BUREAU INTERNATIONAL DES POIDS ET MESURES

Monographie 85/1

#### INTERNATIONAL INTERCOMPARISON OF

#### ATTENUATION

IN WAVEGUIDE R 140 AT 15 GHz

Final Report by H. Bayer



1985

Pavillon de Breteuil, F-92310 SEVRES

# INTERNATIONAL INTERCOMPARISON OF

10

# ATTENUATION

# IN WAVEGUIDE R 140 AT 15 GHz

# GT-RF 75-A 3

# Final report of the pilot laboratory

# by

# H. Bayer

Physikalisch-Technische Bundesanstalt, Braunschweig

# LIST OF CONTENT

|      | page                                                       |
|------|------------------------------------------------------------|
| Sun  | mary1                                                      |
| 1.   | INTRODUCTION2                                              |
| 2.   | THE INTERCOMPARISON SCHEME2                                |
| 3.   | THE TRANSFER STANDARDS                                     |
|      | 3.1 Transfer Standard PTB-2.22-481 (0.01 dB)7              |
|      | 3.2 Transfer Standard NBS-0.1 (0.1 dB)8                    |
|      | 3.3 Transfer Standards OMH-10-01 (10 dB), UK-18-S2 (20 dB) |
|      | and PTB-2.22-311 (40 dB)9                                  |
| 4.   | THE QUANTITY TO BE MEASURED10                              |
| 5.   | THE MEASURING METHODS11                                    |
|      | 5.1 The power ratio method11                               |
| 1911 | 5.2 Audio frequency substitution method13                  |
|      | 5.3 Modulated subcarrier technique13                       |
|      | 5.4 Parallel IF substitution method15                      |
|      | 5.5 Voltage ratio method16                                 |
|      | 5.6 RF substitution technique16                            |
| 6.   | MEASUREMENT RESULTS AND DISCUSSIONS                        |
|      | 6.1 Ambient and measurement conditions                     |
|      | 6.2 Measured mean values                                   |
|      | 6.3 Determination of a weighted mean value                 |
|      | 6.4 Discussion of the results21                            |
| 7.   | CONCLUSIONS                                                |
| REF  | ERENCES                                                    |
|      |                                                            |

# APPENDIX

| List | s of t | the  | meas | ure | ement | and  | operational  | data | as | repo | rtec | i by |    |   |   |
|------|--------|------|------|-----|-------|------|--------------|------|----|------|------|------|----|---|---|
| the  | partic | cipa | nts  | to  | the   | pilo | t laboratory |      |    |      |      | A    | 1- | Α | 9 |

### SUMMARY

This is the final report about the results of the international intercomparison GT-RF 75-A 3 decided by the RF working group of the "Comité Consultatif d'Electricité" in the "Bureau International des Poids et Mesures" at its 4th meeting (may 1975) in Sèvres. Five national institutes (IENGF, Italy; NBS, USA; OMH, <sup>llungary</sup>, RSRE, United Kingdom and PTB, Federal Republic of Ger many) decided to participate, the latter one as pilot laboratory.

1

The quantity to be measured was the attenuation in waveguide R 140 (WG 18, WR 62) at the frequency 15 GHz. Five transfer standards - having the nominal attenuation values 0.01 dB; 0.1 dB; 10 dB ,20 dB; 40 dB - were made available by the participants. All transfer standards were switchable between the minimum insertion loss (zero position) and the nominal value of attenuation to be measured. The principles of the design of the transfer standards and the measuring methods applied by the participants are described.

The measurement results are given in several tables and diagrams. For each transfer standard a weighted mean value is calculated. The mean deviations are evaluated for each measuring device. All total uncertainties varied between 0.0002 dB at 0.01 dB to nearly 0.1 dB (worst value at 40 dB) Apart from one case (10 dB) all transfer standards were of good repeatability and long-term stability. All data and measuring results - as reported by the participating laboratories - are presented in the appendix.

# 1. INTRODUCTION

This international intercomparison of the radiofrequency quantity "attenuation in waveguide R 140 (WG 18, WR 62) at the frequency 15 GHz" was decided at the 4th meeting of the Radio Frequency Working Group of the "Comité Consultatif d'Électricité" which was held from May 19th to May 21st, 1975 at the International Bureau of Weights and Measures (BIPM) in Sêvres. The official designation of this comparison is GT-RF 75-A 3. The attenuation values to be compared were 0.01 dB, 0.1 dB, 10 dB, 20 dB and 40 dB. The following national institutes participated:

- Istituto Elettrotecnico Nazionale Galileo Ferraris (IENGF, Torino, Italy);
- 2. National Bureau of Standards (NBS, Boulder, Colorado, USA);
- 3. Országos Mérésügyi Hivatal (OMH, Budapest, Hungary);
- Royal Signals and Radar Establishment (RSRE, Great Malvern, United Kingdom)
- 5. Physikalisch-Technische Bundesanstalt (PTB,Braunschweig, Federal Republic of Germany)

The PTB acted as pilot laboratory. Five transfer standards with the nominal attenuation values mentioned above were developed and made available by the NBS (0.1 dB), the OMH (10 dB), the RSRE (20dB) and the PTB (0.01 dB and 40 dB). The measurement cycle was started in June 1980 and was completed in January 1984.

# 2. THE INTERCOMPARISON SCHEME

First, NBS, OMH and RSRE measured the attenuation values of the standards developed at their own laboratories which were then sent to the pilot laboratory (PTB). The cycle of the further run can be seen in Fig. 1. After the conclusion of these

- 2 -

comparison measurements the transfer standards were sent back to their home laboratories, where at OMH and at RSRE a final re-measurement was done.



Fig 1 Intercomparison pattern for the international intercomparison GT-RF 75-A 3 (Attenuation in waveguide R 140 at 15 GHz)

ł



a) Transfer standard PTB-2.22-481 (0.01 dB)



b) Transfer standard NBS-0.1 (0.1 dB)

21

- 4 -



c) Transfer standard OMH-10-01 (10 dB)



d) Transfer standard UK-18-S2 (20 dB)



e) Transfer standard PTB-2.22-311 (40 dB)

In the course of the entire run the attenuation values of all transfer standards were measured three times in the pilot laboratory to check their stability. The first of these measurements was carried out at the beginning of the run, the second one when the half circle was passed and the last one when all other participants had measured the standards.

# 3. The transfer standards

All circulated transfer standards were switchable ones, meaning that they remain in the guide system of the measuring devices during the operation; the attenuation value to be measured is the difference of the attenuation value at switch position "on" and the attenuation value at switch position "off" (zero position). Fluctuations and instabilities with regard to an imperfect connector repeatability need not therefore to be considered. Photographs of all the transfer standards are presented in Figs. 2a to 2e

#### 3.1 TRANSFER STANDARD PTB-2.22-481 (0.01 dB)

The principle design is shown in Fig. 3



Fig.3 Construction scheme (a) and circuit diagram (b) of the transfer standard PTB-2.22-481 (0.01 dB) P1,P2 Input and output port, K1,K2 coupling holes, A3,A4 matched loads, S movable short

A small fraction of the electromagnetic power entering the main guide is coupled through the coupling holes  $K_1$  into the side guide which has a larger side in common with the main guide. The side-arm is separated in two sections by a movable short S in the middle of it. If the short is "in", the fraction of power coupled into the side-arm is reflected from the short and mainly absorbed at the matched termination  $A_3$ . If the short is in the "out"-position, the power coupled into the side-arm is partially coupled back to the main guide through the coupling holes  $K_2$ ; the power remaining in the side-arm is absorbed at the matched termination difference of the wave leaving the main guide. As can be shown [1]  $\Delta A$  is given by

$$\Delta A = 20 \cdot \log \frac{1 - \zeta^{2}}{1 - 2\zeta^{2}}$$
(1)

with  $\zeta = 10^{-C/20}$ ; C being the coupling coefficient in dB. To achieve A = 0.01 dB, C must be 29.4 dB.

#### 3.2 TRANSFER STANDARD NBS-0.1 (0.1 dB)

The assembly consists of a section of R 140 (WG 18, WR 62) waveguide with a hole bored through the broad wall and tubes soldered on each side to serve as guide for a rexolite pin which is inserted through the whole waveguide. This section of the guide is isolated with two nominal 40 dB ferrite isolators. Each isolator has a small section of guide attached which serves as the connecting port to the measurement apparatus. The complete assembly is rigidly mounted on an aluminium base.

The attenuation step is accomplished by inserting the rexolite pin totally through the guide so that it protrudes approximately one centimeter beyond the end of each tube. Although the manufacturing laboratory was unable to detect any variation

- 8 -

in attenuation with an axial displacement or rotation of the pin, the pilot laboratory marked the pin to enable it to be always inserted in the same coaxial position.

3.3 TRANSFER STANDARDS OMH-10-01, UK-18-S2, PTB-2.22-311 (10 dB, 20 dB, 40 dB)

All three transfer standards are of the same design. A waveguide directional coupler is used for producing the desired attenuation differences. The attenuation value to be measured is in good approximation defined by the coupling coefficient C of the device

$$\Delta A = 20 \log \left| \frac{1}{|S_{31}|} \right| = C$$
 (2)

A waveguide switch must be positioned that the wave is propagated directly between input and output port of the switch in one position and then - in the other position of the switch - into the main guide of the coupler, passing the coupling device to the side arm and from here to the output of the switch. The circuit is presented in Fig. 4. In the case of the transfer standard PTB-2.22-311 two waveguide ferrite isolators are inserted just beyond the input port and in front of the output port [1]



Fig. 4 Circuit diagram for transfer standard PTB-2.22-311 (40 dB)

(1) input port, (2) isolators, (3) waveguide switch, (4) directional coupler, (5) terminating loads, (6) output port. Power flow when attenuation pad is removed: ABDH; power flow when attenuation pad is inserted: ABCFGEDH

- 9 -

# 4. THE QUANTITY TO BE MEASURED

To measure the attenuation of the transfer standards, the device to be measured is inserted between the source output and the load (absorbing detector) input at the insertion point. The source may be protected by an integrated isolator to ensure stable operation. When the switch is actuated by changing its position from "off" to "on", the difference in insertion loss between these two positions is given by [2], [3]

$$L_{I} = 10 \cdot \log \frac{\left| (1 - S_{11}r_{G})(1 - S_{22}r_{L}) - S_{12}S_{21}r_{G}r_{L} \right|^{2} |S'_{21}|^{2}}{\left| (1 - S_{11}r_{G})(1 - S_{22}r_{L}) - S_{12}S_{21}r_{G}r_{L} \right|^{2} |S_{21}|^{2}}$$
(3)

The S-matrix is related to the operation point of the attenuator, in which the loss-pad is inserted, the S' matrix is related to the zero position.  $\Gamma_{\rm G}$  and  $\Gamma_{\rm L}$  are the complex reflection coefficients with regard to the generator and load side of the measuring device, measured at the insertion point. After the system has been matched, so that  $\Gamma_{\rm G} \simeq \Gamma_{\rm L} \simeq 0$ , the quantity to be measured and compared is defined by

$$A = 10 \cdot \log \left| \frac{S_{21}'}{S_{21}} \right|^2$$
 (4)

The measuring uncertainty resulting from an imperfect matching of the measuring device  $(\Gamma_G, \Gamma_L \neq 0)$  is in the worst case (with regard to the phase relations) expressed by [3],[4]

$$\Delta A_{\max} = 20 \cdot \log \frac{1 + |S_{11}\Gamma_G| + |S_{22}\Gamma_L| + |\Gamma_G\Gamma_L|(|S_{12}S_{21}| + |S_{11}S_{22}|)}{1 - |S_{11}\Gamma_G| - |S_{22}\Gamma_L| - |\Gamma_G\Gamma_L|(|S_{12}S_{21}| + |S_{11}S_{22}|)}$$
(5)

For  $|S_{11}|, |S_{22}| << 1$ ;  $|\Gamma_G|, |\Gamma_L| << 1$ the simplified approximation

$$\Delta A_{\text{max}} \approx 2 \text{ M'} \{ |r_{\text{G}}| (|S_{11}| + |S_{11}|) + |r_{\text{L}}| (|S_{22}| + |S_{22}|) \\ + |r_{\text{G}}r_{\text{L}}| (|S_{12}S_{21}| + |S_{12}S_{21}|) \}$$
(6)

with M' = 10 log e is valid. To reduce these uncertainties to an

extent where they are negligible , great care must be taken to achieve a sufficiently good match of the system's source and load side.

# 5. THE MEASURING METHODS

The different methods used by the participants in this intercomparison are as follows:

- 1. The power ratio method (PTB; IENGF and OMH partly),
- 2. the audio-frequency substitution method (OMH),
- 3. the modulated subcarrier method (RSRE),
- 4. the parallel IF substitution method (IENGF, NBS partly)
- 5. the voltage ratio method (RSRE),
- 6. the RF substitution method (NBS)

In the following a brief description of the basic principles of each method will be given; for a more detailed presentation including the theory and constructional refinements the references should be referred to.

#### 5.1 THE POWER RATIO METHOD

The amplitude of the microwave power fed to the input of the attenuator to be measured is stabilized by applying a feed-back circuit: A portion of this power is coupled out from the main guide via a directional coupler terminated by a sufficiently sensitive and stable bolometer mount the absorbing bolometerelement of which being integrated in a bolometer bridge circuit with a built-in potentiometer compensating the bridge current. The error voltage resulting from the bridge imbalance caused by the microwave power fluctuations is fed back to a power controlling device in the main guide (PIN diode, ferrite modulator or modulation-input of the source). Two tuners, one in front and one behind the insertion point are used for matching the source and load side of the measuring system. The main guide power is received in a thermally stabilized bolometer mount (barretter or thermistor element). By determining the bolometer bridge voltages (once with attenuation pad inserted and once with it



Fig. 5 Circuit diagram of the power ratio measuring equipment as establshed at PTB



Fig. 6 Block diagram of the audio frequency substitution method as applied at OMH. The transformer is an inductive voltage divider (IVD)

removed) the power ratio  $P'_{s}/P_{s}$  is determined. ( $P'_{s}$  power absorbed by a non-reflecting terminating load with attenuation pad removed,  $P_{s}$  the corresponding value with attenuation pad inserted) The attenuation value under consideration is then received by

$$A = 10 \log \frac{P'}{P_s}$$
(7)

[3], [4]. A block diagram of the circuit is presented in Fig. 5

#### 5.2 AUDIO FREQUENCY SUBSTITUTION METHOD

The microwave source is modulated by an audio-frequency signal (e.g. at the frequency 1 kHz). The microwave power guiding system is split into two branches, both terminated by a well-matched barretter mount. The input power is controlled by a variable level-set attenuator, two matching pads and the attenuator to be measured are inserted in the test-channel. An audio-frequency voltage is received by demodulation of the barretter's output signal. The reference channel is supplied with a reference attenuator and an AF phase shifter for balancing the two audio-frequency voltage signals in amplitude and phase. The balance of both channels is observed in a sensitive zero-indicator. The attenuation difference to be measured is expressed by the voltage ratio of an inductive voltage divider (IVD) when the attenuation pad has been inserted once and removed once. [5]. Α block diagram of the principle circuit is given in Fig.6

#### 5.3 MODULATED SUBCARRIER TECHNIQUE

As in the audio-frequency substitution method an AC modulation (e.g. at 1 kHz) is used in this case. The microwave power supplied by the source is again split into two branches, but only one of them - the subcarrier branch - is modulated , e.g. by feeding the modulating AC voltage to the field coil of a ferrite modulator which has been inserted. The signals of both branches are recombined in a linear balanced mixer with a phase difference  $\theta$ .

- 13 -

- 14 -



Fig.7 Circuit diagram of the modulated subcarrier technique as established at RSRE (drawn from WARNER, HERMAN and JEFFS)



Fig. 8 Simplified circuit diagram of the IF parallel substitution method, applied e.g. at IEN (drawn from WARNER [3])

This phase difference is changed to zero by the corresponding setting of a rotary vane phase shifter inserted in the unmodulated channel. The demodulated AC signal (1 kHz) emerging from the mixer and that of 1 kHz sinussoidal frequency-stabilized oscillator are combined in a sensitive 1 kHz null detector. To balance the bridge circuit a precise IVD is used. The difference in the attenuation to be measured can be calculated from the two settings of the IVD, when the bridge is balanced - once with attenuation pad inserted and once with it removed. The refined circuit -as applied at RSRE - is presented in Fig. 7 [3],[6],[7]

#### 5.4 PARALLEL IF SUBSTITUTION METHOD

This method is favoured for measuring higher attenuation differences. The attenuator to be measured is inserted in the microwave circuit which follows the stable microwave source; both sides from the insertion point are well matched with regard to the wave impedance of the guide system. After passing the attenuator under test, the microwave signal is fed into a linear mixer which also takes up the local oscillator power the frequency of which shifted by  $(\Delta v)_{TF}$ against the frequency of the microwave source supplying the microwave power to the test circuit. A parallel circuit is fed by a stable intermediate frequency (IF) source to whose frequency the frequency shift  $(\Delta v)_{TF}$  emerging from the linear mixer is locked. This parallel circuit contains the variable standard attenuator, e.g. a precise waveguide below cutoff (WBCO) piston attenuator. The output voltages of the linear mixer and the IF parallel circuit are compared by actuating an electronic or waveguide switch between both outputs and receiving the combined output signal of both channels in a synchronous detector followed by a sensitive null detector. The two parallel circuits are balanced by setting the variable standard attenuator (e.g. the WBCO) for a zero indication in the null detector. The attenuation to be measured is given by the difference in the setting of the standard attenuator when the attenuation pad to be measured is once inserted and once removed. The different noise behaviour of the two parallel circuits may be equalized by adding an appropriate noise contribution (from a noise generator) to the IF parallel circuit's output power. A block diagram of the simplified circuit is presented in Fig. 8 [3], [8], [9], [10]

- 15 -

#### 5.5 VOLTAGE RATIO METHOD

This comparatively new method was firstly investigated and proposed by F.L.WARNER and P. HERMAN  $\begin{bmatrix} 11 \\ 12 \end{bmatrix}$  It is particularly suitable for computer-controlled automatic measuring devices of high precision. After having passed the attenuator to be measured, the microwave signal is fed to a linear mixer which also takes up the local oscillator's (L.O.) signal, frequencyshifted by  $\Delta v$ , e.g. 50 kHz. Both oscillators (source and L.O.) are locked to the same crystal, ensuring that their difference frequency is highly stable. The voltage of the IF signal emerging from the mixer is measured - via a stable IF amplifier - by a precision digital voltmeter. The non-linearity in the IF-amplifier and the DVM can be checked and corrected by switching over to a stable IF oscillator combined with an IVD. The attenuation of the unknown device to be measured is then [11]

$$A_{\mathbf{x}} = 20 \cdot \log \frac{U_{\mathbf{o}}}{U_{\mathbf{x}}} + C$$
 (8)

(U<sub>o</sub> voltage indication of the zero setting of the unknown attenuator, U<sub>x</sub> corresponding voltage indication at the attenuation level A<sub>x</sub> to be measured, C Correction value). The block diagram - including a gauge block system for enlarging the dynamic range up to 90 dB - is presented in Fig. 9 [12]

#### 5.6 RF SUBSTITUTION TECHNIQUE

In this method the attenuator to be measured is compared with a variable standard attenuator in the microwave measuring circuit. Similiarly as in the IF substitution technique the unknown and the standard attenuator can be inserted in series (RF series substitution) or in parallel (RF parallel substitution). As variable attenuation standard a precise rotary vane attenuator or a waveguide below cutoff may be used. At NBS the measurements were performed using the RF series substitution technique. The microwave standard was a modified rotary vane attenuator . The modifications involve a precision gearing system with a resolution of 0.001 degree. Corrections have been made for eccentricity, vane angle and gearing errors based on the analysis of WILBUR F. LARSON [13], [14],  $\beta$ ]

- 16 -



Fig. 9 Circuit diagram of the voltage ratio method including gauge blocks for enlarging the measuring range (drawn from WARNER and HERMAN |12|)



Fig. 10 Simplified circuit diagram of the RF series substitution technique -partly applied at NBS (drawn from WARNER [3])

# 6. MEASUREMENT RESULTS AND DISCUSSIONS

#### 6.1 AMBIENT AND MEASUREMENT CONDITIONS

The ambient conditions in the measuring rooms of the participating laboratories were sufficiently homogenous. The room temperature was in almost all cases  $+23^{\circ}$  C, only the RSRE carried out the measurements at  $+21^{\circ}$  C. The room relative humidity was about 50 % with the exception of IENGF (70 %) and RSRE (40 %). The relative uncertainty of the measuring frequency varied between  $1 \cdot 10^{-4}$  and  $1 \cdot 10^{-8}$ , in most cases it was about  $1 \cdot 10^{-6}$ . The number of single measurements, from which each participant calculated its mean value to be reported, was between 10 and 50, the majority performed 10 single measurements for one run.

#### 6.2 MEASURED MEAN VALUES

The mean values calculated from the n single measurements which each participant performed during one measuring period, are given in table I. In the case of the RSRE which has applied two different measuring methods and has reported the results for each of them, the mean value of both measurements is presented as the mean measured value in table I. A detailed list of all single measurement values - as reported by the participants is given in the appendix.

#### 6.3 DETERMINATION OF A WEIGHTED MEAN VALUE

For a critical examination of the results the determination of a "weighted mean value" as the most probable true measurement value is useful. The measurement values reported by each participating laboratory 1 on the travelling standard s may be  $A_{1s}$ . If the weighting factor is  $g_{1s}$  and the normalized weighting factor  $G_{1s}$ 

$$G_{1s} = \frac{g_{1s}}{\underset{l=1}{\overset{\Sigma}{}}g_{ls}}$$
(9)

(m is the number of participating laboratories), the weighted mean value is defined by

$$\overline{(A_s)}_W = \sum_{l=1}^m A_{ls} G_{ls}$$
(10)

and its uncertainty range is defined by

$$\Delta(A_{s})_{W} = \sqrt{\sum_{l=1}^{m} (\Delta A_{ls})^{2} G_{ls}^{2}}$$
(11)

If one laboratory measured more than once within the cycle, e.g. the pilot laboratory and the home laboratories of the transfer standards, the mean value of these results was introduced in (10) corresponding

$$A_{ls} = \frac{1}{p} \sum_{q=1}^{p} A_{qls}$$
(12)

p being the number of measuring periods.

Assuming a weighting factor

$$g_{1s} = \frac{1}{d_{1s} \Delta A_{1s}} \exp \left\{-\left(\frac{d_{1s}}{d_{s,min}}\right)\left(1 + \Delta A_{1s}/\overline{\Delta A_{s}}\right)\right\} (13)$$

with

$$d_{1s} = \sum_{r=1}^{m} |A_{1s} - A_{rs}|$$
  
$$d_{s,min} \qquad \text{smallest value of } d_{1s} \text{ for all values of } 1 \text{ for}$$
  
a fixed s

$$\overline{\Delta A}_{s} = \frac{1}{m} \sum_{l=1}^{m} \Delta A_{ls}$$
 \*)

The numerical values of the weighted mean values calculated in this way are given in table II.

\*) It is presumed that  $\Delta A_{1s} = t \cdot \sigma_{p}$  with t = const holds for all values l,s.  $(\sigma_{1s} \text{ is the total standard deviation and } t_{p}$ corresponding to "Student's factor t" for  $n \rightarrow \infty$  at the confidence level P; e.g. for P = 95 % is  $t_{p} = 2,0$ )

# TABLE I

# MEAN VALUES OF ATTENUATION MEASURED BY EACH PARTICIPATING LABORATORY (in dB)

| Measuring<br>Laboratory | PTB-2.22-481 | NBS - 0.1 | OMH-10-01 | UK-18- S 2 | PTB-2.22-311 |
|-------------------------|--------------|-----------|-----------|------------|--------------|
| NBS                     |              | 0.1128    | -         | -          | -            |
| ОМН                     | -            |           | 10.7372   | -          | -            |
| RSRE                    |              | -         | -         | 21.1787    | -            |
| РТВ                     | 0.01144      | 0.1012    | 10.745    | 21.1768    | 40.1310      |
| ОМН                     | 0.01163      | 0.10168   | 10.7626   | 21.1722    | 40.1276      |
| IENGF                   | 0.0117       | 0.1018    | 10.751    | 21.217     | 40.080       |
| РТВ                     | 0.01143      | 0.10080   | 10.745    | 21.1748    | 40.1287      |
| RSRE                    | 0.01141      | 0.10025   | 10.7557   | 21.1777    | 40.1316      |
| NBS                     | 0.0112       | 0.1112    | 10.739    | 21.159     | 40.110       |
| РТВ                     | 0.01150      | 0.1011    | 10.744    | 21.1745    | 40.1286      |
| ОМН                     | -            | -         | 10.7556   | -          | -            |
| RSRE                    | -            | -         | -         | 21.1775    | -            |

٠

Transfer standard

.

#### TABLE II

| Transfer Standard      | Weighted mean value<br>dB |
|------------------------|---------------------------|
| PTB-2.22-481 (0.01 dB) | 0.01145 ± 0.00020         |
| NBS-0.1 (0.1 dB)       | 0.10085 ± 0.00042         |
| OMH 10-01 (10 dB)      | 10.7502 ± 0.0035          |
| UK 18-S2 (20 dB)       | 21.1767 ± 0.0020          |
| PTB-2.22-311 (40 dB)   | 40.1299 ± 0.0028          |

### WEIGHTED MEAN VALUES

#### 6.4 DISCUSSION OF THE RESULTS

The measurement results of all participants for the five transfer standards circulated are presented in Figs. 11 to 15. The weighted mean values and their uncertainty ranges with regard to the weighting function assumed are indicated. The measurement diagrams are interpreted as follows

#### a) PTB-2.22-481 (0.01 dB):

All measurement results show good consistency with the weighted mean value and its uncertainty range. The maximum distance between two measurement values is 0.0005 dB. The measurement values of OMH, PTB and RSRE are in good agreement within ± 0.0002 dB. A possible long-time drift of the standard's measurement value was within the uncertainty range and certainly smaller than 0.0001 dB over the whole measurement period.

#### b) NBS-0.1 (0.1 dB)

All measurement values - except one - are in good agreement with one another and with the weighted mean value calculated. Excluding the one measurement value outside the range of the others, the main distance between two measurement results is 0.0015 dB. The transfer standard showed a good stability and its drift was smaller then 0.0005 dB.





Fig. 11 Measurement results for transfer standard PTB 2.22-481 (0.01 dB) (The weighted mean value and its uncertainty range are marked in)









- 23 -









- 24 -

c) OMH-10-01 (10 dB)

Although most of the measured values show sufficient consistency with one another and the weighted mean value, it seems that the stablity of the transfer standard was insufficient. The standard's home laboratory - OMH - reported three measurement values with rather large differences : 10.737 dB, 10.763 dB and 10.756 dB. The corresponding attenuation differences are 0.026 dB, 0.019 dB and 0.007 dB. The first mentioned value (0.026 dB) is the largest difference between two measurement values (of all participants) on this standard. The pilot laboratory's measurement values are all about the same ( $\simeq$  10.745 dB). It is assumed that the instability which sometimes became apparent was caused by the switching mechanism and the particular way in which the switch was actuated. It was observed that a definite clicking of the switch postion was attainable only with difficulty; sometimes the positions into which the switch clicked deviated slightly from one another. The PTB was therefore extremely careful to achieve in each measurement the correct switching position into which the switch was supposed to click.

#### d) UK-18-S2 (20 dB)

All measurement values - except one - show good consistency with one another and with the weighted mean value. The maximum difference between two measurement results is 0.06 dB; but all other results agree within ± 0.0035 dB. The transfer standard's stability was good. A possible drift was smaller than the given uncertainty ranges and certainly within ± 0.001 dB over the whole measuring period.

#### e) PTB-2.22-311 (40 dB)

All measurement values and their uncertainties - again with one exception - are in good agreement with one another and with the weighted mean value. The largest difference between two measurement values is 0.05 dB; most measurements agree within  $\pm 0.002$  dB. The transfer standard was of good long-term stability and its possible fluctuations are within  $\pm 0.0012$  dB.



Fig. 16 Mean values averaged over the magnitudes of all relative deviations from the weighted mean values of all five transfer standards; given for each participating laboratory

- 26 -

To have one numerical value ,characterizing the mean deviation of each device from the weighted mean values, the magnitudes of the relative deviations from the weighted mean values are averaged over the five transfer standards for each measuring system. The expression

$$\frac{|\Delta M_1|}{|q=1 \ s=1} = \frac{p}{\sum} \frac{5}{\sum} \frac{|A_{qls} - (A_s)_w|}{(A_s)_w}$$
(14)

is calculated and shown in Fig. 16. The tables III to VII give the differences  $A_i - A_j$  of all measurement values against all the others for the five transfer standards.

# DIFFERENCES $A_i - A_j$ OF THE MEASUREMENT RESULTS OF EACH PARTICIPANT AGAINST ALL THE OTHERS.

#### TABLE III

A = 0.01 dB

#### Numerical values in dB

| A     | J PTB    | омн      | IENGF    | РТВ      | RSRE     | RSRE*    | NBS      | РТВ      |
|-------|----------|----------|----------|----------|----------|----------|----------|----------|
| РТВ   |          | -0.00019 | 0.00027  | 0.00001  | 0.00012  | -0.00005 | ^0.00024 | -0.00006 |
| OMH   | 0.00019  |          | 0.00046  | 0.00020  | 0.00031  | 0.00014  | 0.00043  | 0.00013  |
| IENGF | -0.00027 | -0.00046 |          | -0.00026 | -0.00015 | -0.00032 | -0.00003 | -0.00033 |
| РТВ   | -0.00001 | -0.00020 | 0.00026  |          | 0.00011  | -0.00006 | 0.00023  | -0.00007 |
| RSRE  | -0.00012 | -0.00031 | 0.00015  | -0.00011 |          | -0.00017 | 0.00012  | -0.00018 |
| RSRE* | 0.00005  | -0.00014 | 0.00032  | 0.00006  | 0.00017  |          | 0.00029  | -0.00001 |
| NBS   | -0.00024 | -0.00043 | -0.00003 | -0.00023 | -0.00012 | -0.00029 |          | -0.00030 |
| РТВ   | 0.00006  | -0.00013 | 0.00033  | 0.00007  | 0.00018  | 0.00001  | 0.00030  |          |

RSRE has measured with two different methods

RSRE: Modulated csubcarrier system

RSRE\*:Voltage ratio method

 $A = 0.1 \ dB$ 

RSRE RSRE\* PTB NBS PTB OMH IENGF PTB NBS Α NBS 0.01160 0.01112 0.01100 0.01200 0.01241 0.01269 0.00160 0.01170 -0.01160 0.00081 -0.00060 -0.01000 PTB -0.00048 0.00040 0.00109 0.00010 OMH -0.01112 0.00048 -0.00012 0.00088 0.00129 0.00157 -0.00952 0.00058 IENGF-0.01100 0.00060 0.00012 0.00100 0.00141 0.00169 -0.00940 0.00070 -0.01200 -0.00040 -0.00088 -0.00100 0.00041 0.00069 -0.01040 -0.00030 PTB RSRE -0.01241 -0.00081 -0.00129 -0.00141 -0.00041 0.00028 -0.01081 -0.00071 RSRE\*-0.01269 -0.00109 -0.00157 -0.00169 -0.00069 -0.00028-0.01109 -0.00099 NBS -0.00160 0.01000 0.00952 0.00940 0.01040 0.01081 0.01109 0.01010 0.01010 PTB -0.01170 -0.00010 -0.00058 -0.00070 0.00030 0.00071 0.00099

#### TABLE V

A = 10 dB

Numerical values in dB

| Aj    | OMH    | РТВ     | омн     | IENGF   | РТВ     | RSRE    | RSRE*   | NBS     | РТВ     | OMH     |
|-------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| OMH   |        | -0.0078 | -0.0254 | -0.0138 | -0.0078 | -0.0180 | -0.0189 | -0.0018 | -0.0068 | -0.0184 |
| РТВ   | 0.0078 |         | -0.0176 | -0.0060 | 0.0000  | -0.0102 | -0.0111 | 0.0060  | 0.0010  | -0.0106 |
| OMH   | 0.0254 | 0.0176  |         | 0.0116  | 0.0176  | 0.0074  | 0.0065  | 0.0236  | 0.0186  | 0.0070  |
| IENGF | 0.0138 | 0.0060  | -0.0116 |         | 0.0060  | -0.0042 | -0.0051 | 0.0120  | 0.0070  | -0.0046 |
| РТВ   | 0.0078 | 0.0000  | -0.0176 | -0.0060 |         | -0.0102 | -0.0111 | 0.0060  | 0.0010  | -0.0106 |
| RSRE  | 0.0180 | 0.0102  | -0.0074 | 0.0042  | 0.0102  |         | -0.0009 | 0.0162  | 0.0112  | -0.0004 |
| RSRE* | 0.0189 | 0.0111  | -0.0065 | 0.0051  | 0.0111  | 0.0009  |         | 0.0171  | 0.0121  | 0.0005  |
| NBS   | 0.0018 | -0.0060 | -0.0236 | -0.0120 | -0.0060 | -0.0162 | -0.0171 |         | -0.0050 | -0.0166 |
| РТВ   | 0.0068 | -0.0010 | -0.0186 | -0.0070 | -0.0010 | -0.0112 | -0.0121 | 0.0050  |         | -0.0116 |
| омн   | 0.0184 | 0.0106  | -0.0070 | 0.0046  | 0.0106  | 0.0004  | -0.0005 | 0.0166  | 0.0116  |         |

Numerical values in dB

# TABLE VI

A = 20 dB

```
Numerical values in dB
```

| Concerning of the second se |         |         |         |         |         |         |         |        |         |         |
|-----------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|
| Aj                                                                                                              | RSRE    | РТВ     | OMH     | IENGF   | РТВ     | RSRE    | RSRE*   | NBS    | РТВ     | RSRE*   |
| RSRE                                                                                                            |         | 0.0019  | 0.0065  | -0.0383 | 0.0039  | 0.0001  | 0.0019  | 0.0197 | 0.0042  | 0.0012  |
| РТВ                                                                                                             | -0.0019 |         | 0.0046  | -0.0402 | 0.0020  | -0.0018 | 0.0000  | 0.0178 | 0.0023  | -0.0007 |
| OMH                                                                                                             | -0.0065 | -0.0046 |         | -0.0448 | -0.0026 | -0.0064 | -0.0046 | 0.0132 | -0.0023 | -0.0053 |
| IENGF                                                                                                           | 0.0383  | 0.0402  | 0.0448  |         | 0.0422  | 0.0384  | 0.0402  | 0.0580 | 0.0425  | 0.0395  |
| PTB                                                                                                             | -0.0039 | -0.0020 | 0.0026  | -0.0422 |         | -0.0038 | -0.0020 | 0.0158 | 0.0003  | -0.0027 |
| RSRE                                                                                                            | -0.0001 | 0.0018  | 0.0064  | -0.0384 | 0.0038  |         | 0.0018  | 0.0196 | 0.0041  | 0.0011  |
| RSRE*                                                                                                           | -0.0019 | 0.0000  | 0.0046  | -0.0402 | 0.0020  | -0.0018 |         | 0.0178 | 0.0023  | -0.0007 |
| NBS                                                                                                             | -0.0197 | -0.0178 | -0.0132 | -0.0530 | -0.0158 | -0.0196 | -0.0178 |        | -0.0155 | -0.0185 |
| PTB                                                                                                             | -0.0042 | -0.0023 | 0.0023  | -0.0425 | -0.0003 | -0.0041 | -0.0023 | 0.0155 |         | -0.0003 |
| RSRE*                                                                                                           | -0.0012 | 0.0007  | 0.0053  | -0.0395 | 0.0027  | -0.0011 | 0.0007  | 0.0185 | 0.0030  |         |

# TABLE VII

A = 40 dB

Numerical values in **đ**B

| Aj    | РТВ     | OMH     | IENGF  | РТВ     | RSRE    | RSRE*   | NBS     | PTB     |
|-------|---------|---------|--------|---------|---------|---------|---------|---------|
| РТВ   |         | 0.0034  | 0.0510 | 0.0023  | -0.0021 | 0.0010  | 0.0210  | 0.0024  |
| омн   | -0:0034 |         | 0.0476 | -0.0011 | -0.0055 | -0.0024 | 0.0176  | -0.0010 |
| IENGF | -0.0510 | -0.0476 |        | -0.0487 | -0.0531 | -0.0500 | -0.0300 | -0.0486 |
| РТВ   | -0.0023 | 0.0011  | 0.0487 |         | -0.0044 | -0.0013 | 0.0187  | 0.0001  |
| RSRE  | 0.0021  | 0.0055  | 0.0531 | 0.0044  |         | 0.0031  | 0.0231  | 0.0045  |
| RSRE* | -0.0010 | 0.0024  | 0.0500 | 0.0013  | -0.0031 |         | 0.0200  | 0.0014  |
| NBS   | -0.0210 | -0.0176 | 0.0300 | -0.0187 | -0.0231 | -0.0200 |         | -0.0186 |
| РТВ   | -0.0024 | 0.0010  | 0.0486 | -0.0001 | -0.0045 | -0.0014 | 0.0186  |         |

# 7. CONCLUSIONS

Essentially, good agreement between the measurement results of OMH, RSRE and PTB could be stated. The IENGF results are consistent with them considering the larger uncertainties reported by this institute. Only the measurement results of the NBS show some deviations which are larger than the others.

Four of the transfer standards circulated were of good long-term stability. The transfer standard OMH-10-01 showed some instabilities. It is assumed that this behaviour was caused by an inaccurate switching mechanism, resulting in some deviating measurement values.

In conclusion appreciation must be expressed to the scientists and engineers of the participating laboratories who performed the measurements and made possible this successful world-wide intercomparison by their efforts to obtain accurate and consistent measurement results: P.G.GALLIANO (IENGF), G.RIETTO (IENGF), D.H.RUSSELL (NBS), D.STUMPE (PTB), H.SZOKOL (OMH), A. TÖRÖK (OMH) and F.L.WARNER (RSRE)

#### REFERENCES

- 1 H. Bayer and D. Stumpe: Attenuation Transfer Standards for International and National Intercomparisons; Metrologia <u>18</u> (1982) ,187-192
- 2 D.M.Kerns and R.W.Beatty: Basic Theory of Waveguide Junctions and Inductory Microwave Network Analysis; Pergamon Press, Oxford, London., Edinburgh, New York, Toronto, Sydney, Paris, Braunschweig (1967)
- 3 F.L.Warner: Microwave Attenuation Measurement; Peter Peregrinus Ltd, Southgate House, Stevenage, Herts. SG1 1HQ, England (1977)

- 31 -

- 4 H. Bayer 'An Error Analysis for the RF-Attenuation Measuring Equipment of the PTB Applying the Power Method; Metrologia 11 (1975),43-51
- 5 P. Pakay: A Simple Method for the Accurate Measurement of Small Attenuations; Periodica Polytechnica (Hungary) 18 (1974), 105-116
- 6 F.L.Warner, P. Herman and T. Jeffs: Special Techniques for Measuring Lower and Higher Values of Attenuation with a Modulated Subcarrier System; IEEE Transact. of Instrum. and Meas. IM-23 (1974), 381-386
- 7 F.L.Warner, D.O.Watton, P. Herman and P. Cummings: Automatic Calibration of Rotary Vane Attenuators on a Modulated Subcarrier System; IEEE Transact. on Instrum. and Meas. IM-25 (1976), 409-413
- 8 B.O.Weinschel: An Accurate Attenuation Measuring System with Great Dynamic Range; Microwave Journal 4 (1961), 77-83
- 9 D.L. Hollway and F.P. Kelly: A Standard Attenuator and the Precise Measurement of Attenuation; IEEE Trans. of Instrum. and Meas. <u>IM-13</u>, (1964), 33-44
- 10 D.L. Hollway and P.I. Somlo: The Reduction of Errors in a Precise Microwave Attenuator Calibration System ; IEEE Trans. of Instrum. and Meas. IM-22 (1973), 268-270
- 11 F.L.Warner, P. Herman and P. Cummings: Recent Improvements to the UK National Microwave Attenuation Standards; IEEE Trans. on Instrum. and Meas. IM-32 (1983) 33-37
- 12 F.L.Warner P. Herman: Very Precise Measurement of Attenuation over a 90 dB Range Using Voltage Ratio plus Gauge Block Technique; Colloquium on "Advances in S-Parameter-Measurement at Micro-Wavelengths (23 May 1983), Digest 1983/53
- 13 W. Larson: Analysis of Rotation Errors of a Waveguide Rotary-Vane Attenuator. IEEE Trans. of Instrum. and Meas. ; <u>IM-12</u> (1963), 50-55
- 14 W. Larson : Gearing Errors as Related to Alignment Techniques of the Rotary-Vane Attenuator; IEEE Trans. on Instrum. and Meas. IM-14 (1965), 117-123

APPENDIX

# COMPLETE LISTS OF THE MEASUREMENT RESULTS AND OPERATIONAL DATA REPORTED BY THE PARTICIPANTS

1. Measuring results for the transfer-standards

ATTENUATION IN WAVEGUIDE R 140 AT 15 GHz

 $\mathbf{S}^{*}$ 

Pilot laboratory: PTB

measured in their own laboratory before having sent to the pilot laboratory

#### GT - RF 75-A3

| Room temperature (°C)                                                  | -                                                    | 23 <u>+</u> 0.5                                                     | 20.5 ± 0.5                                           |  |
|------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|--|
| Room relative humidity (1)                                             |                                                      | < 50 %                                                              | 40 <u>+</u> 5                                        |  |
| Measuring method                                                       | <b>2</b> 0                                           | Dual channel audio frequ. subst.,<br>with voltage ratio transformer | Modulated sub-carrier<br>technique                   |  |
| Measuring frequency (GHz)                                              | 15                                                   | 15.000 ± 0,001                                                      | 15.0000000 ± 0.0000002                               |  |
| VSWR of the measuring system                                           | < 1.01                                               | <u>≤</u> 1.015                                                      | <u>≤</u> 1.007                                       |  |
| Designation of the standard                                            | NBS - 0,1 dB                                         | NCM - 10 - 01                                                       | 18 S 2                                               |  |
| RF power fed into the standard (mW)                                    |                                                      | < 0.1                                                               | 0.001                                                |  |
| VSWR of the standard input<br>( <sup>+</sup> switched position) output | 1.025 1.031 <sup>+</sup><br>1.041 1.043 <sup>+</sup> | $\leq 1.04 \leq 1.05^{+}$<br>$\leq 1.04 \leq 1.11^{+}$              | 1.055 1.035 <sup>+</sup><br>1.053 1.045 <sup>+</sup> |  |
| Number of measurements                                                 | -                                                    | 10                                                                  | 50                                                   |  |
| Mean value of attenuation (dB)                                         | 0.1128                                               | 10.7372                                                             | 21.1787                                              |  |
| Standard deviation (dB)                                                |                                                      | 0.0034                                                              | 0.0005                                               |  |
| Standard deviation of the mean (dB)                                    | 0.0007                                               | 0.0011                                                              | 0.00007                                              |  |
| Minimum value measured (dB)                                            | •                                                    | 10.7334                                                             | 21.1773                                              |  |
| Maximum value measured (dB)                                            | " ) <del>.</del>                                     | 10.7442                                                             | 21.1797                                              |  |
| Estimated systematical uncertainty (dB)                                |                                                      | ≤ 0.01                                                              | 0.002                                                |  |
| Measuring period                                                       | September 1980                                       | December 1979                                                       | September 1979                                       |  |

#### 2. Measuring results for all transfer-standards

#### ATTENUATION IN WAVEGUIDE R 140 AT 15 GHz

#### Pilot laboratory: PTB

#### measured in the pilot-laboratory (first

measurement of the p.1.)

GT - RF 75-A3

|                                    | _ |                        |
|------------------------------------|---|------------------------|
| Room temperature ( <sup>0</sup> C) | : | 23 + 0.5               |
| Room relative humidity (%)         | • | 50 ± 10                |
| Measuring method                   | : | POWER                  |
| Measuring frequency                | : | 15.000 000 ± 0.000 015 |
| VSWR of the measuring system       | : | ≦ 1.01                 |

|                                                                         | and the second se |                                                                       |                                                      |                                                      |                                                      |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Designation of the standard                                             | PTB 2.22-481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NBS - 0.1                                                             | NOM - 10-01                                          | RSRE 18 S 2                                          | PTB 2.22-311                                         |
| Nominal value of attenuation (dB)                                       | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                                                   | 10                                                   | 20                                                   | 40                                                   |
| RF power fed into the standard (mW)                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                    | 10                                                   | 10                                                   | 1000**                                               |
| VSWR of the standard input<br>( <sup>+</sup> =switched position) output | < 1,01 < 1.01 <sup>+</sup><br>< 1.01 < 1.01 <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{rrr} 1.025 & 1.03^{+} \\ 1.035 & 1.04^{+} \end{array}$ | 1.025 1.015 <sup>+</sup><br>1.015 1.090 <sup>+</sup> | 1.060 1.035 <sup>+</sup><br>1.055 1.045 <sup>+</sup> | 1,065 1.065 <sup>+</sup><br>1,065 1.065 <sup>+</sup> |
| Number of measurements                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                    | 10                                                   | 10                                                   | 10                                                   |
| Mean value of attenuation (dB)                                          | 0.01144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1012                                                                | 10.745                                               | 21.1768                                              | 40.1310                                              |
| Standard deviation (dB)                                                 | 0.00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00007                                                               | 0.0022                                               | 0.00020                                              | 0.0005                                               |
| Standard deviation of the mean (dB)                                     | 0.000003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000022                                                              | 0.0007                                               | 0.00006                                              | 0.00016                                              |
| Minimum value measured (dB)                                             | 0.01142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.10107                                                               | 10.741 21,1760                                       |                                                      | 40.1300                                              |
| Maximum value measured (dB)                                             | 0.01147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,10129                                                               | 10.748                                               | 21.1776                                              | 40,1323                                              |
| Estimated systematical uncertainty (dB)                                 | ± 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>+</u> 0.004                                                        | ± 0.004                                              | <u>+</u> 0.005                                       | ± 0.008                                              |

\*\* The power dependence of the standard between 10 mW and 1000 mW power input is < 0.001 dB</p>

.....

Measuring period: 2.6. - 4.7.1980 10.11.1980 (NBS-0.1) Measurement-results of the OMH (Hungary)

14

ATTENUATION IN WAVEGUIDE R 140 AT 15 GHz

Pilot laboratory: PTB

(T)

4.

a. 1

GT - RF 75-A3

|                                              | -         |         |                              |                  |                    |              |
|----------------------------------------------|-----------|---------|------------------------------|------------------|--------------------|--------------|
|                                              | R         | ROOM TH | EMPERATURE ( <sup>O</sup> C) |                  |                    |              |
| i.                                           | R         | ROOM RE | ELATIVE HUMIDITY             |                  |                    |              |
|                                              | М         | MEASURI | ING METHOD                   | : Audio frequent | uency substitution |              |
|                                              | М         | IEASUR  | ING FREQUENCY (MH            | .1               |                    |              |
|                                              | v         | SWR OF  | F THE MEASURING S            | SYSTEM : 🛓 1.01  |                    |              |
| Designation of the standar <b>d</b>          | PTB-2,22- | -481    | NBS-0.1                      | NOM 10-01        | RSRE 18-S2         | PTB 2.22-311 |
| Nominal value of attenuation (dB)            | 0.01      |         | 0,1                          | 10               | 20                 | 40           |
| RF power fed into the standard (mW)          | 0.01      |         | 0.01                         | 0.01             | 0.01               | 0.01         |
| VSWR of the standard                         | -         |         | -                            | ~                | -                  | =            |
| Number of measurements                       | 10        |         | 11                           | 12               | 10                 | 10           |
| Mean value of attenuation (dB)               | 0.01163   |         | 0.10168                      | 10,7626          | 21.1722            | 40.1276      |
| Standard deviation (dB)                      | 0.00031   |         | 0.00023                      | 0.0016           | 0.0010             | 0.0063       |
| Standard deviation of the mean (dB)          | 0,00010   |         | 0.00007                      | 0.0005           | 0.0003             | 0.0020       |
| Minimum measured value (dB)                  | -         |         | -                            | -                | -                  | -            |
| Maximum measured value (dB)                  | -         |         | -                            | -                | -                  | -            |
| Estimated systematical un-<br>certainty (dB) | 0.0005    |         | 0.0015                       | 0.007            | 0.013              | 0.025        |

Measuring period: March - April 1981

4. Measurement results in the IEN (Italy)

# ATTENUATION IN WAVEGUIDE R 140

Pilot laboratory: PTB

| AI  | 12 | GH   | Ζ  |
|-----|----|------|----|
| GT- | RF | 75-1 | ٩3 |

|                                          | -              | ROOM T<br>ROOM F<br>MEASUF<br>MEASUF<br>VSWR ( | TEMPERATURE ( <sup>O</sup> C)<br>RELATIVE HUMIDITY<br>RING METHOD<br>RING FREQUENCY (C<br>DF THE MEASURING | : 23 <u>+</u> 1<br>(%) : 70 <u>+</u> 5<br>: a) Power<br>b) Paral<br>(A = 2<br>GHz) : 15.0000 <u>-</u><br>SYSTEM : 1.01 | ratio (A <u>≤</u> 10 dB)<br>le] IF substitution<br>20 dB, 40 dB)<br><u>+</u> 0.0005 |                |
|------------------------------------------|----------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------|
| Designation of the transfer standard     | PTB 2.22       | - 481                                          | NBS - 0.1                                                                                                  | NOM 10 - 01                                                                                                            | RSRE 18-S 2                                                                         | PTB 2.22 - 311 |
| Nominal value of<br>the attenuation (dB) | 0.01           |                                                | 0.1                                                                                                        | 10                                                                                                                     | 20                                                                                  | 40             |
| RF power fed into<br>the standard (mW)   | <u>≤</u> 3 mW  |                                                | ≦ 3 mW                                                                                                     | <u>≤</u> 3 mW                                                                                                          | <u>≤</u> 10 μW                                                                      | <u>≤</u> 10 µW |
| Number of measure-<br>ments              | 10             |                                                | 10                                                                                                         | 10                                                                                                                     | 10                                                                                  | 10             |
| Mean value of attenu-<br>ation (dB)      | 0.011          | 7                                              | 0.1018                                                                                                     | 10.751                                                                                                                 | 21.217                                                                              | 40.080         |
| Standard deviation<br>(dB)               | 0.001          |                                                | 0.0008                                                                                                     | 0.004                                                                                                                  | 0.002                                                                               | 0.006          |
| Standard deviation of the mean (dB)      | 0.0003         |                                                | 0.0002                                                                                                     | 0.001                                                                                                                  | 0.0007                                                                              | 0.002          |
| Minimum measured<br>value (dB)           | 0.0095         |                                                | 0.1004                                                                                                     | 10.742                                                                                                                 | 21.212                                                                              | 40.071         |
| Maximum measured<br>value (dB)           | 0.014          | 1                                              | 0.1025                                                                                                     | 10.757                                                                                                                 | 21.218                                                                              | 40.087         |
| Estimated systematic<br>uncertainty (dB) | <u>+</u> 0.002 |                                                | <u>+</u> 0.003                                                                                             | <u>+</u> 0.01                                                                                                          | <u>+</u> 0.05                                                                       | + 0.09         |

Measuring period; March, April 1982

5. L Re-measurement in the pilot laboratory

#### ATTENUATION IN WAVEGUIDE R 140 at 15 GHz

Pilot laboratory: PTB

#### GT-RF 75-A3

| *                                             |                                                        | ROOM TEMPERATURE<br>ROOM RELATIVE HUM<br>MEASURING METHOD |                                                       |                                                       |                                                                       |  |  |
|-----------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|--|--|
|                                               |                                                        | MEASURING PREQUEN                                         | MEASURING FREQUENCY (GHz) ; 15,000 000 + 0.000 015    |                                                       |                                                                       |  |  |
|                                               |                                                        | VSWR OF THE MEASU                                         | RING SYSTEM : ≤ 1                                     | .01                                                   | ×                                                                     |  |  |
| Designation of the transfer standard          | PTB - 2,22 - 481                                       | NBS-0.1                                                   | NOM 10-01                                             | R\$RE 18-S-2                                          | РТВ - 2.22 - 311                                                      |  |  |
| Nominal value of<br>attenuation (dB)          | 0.01                                                   | 0.1                                                       | 10                                                    | 20                                                    | 40                                                                    |  |  |
| RF power fed into<br>the standard (mW)        | 10                                                     | 10                                                        | 10                                                    | 10                                                    | 1000++)                                                               |  |  |
| VSWR of the input<br>transfer standard output | < 1.01 < 1.01 <sup>+)</sup><br>1.01 1.01 <sup>+)</sup> | 1.025 1.03 <sup>+)</sup><br>1.03 1.035 <sup>+)</sup>      | 1.025 1.015 <sup>+)</sup><br>1.011 1.09 <sup>+)</sup> | 1.06 1.035 <sup>+)</sup><br>1.065 1.055 <sup>+)</sup> | $\begin{array}{rrr} 1.06 & 1.06^{+)} \\ 1.06 & 1.06^{+)} \end{array}$ |  |  |
| Number of measure-<br>ments                   | 10                                                     | 10                                                        | 10                                                    | 10                                                    | 10                                                                    |  |  |
| Mean value of<br>attenuation (dB)             | 0.01143                                                | 0.10080                                                   | 10.745                                                | 21.1748                                               | 40.1287                                                               |  |  |
| Standard deviation<br>(dB)                    | 0.00001                                                | 0.00010                                                   | 0.0022                                                | 0.0003                                                | 0.0005                                                                |  |  |
| Standard deviation<br>of the mean (dB)        | 0.000003                                               | 0.00003                                                   | 0.0007                                                | 0.00009                                               | 0.00016                                                               |  |  |
| Minimum measured<br>value (dB)                | 0.01141                                                | 0.10062                                                   | 10.742                                                | 21.1742                                               | 40.1279                                                               |  |  |
| Maximum measured<br>value (dB)                | 0.01146                                                | 0.10091                                                   | 10.749                                                | . 21.1751                                             | 40.1299                                                               |  |  |
| Estimated systematic uncertainty (dB)         | <u>+</u> 0.0005                                        | + 0.001                                                   | <u>+</u> 0.004                                        | <u>+</u> 0.005                                        | + 0.005                                                               |  |  |

1

+) switched position

Measuring period: 21.5.82 - 8.6.82

.

 $\mathbf{x}^{\dagger}$ 

++) the power dependence of the attenuation value of the transfer standard is smaller than 0.001 dB/W

E. Measurement in the RSRE

#### ATTENUATION IN WAVEGUIDE R 140 at 15 GHz

14

Pilot laboratory : PTB

GT-RF 75-A3

|                                                              |                                                         | ROOM TEMPERATU                                                                | IRE ( <sup>O</sup> C)                                   | : 21.0 ± 0.5                                                      |                                                      |                                                                     |                                              |                                                                    |                                                      |                                                                          |
|--------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|
|                                                              |                                                         | ROOM RELATIVE                                                                 | HUMIDITY (%)                                            | : 40 + 5                                                          |                                                      |                                                                     |                                              |                                                                    |                                                      |                                                                          |
|                                                              | -                                                       | MEASURING METH                                                                | IODS .                                                  | : a) Modulated<br>(SC)<br>b) Voltage ra                           | subcarrier meth                                      | nod<br>)                                                            |                                              |                                                                    |                                                      |                                                                          |
|                                                              |                                                         | MEASURING FREQ                                                                | UENCY (GHz)                                             | : 15.000 000 00                                                   | + 0.000 000 1                                        | 5                                                                   |                                              |                                                                    |                                                      |                                                                          |
|                                                              |                                                         | REFLECTION COE<br>MEASURING SYST                                              | FFICIENT OF THE                                         | : < 0.0035                                                        |                                                      |                                                                     |                                              |                                                                    |                                                      |                                                                          |
| Designation of the<br>transfer standard                      | I. PTB - 2.22                                           | - 481                                                                         | NBS - 0,1                                               |                                                                   | NOM-10 - 01                                          | 3                                                                   | RSRE 18-S-2                                  |                                                                    | PTB - 2.22                                           | 2 - 311                                                                  |
| Nominal value of attenuation (dB)                            | 0.01                                                    |                                                                               | 0.1                                                     |                                                                   | 10                                                   |                                                                     | 20                                           |                                                                    | 40                                                   |                                                                          |
| RF power fed into the standard (mW)                          | 0.0001                                                  |                                                                               | 0.0001                                                  |                                                                   | 0.0001                                               |                                                                     | 0.0001                                       | *                                                                  | 0.0001                                               |                                                                          |
| Reflection coefficient input of the transfer standard output | 0.006 e <sup>-1.71j</sup><br>0.004 e <sup>-0.976j</sup> | <sup>+)</sup><br>0.005 e <sup>-1.5j</sup><br>+)<br>0.004 e <sup>-0.396j</sup> | 0.014 e <sup>-2.08</sup> j<br>0.020 e <sup>2.84</sup> j | +)<br>0.014 e <sup>-2.17j</sup><br>+)<br>0.022 e <sup>2.86j</sup> | 0,011 e <sup>2.26j</sup><br>0.014 e <sup>2.90j</sup> | +)<br>0.010 e <sup>0.759</sup> j<br>+)<br>0.042 e <sup>1.14</sup> j | 0.025 ≥ 0.412j<br>0.023 ≥ <sup>0.079</sup> j | +)<br>0.020 e <sup>-1.06j</sup><br>+)<br>0.022 e <sup>0.040j</sup> | 0.029 e <sup>-2.80</sup><br>0.031 e <sup>-2.36</sup> | 0j +)<br>0.030e <sup>-2,75</sup> j<br>5j +)<br>0.032e <sup>-2.37</sup> ; |
| Measuring method                                             | SC                                                      | ٧R                                                                            | SC                                                      | VR                                                                | SC                                                   | VR                                                                  | SC                                           | ٧R                                                                 | SC                                                   | VR                                                                       |
| Number of measurements                                       | 20                                                      | 40                                                                            | 10                                                      | 40                                                                | 20                                                   | 44                                                                  | 10                                           | 20                                                                 | 10                                                   | 30                                                                       |
| l'ean value of attenuation (dB)                              | 0.01132                                                 | 0.01149                                                                       | 0.10039                                                 | 0.10011                                                           | 10.7552                                              | 10.7561                                                             | 21.1786                                      | 21.1768                                                            | 40.1331                                              | 40.1300                                                                  |
| Standard deviation (dB)                                      | 0.00018                                                 | 0.00014                                                                       | 0.00008                                                 | 0.00022                                                           | 0.0028                                               | 0.0040                                                              | 0.00016                                      | 0.00017                                                            | 0.00079                                              | 0.00047                                                                  |
| Standard deviation of the mean $(2B)$                        | 0.00004                                                 | 0.00002                                                                       | 0.00002                                                 | 0,00003                                                           | 0.0006                                               | 0.0006                                                              | 0.00005                                      | 0.00004                                                            | 0.00025                                              | 0.0009                                                                   |
| Minimum measured value (dB)                                  | 0.01104                                                 | 0.01102                                                                       | 0.10029                                                 | 0.09959                                                           | 10.7505                                              | 10.7483                                                             | 21.1782                                      | 21.1765                                                            | 40.1317                                              | 40.1292                                                                  |
| laximum measured value (dB)                                  | 0.01156                                                 | 0.01184                                                                       | 0.10047                                                 | 0.10060                                                           | 10.7598                                              | 10.7636                                                             | 21.1787                                      | 21.1771                                                            | 40.1343                                              | 40.1307                                                                  |
| Estimated systm. uncertainty (35% confidence level) dB       | <u>+</u> 0.0002                                         | <u>+</u> 0.0002                                                               | <u>+</u> 0.0003                                         | <u>+</u> 0.0003                                                   | <u>+</u> 0.003                                       | <u>+</u> 0:003                                                      | <u>+</u> 0.002                               | <u>+</u> 0.002                                                     | <u>+</u> 0.003                                       | <u>+</u> 0.003                                                           |

+) switched position

Measuring period: September, October 1982

7. Measurement in the NBS (U.S.A.)

ATTENUATION IN WAVEGUIDE R 140

Pilot laboratory: PTB

AT 15 GHz

GT-RF 75-A3

| ja<br>Det                                  | ROOM TEMP<br>ROOM RELA<br>MEASURING<br>MEASURING<br>VSWR OF T<br>SYSTEM |                  |                |                |                |
|--------------------------------------------|-------------------------------------------------------------------------|------------------|----------------|----------------|----------------|
| Designation of the standa                  | rd PTB-2.2                                                              | 2-481 NBS-0.1    | NOM-10-0.1     | RSRE-18-52     | PTB-2.22-311   |
| Nominal value of attenuat (dB)             | ion 0.01                                                                | 0.1              | 10             | 20             | 40             |
| RF power fed into the sta<br>dard (mW)     | n- ≦ 0.00                                                               | 02 ≤ 0.0002      | ≦ 0.0002       | ≦ 0.0002       | ≦ 0.0002       |
| Number of measurements                     | 10                                                                      | 10               | 10             | 20             | 25             |
| Mean value of attenuation (dB)             | 0.0112                                                                  | 0.1112           | 10.739         | 21.159         | 40.110         |
| Standard deviation (dB)                    | deviation (dB) 0.0004                                                   |                  | 0.0024         | 0.0024         | 0.0049         |
| Standard deviation of the mean (dB)        | 0.0001                                                                  | 0.0002           | 0.0008         | 0.0008         | 0.0010         |
| Minimum measured value (d                  | B) 0.0108                                                               | 0.1104           | 10.736         | 21.156         | 40.102         |
| Maximum measured value (d                  | B) 0.0116                                                               | 0.1121           | 10.743         | 21.163         | 40.117         |
| Estimated systematic un-<br>certainty (dB) | + 0.00                                                                  | 5 <u>+</u> 0.005 | <u>+</u> 0.015 | <u>+</u> 0.015 | <u>+</u> 0.028 |

Measuring period: 9.2.83 - 7.3.83

# 8. Last re-measurement in the pilot laboratory

ATTENUATION ON WAVEGUIDE R 140

# Pilot laboratory: PTB

at 15 GHz

GT-RF 75-A3

|                                                                            | ROC<br>ROC<br>MEA<br>MEA<br>VSW<br>SYS | ROOM TEMPERATURE: $23 \pm 0.5$ ROOM RELATIVE HUMIDITY: $50 \pm 20$ (controlling system defect)MEASURING METHOD: POWER RATIOMEASURING FREQUENCY (GHz):15.000 000 $\pm$ 0.000 015VSWR OF THE MEASURING: $\leq 1.01$ SYSTEM |                    |                             |                         |                        |  |  |
|----------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------|-------------------------|------------------------|--|--|
| Designation of the standard                                                |                                        | PTB-2.22-481                                                                                                                                                                                                             | INBS - 0.1         | NOM-10-0.1                  | RS RE-18-S2             | РТВ-2-22-311           |  |  |
| Nominal value of attenuation (dB)                                          | • •                                    | 0.01                                                                                                                                                                                                                     | 0.1                | 10                          | 20                      | 40                     |  |  |
| RF power fed into the stan-<br>dard (mW)                                   |                                        | 10                                                                                                                                                                                                                       | 10                 | 10                          | 10                      | 40                     |  |  |
| VSWR of the input (O dB, A dB)<br>transfer<br>standard output (O dB, A dB) |                                        | <1.01 <1.01<br>1.02 1.02                                                                                                                                                                                                 | 1.021.0251.0451.05 | 1.02 1.03<br>1.01 1.09      | 1.06 1.04<br>1.06 1.055 | 1.06 1.06<br>1.06 1.06 |  |  |
| Number of measurements                                                     |                                        | 10                                                                                                                                                                                                                       | 10                 | 10                          | 10                      | 10                     |  |  |
| Mean value of attenuation (d                                               | B)                                     | 0.01150                                                                                                                                                                                                                  | 0.1011             | 10.744                      | 21.1745                 | 40.1286                |  |  |
| Standard deviation (dB)                                                    |                                        | 0.00011                                                                                                                                                                                                                  | 0.00016            | 0.002                       | 0.00014                 | 0.00025                |  |  |
| Standard deviation of the mean (dB)                                        |                                        | 0.00003                                                                                                                                                                                                                  | 0.00005            | 0.0007                      | 0.00004                 | 0.00008                |  |  |
| Minimum measured value (dB)                                                |                                        | 0.01127                                                                                                                                                                                                                  | 0.10080            | 10.740                      | 21.1742                 | 40.1283                |  |  |
| Maximum measured value (dB)                                                |                                        | 0.01165                                                                                                                                                                                                                  | 0.10131            | 10.747                      | 21.1747                 | 40.1291                |  |  |
| Estimated systematic un-<br>certainty (dB), 95%                            |                                        | <u>+</u> 0.0005                                                                                                                                                                                                          | <u>+</u> 0.001     | <u>+0.004</u> <u>+0.005</u> |                         | <u>+</u> 0.005         |  |  |

Measuring period: 28.04.83 - 11.05.83

# 9. Last re-measurent of the owen transfer-

standards at OMH and RSRE

# ATTENUATION IN WAVEGUIDE R 140 AT 15 GHz

# GT-RF 75-A 3

| Designation of the standard<br>(home laboratory) | OMH 10 - 01 (OMH)               | UK 18-S-2 (RSRE)                          | NBS - 0.1                 |
|--------------------------------------------------|---------------------------------|-------------------------------------------|---------------------------|
| Room temperature ( <sup>O</sup> C)               | 23.0 ± 0.5                      | 21.0 <sup>±</sup> 0.5                     | 23.0                      |
| Room relative humidity (%)                       | 50 <sup>±</sup> 10              | 40 <sup>±</sup> 5                         | 40                        |
| Measuring method                                 | AUDIO FREQUENCY<br>SUBSTITUTION | VOLTAGE RATIO                             | RF SERIES<br>SUBSTITUTION |
| Measuring frequency (GHz)                        | 15.0000 ± 0.0001                | 15.000 000 000 <sup>+</sup> 0.000 000 150 | 15.0000±0.0015            |
| VSWR of measuring system                         | 1.01                            | <b>≤</b> 1.007                            | ¥.02                      |
| RF power fed into the standard (mW)              | 0.01                            | 0.0001                                    | ≨ 0.2                     |
| Number of measurements                           | 10                              | 20                                        | not given                 |
| MEAN VALUE OF ATTENUATION (dB)                   | 10.7556                         | 21.1775                                   | 0.1024                    |
| Standard deviation (dB)                          | 0.0020                          | 0.00020                                   | not given                 |
| Standard deviation of the mean (dB)              | 0.0006                          | 0.00005                                   | 0.0005                    |
| Minimum measured value (dB)                      | 17.7538                         | 21.1771                                   |                           |
| Maximum measured value (dB)                      | 17.7592                         | 21.1779                                   |                           |
| Estimated systematic<br>uncertainty (dB), 95%    | ± 0.007                         | ± 0.002                                   | ± 0.005                   |
| Measuring period                                 | January 1984                    | AugSept. 1983                             | June 19, 1984             |