YTTERBIUM ($\lambda \approx 467$ nm)

Absorbing ion 171 Yb⁺, 2 S_{1/2} (F = 0, m_F = 0) $- {}^{2}$ F_{7/2} (F = 3, m_F = 0) transition

1. CIPM recommended values

The values $f = 642 \ 121 \ 496 \ 772.3 \ \text{kHz}$ $\lambda = 466 \ 878 \ 090.060 \ 7 \ \text{fm}$ with a relative standard uncertainty of 1.6×10^{-12} apply to the octupole transition after correction for the ac Stark shift and second-order Zeeman shift.

2. Source data

Adopted value	<i>f</i> = 642 121 496 772.3 (1.0) kHz	$u_{\rm c}/y = 1.6 \times 10^{-12}$
	for which:	
	$\lambda = 466\ 878\ 090.060\ 7\ (7)\ \mathrm{fm}$	$u_{\rm c}/y = 1.6 \times 10^{-12}$

calculated from

f/kHz	$u_{\rm c}/y$	source data
642 121 496 771.69	4.4×10^{-13}	[1]
642 121 496 772.69	2.5×10^{-13}	[1]
642 121 496 771.55	3.3×10^{-13}	[1]
Unweighted mean:	<i>f</i> = 642 121 496 772.3 kHz	

Due to the range of values relative to the combination of individual uncertainties, the uncertainty was derived by treating the three results as a rectangular distribution leading to a value of 0.6 kHz (9.3 × 10^{-13}). In light of the fact that these measurements are from one laboratory only, the CCL considered it prudent to attribute a standard uncertainty of 1 kHz (1.6×10^{-12}).

3. References

[1] NPL Report CBTLM 28