l)n-l 

(2n+1) ! 
(26a) 

(26b) 

(27a) 

(27b) 
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It is easy to see from (7) that if bn = 0 for odd indices n, then this 
also holds for the coefficients c n • On the other hand, bn = 0 for even 
indices would not imply such a consequence for cn • Some general 
conclusions are also possible concerning the signs of the coefficients. 
Thus, if for example in a series we replace bn by b~ = (-l)n bn ' 

then this results in the analogous change c~ = (-l)n cn for the reversed 
series. The proof is simple, for the relation only reflects the fact that 
in (19) an odd index n also requires in the sum an odd number of odd 
indices jr' whereas for n even their number is always even (including 
zero), independent of the number of terms k. As an illustration, we may 
take for the first pair (for y2 < 1) 

y eX - 1 , x = 1n (1 + y) , 

with the respective coefficients 

-1 (_l)n-1 
bn = and cn = 

(n+1) ! n+1 

Then, in the second pair 

y 1 - e-x x - 1n(1 - y) 

we have 

b' 
(_1)n-1 

(_l)n b
n and n (n+1) ! 

-1 
c' (-l)n cn , n n+1 

in agreement with the above statement. 

For the practically important case where b2n+1 = 0, the explicit 
relations (9) can be simplified and there then only remain 

. ' ~,. ,-"" .. 

- c2 b2 

- c4 = b4 + 3b~ , 

- c6 b6 + 8b 2b4 + 12 bi 

- c8 b8 + 10b2b6 + 5bt + 55bib4 + 55b 4 
2 

Note that a coefficient c2n now consists of exactly pen) terms. 

(28a) 

(28b) 

(29) 
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In this case, too, one can readily see that a change from b2n to 
bZn = (_l)n b2n results, for the reversed series, in cZn = (_l)n c2n' 
A simple illustration of this relation is, for instance, provided by the 
functions sin x, developed in (26), and sinh x. The coefficients of their 
respective reversions follow the relation indicated above. 

The examples given in (26) and (27) show that even in apparently quite 
simple cases rather complicated expressions (e.g. with double factorials 
and Bernoulli numbers) may arise as coefficients of the reversed series. 
This fact could therefore suggest to make use of known functional pairs 
and to derive from them, by means of (7), new identities which will 
involve such mathematical expressions. 

I thank P. Carre for his long-standing and active interest in these 
matters and G. Ratel for some useful discussions on problems treated 
above. 
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