<u>BIPM comparison BIPM.RI(II)-K1.Zn-65 of</u> <u>activity measurements of the radionuclide ⁶⁵Zn for the BARC (India) with linked</u> results for the CCRI(II)-K2.Zn-65 comparison

C. Michotte, G. Ratel, S. Courte and L. Joseph¹ BIPM, Sèvres and ¹Bhabha Atomic Research Centre (BARC), India

Abstract

A new participation in the BIPM.RI(II)-K1.Zn-65 comparison has been added to the previous results. A link has been made to the CCRI(II)-K2.Zn-65 comparison held in 2003 through the measurement of all ampoules of the K2 comparison in the International Reference System (SIR) at the BIPM before despatch to the participants. This has produced a revised value for the key comparison reference value (KCRV), calculated using the powermoderated weighted mean. Six NMIs used the K2 comparison to update their degree of equivalence. The degrees of equivalence between each equivalent activity measured in the International Reference System (SIR) and the KCRV have been calculated and the results are given in the form of a table for the remaining two NMIs in the BIPM.RI(II)-K1.Zn-65 comparison and the 17 other participants in the CCRI(II)-K2.Zn-65 comparison. A graphical presentation is also given.

1. Introduction

The SIR for activity measurements of γ -ray-emitting radionuclides was established in 1976. Each national metrology institute (NMI) may request a standard ampoule from the BIPM that is then filled with 3.6 g of the radioactive solution. For radioactive gases, a different standard ampoule is used. Each NMI completes a submission form that details the standardization method used to determine the absolute activity of the radionuclide and the full uncertainty budget for the evaluation. The ampoules are sent to the BIPM where they are compared with standard sources of ²²⁶Ra using pressurized ionization chambers. Details of the SIR method, experimental set-up and the determination of the equivalent activity, A_e , are all given in [1].

From its inception until 31 December 2013, the SIR has measured 973 ampoules to give 728 independent results for 67 different radionuclides. The SIR makes it possible for national laboratories to check the reliability of their activity measurements at any time. This is achieved by the determination of the equivalent activity of the radionuclide and by comparison of the result with the key comparison reference value determined from the results of primary standardizations. These comparisons are described as BIPM ongoing comparisons and the results form the basis of the BIPM key comparison database (KCDB) of the CIPM Mutual Recognition Arrangement

(CIPM MRA) [2]. The comparison described in this report is known as the BIPM.RI(II)-K1.Zn-65 key comparison and includes results published previously [3].

In addition, an international comparison was held in 2003 for this radionuclide, CCRI(II)-K2.Zn-65. Seventeen NMIs and one international laboratory took part in this comparison and the measurement of the 18 ampoules of the K2 comparison in the SIR before despatch to the participants enabled the linking of the K2 comparison to the BIPM.RI(II)-K1 comparison. Six NMIs had previously submitted ampoules to the SIR and have updated their results through this CCRI(II) comparison.

2. Participants

The BARC has submitted one ampoule for inclusion in this comparison, updating his result from the CCRI(II)-K2.Zn-65 comparison. The laboratory details are given in Table 1a, with the earlier submissions being taken from [3]. In cases where the laboratory has changed its name since the original submission, both the earlier and the current acronyms are given, as it is the latter that are used in the KCDB. The date of measurement in the SIR is also given in Table 1a and is used in the KCDB and all references in this report.

The eleven NMIs and one international laboratory that took part in the CCRI(II) international comparison, CCRI(II)-K2.Zn-65 in 2003 and are also eligible for the KCDB are shown in Table 1b together with the six laboratories that used this comparison to update their results.

Original acronym	NMI	Full name	Country	Regional metrology organization	Date of measurement at the BIPM YYYY-MM-DD
AAEC	ANSTO	Australian Nuclear Science and Technology Organisation	Australia	APMP	1977-10-17
ASMW*	РТВ	Physikalisch- Technische Bundesanstalt	Germany	EURAMET	1977-11-22* 1978-03-10 1987-12-02
ОМН	МКЕН	Országos Mérésügyi Hivatal	Hungary	EURAMET	1978-10-10 1985-12-05 1995-07-17
-	NPL	National Physical Laboratory	UK	EURAMET	1979-09-06

* another laboratory in the country

Original acronym	NMI	Full name	Country	Regional metrology organization	Date of measurement at the BIPM YYYY-MM-DD
UVVVR	CMI-IIR	Český Metrologický Institut/Czech Metrological Institute, Inspectorate for Ionizing Radiation	Czech Republic	EURAMET	1980-09-03
LMRI BNM- LNHB	LNE- LNHB	Bureau national de métrologie- Laboratoire national Henri Becquerel	France	EURAMET	1982-12-01 1999-11-26
PSPKPR	P3KRBiN **	Pusat Penelitian & Pengembangan Keselamatan Radiasi & Biomedika Nuklir	Indonesia	APMP	1993-09-30
ETL	NMIJ	National Metrology Institute of Japan	Japan	APMP	1994-12-06
-	NIST	National Institute of Standards and Technology	United States	SIM	1999-05-04 2001-11-27
-	BARC	Bhabha Atomic Research Centre	India	APMP	2006-11-29

Table 1a continued.	Details of the participants in the BIPM.RI(II)-K1.Zn-65
---------------------	---

** not a designated institute for Indonesia.

Table 1b. Details of the participants in the 2003 CCRI(II)-K2.Zn-65 to be linked to BIPM.RI(II)-K1.Zn-65

Original acronym	NMI	Full name	Country	Regional metrology organization
-	BARC	Bhabha Atomic Research Centre	India	APMP
_	BEV	Bundesamt für Eich- und Vermessungswesen	Austria	EURAMET

Table 1b continued. Details of the participants in the 2003 CCRI(II)-K2.Zn-65 to be linked to BIPM.RI(II)-K1.Zn-65

Original acronym	NMI	Full name	Country	Regional metrology organization	
-	CMI-IIR	Czech Metrological Institute - Inspectorate for Ionizing Radiation	Czech Republic	EURAMET	
_	CNEA	Comisión Nacional de Energía Atómica	Argentina	SIM	
_	ENEA- INMRIAgenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile - Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti		Italy	EURAMET	
_	IFIN-HH Institutul National de Cercetare - Dezvoltare in Fizica si Inginerie Nucleara- "Horia Hulubei"		Romania	EURAMET	
	IRA	Institut de Radiophysique Appliquée	Switzerland	EURAMET	
-	IRMM	EC-JRC Institute for Reference Materials and Measurements	European Union	EURAMET	
_	KRISS	Korea Research Institute of Standards and Science	Republic of Korea	APMP	
BNM- LNHB	LNE-LNHB Laboratoire national de métrologie et d'essais - Laboratoire national Henri Becquerel		France	EURAMET	
_	LNMRI /IRD	Laboratorio Nacional de Metrologia das Radiaçoes Ionizantes/ Instituto de Radioproteção e Dosimetria	Brazil	SIM	
ОМН	МКЕН	Magyar Kereskedelmi Engedélyezési Hivatal	Hungary	EURAMET	
_	NMIJ	National Metrology Institute of Japan	Japan	APMP	
CSIR-NML	NMISA	National Metrology Institute, South Africa	South Africa	SADCMET	

Original acronym	NMI	Full name	Country	Regional metrology organization
-	NPL	National Physical Laboratory	United Kingdom	EURAMET
_	РТВ	Physikalisch-Technische Bundesanstalt	Germany	EURAMET
_	SMU	Slovensky Metrologicky Ustav	Slovakia	EURAMET
_	VNIIM	D.I. Mendeleyev Institute for Metrology	Russian Federation	COOMET

Table 1b continued. Details of the participants in the 2003 CCRI(II)-K2.Zn-65 to be linked to BIPM.RI(II)-K1.Zn-65

3. NMI standardization methods

Each NMI that submits ampoules to the SIR has measured the activity either by a primary standardization method or by using a secondary method, for example a calibrated ionization chamber. In the latter case, the traceability of the calibration needs to be clearly identified to ensure that any correlations are taken into account.

A brief description of the standardization methods used by the laboratories, the activities submitted, the relative standard uncertainties (k = 1) and the half-life used by the participants for the SIR are given in Table 2. The uncertainty budget for the new submission from BARC is given in Appendix 1, previous uncertainty budgets are given in the earlier K1 report [3]. The uncertainty budgets for all the participants in the CCRI(II)-K2.Zn-65 comparison are given in Appendix 2. The acronyms used for the measurement methods are given in Appendix 3.

The half-life used by the BIPM is 244.1(2) days [4], which is in agreement with 244.01(9) d, the value published in the BIPM Monographie 5 [5]. The SIR data could be revised using the new half-life. However, the updated degrees of equivalence would not differ significantly as the SIR measurements were performed within a few weeks following the reference date. In the extreme case of 250 days for the CCRI(II)-K2 ampoules measured in the SIR, the relative change in A_e would be about 2.6×10^{-4} . The half-life used in the CCRI(II)-K2.Zn-65 comparison is 244.26(26) d [6].

NMI	Method used and acronym (see Appendix 3)	Half-life /d	Activity A _i / kBq	Reference date	Relative standard uncertainty / 10 ⁻² by method of evaluation	
				YYYY-MM-DD	А	В
ANSTO	$4\pi\beta$ -γ coincidence 4P-PC-MX-NA-GR-CO	243.8	454.9	1977-10-03 0 h UT	0.20	0.26
РТВ	4πEC-γ coinc. 4P-PC-MX-NA-GR-CO	_	2 793 [†] 2 786	1977-10-01 12 h UT	0.3	0.3
	Pressurized IC * 4P-IC-GR-00-00-00	_	11 326	1978-01-01 0 h UT	0.02	0.14
	Pressurized IC 4P-IC-GR-00-00-00 calibrated in 1980 by 4π PC- γ and	-	4 246	1987-11-01 0 h UT	0.07	0.68
	4πPPC-γ coinc. 4P-PC-MX-NA-GR-CO 4P-PP-MX-NA-GR-CO					
MKEH	$4\pi(x,e_A,\beta^+)-\gamma$ coincidence	244.1(2) [4]	$2\ 015^{\dagger}\ 2\ 016$	1978-10-01 12 h UT	0.05	0.20
	4P-PP-MX-NA-GR-CO	243.9(2) [7]	3 621	1985-12-15 12 h UT	0.05	0.21
		244.26(26) [6]	3 045	1995-07-01 0 h UT	0.05	0.20
NPL	Pressurized IC * 4P-IC-GR-00-00-00	-	5 587 [†] 5 721	1979-09-01 0 h UT	0.12	0.69
CMI-IIR	4πx-γ 4P-PC-MX-NA-GR-CO	243.9	3 521	1980-07-31 10 h UT	0.07	0.67
LNE- LNHB	4πPPC-γ 4P-PP-MX-NA-GR-CO	-	2 290† 2 289	1982-11-08 12 h UT	0.06	0.21
	$4\pi x$ - γ coincidence 4P-PP-XR-NA-GR-CO	244.06(10) [8]	1 877	1999-07-12 12 h UT	0.10	0.20
P3KRBiN	4πPC-γ 4P-PC-MX-NA-GR-CO	_	445.1	1993-09-01 12 h UT	0.20	0.21
NMIJ	$4\pi(x,e_A,\beta^+)-\gamma$ coincidence 4P-PC-MX-NA-GR-CO	-	1 694	1994-12-01 12 h UT	0.11	0.32
NIST	Pressurized IC 4P-IC-GR-00-00-00	244.06(10) [8]	1 712	1999-04-22 19 h UT	0.06	0.63
	calibrated in 1970 using $4\pi(e^+,x)-\gamma$ coincidence 4P-PC-MX-NA-GR-CO		14 859	2001-11-15 12 h UT	0.08	0.63
BARC	$4\pi\beta$ -γ coincidence 4P-PC-BP-NA-GR-CO	243.9	1 582	2006-05-05 6 h 30 UT	0.99	0.36

 Table 2. Standardization methods of the SIR participants for ⁶⁵Zn

[†] two ampoules submitted.
 * calibrated by primary measurements of ⁶⁵Zn in 1977 by the method 4P-PP-MX-NA-GR-CO for the PTB and in 1979 by the method 4P-PC-MX-NA-GR-CO for the NPL.

Details regarding the solutions submitted are shown in Table 3, including any impurities, when present, as identified by the laboratories. When given, the standard uncertainties on the evaluations are shown. The BIPM has developed a standard method for evaluating the activity of impurities using a calibrated Ge(Li) spectrometer [9]. The CCRI(II) agreed in 1999 [10] that this method should be followed according to the protocol described in [11] when an NMI makes such a request or when there appear to be discrepancies. No impurity measurements were carried out at the BIPM in the present case.

NMI / SIR year	Chemical composition	Solvent conc. / (mol dm ⁻³)	Carrier: conc. /(µg g ⁻¹)	Density /(g cm ⁻³)	Relative activity of impurity ^{\dagger}
ANSTO 1977	ZnCl ₂ in HCl	0.1	$ZnCl_2 < 50$	1.00	< 0.1 %
PTB 1977	ZnCl ₂ in HCl	0.1	ZnCl ₂ : 20	-	< 0.1 %
1978			ZnCl ₂ : 30	1.00	< 0.01 %
1987			ZnCl ₂ : ~30	1.00	_
MKEH 1978	ZnCl ₂ in HCl	0.1	Zn: 108	-	⁶⁰ Co: 0.005(1) %
1985			Zn: 40	-	⁶⁰ Co: 0.0050(15) %
1995			ZnCl ₂ : 25	-	_
NPL 1979	ZnCl ₂ in HCl	0.1	ZnCl ₂ : 60	1.001	_
CMI-IIR 1980	ZnCl ₂ in HCl	0.08	ZnCl ₂ : 50	-	< 0.1 %
LNE-LNHB 1982	ZnCl ₂ in HCl	0.11	ZnCl ₂ : 64	1.000	⁷⁵ Se: 0.003(2) % ⁶⁰ Co: 0.007(3) %
1999		0.1	Zn ⁺⁺ : 10	1.001	⁶⁰ Co: 0.0010(1) %
P3KRBiN 1993	ZnCl ₂ in HCl	1	ZnCl ₂ : 10	1.0	_
NMIJ 1994	ZnCl ₂ in HCl	0.1	ZnCl ₂ : 50	1.00	_
NIST 1999	ZnCl ₂ in HCl	1	ZnCl ₂ : 300	1.014(1)	_
2001			ZnCl ₂ : 400	1.014(1)	_
BARC 2006	ZnCl ₂ in HCl	0.1	ZnCl ₂ : 20	1	
CCRI(II)-K2 2003	ZnCl ₂ in HCl	0.5	Zn ⁺⁺ : 20	1.007	_

Table 3. Details of the solution	of ⁶⁵ Zn submitted
----------------------------------	-------------------------------

[†] the ratio of the activity of the impurity to the activity of ⁶⁵Zn at the reference date.

4. **Results**

All the submissions to the SIR since its inception in 1976 are maintained in a database known as the "master-file". The present submission has added one ampoule for the activity measurements for ⁶⁵Zn giving rise to twenty ampoules in total. The SIR equivalent activity, A_{ei} , for each ampoule for the previous and new results is given in Table 4a for each NMI, *i*. The relative standard uncertainty arising from the measurements in the SIR is also shown. This uncertainty is additional to that declared by the NMI for the activity measurement shown in Table 2. Although submitted activities are compared with a given source of ²²⁶Ra, all the SIR results are normalized to the radium source number 5 [1].

NMI / SIR year	Mass of solution /g	Activity submitted A _i / kBq	N° of Ra source used	SIR A _{ei} / kBq	Relative standard uncertainty from SIR	Combined standard uncertainty $u(A_{ei})$ / kBq
ANSTO 1977	3.635 1	454.9	2	29 610	9×10^{-4}	100
PTB 1977	3.510 45 3.501 40	2 793 2 786	3	29 494 29 473	6×10^{-4}	130 130
1978	3.659 5(1)	11 326	4	29 680	$4 imes 10^{-4}$	44
1987	3.627 7	4 246	3	29 670	$5 imes 10^{-4}$	200
MKEH 1978	3.602 0 3.602 7	2 015 2 016	3	29 699 29 691	7×10^{-4}	65 64
1985	3.603 7	3 621	3	29 763	$5 imes 10^{-4}$	66
1995	3.610 0	3 045	3	29 690	5×10^{-4}	63
NPL 1979	3.482 9	5 587	3	29 799	6×10^{-4}	210
	3.566 8	5 721		29 783	$5 imes 10^{-4}$	210
CMI-IIR 1980	3.557 59	3 521	3	29 780	5×10^{-4}	200
LNE-LNHB	3.621 38	2 290	3	29 695	8×10^{-4}	69
1982	3.620 35	2 289		29 682	$7 imes10^{-4}$	67
1999	3.552 07	1 877	2	29 800	9×10^{-4}	69
P3KRBiN 1993	3.537 5	445.1	1	28 540	11×10^{-4}	89
NMIJ 1994	3.595 8	1 694	3	29 750	6×10^{-4}	100
NIST 1999	3.706 8(2)	1 712	3	29 840	6×10^{-4}	190
2001	3.783 9(2)	14 859	4	29 680	$4 imes 10^{-4}$	190
BARC 2006	3.5579 2	1 582	2	29 126	10×10^{-4}	310

Table 4a.Results of SIR measurements of 65 Zn

The BARC SIR measurement was repeated after three months producing the same comparison results.

No recent submission has been identified as a pilot study so the result of each NMI is normally eligible for the key comparison database (KCDB) of the CIPM MRA. However, the P3KRBiN is not a designated laboratory of the Puslit KIM-LIPI, Indonesia, therefore this result is not included in the KCDB.

An international comparison for this radionuclide, CCRI(II)-K2.Zn-65 was held in 2003 and the 18 laboratories from this comparison to be added to the matrix of degrees of equivalence are given in Table 1b.

The results of the CCRI comparison have been linked to the BIPM.RI(II)-K1.Zn-65 comparison through the measurement in the SIR of the 18 ampoules of the K2 comparison, before despatch to the participants. The uncertainties for the CCRI(II) comparison results linked to the SIR are comprised of the original NMI uncertainties combined with the uncertainty of the SIR measurement using the source of ²²⁶Ra number 1 as given in Table 4b. The main contribution to the SIR uncertainty is the statistical uncertainty of the measurement of the ionization current.

Except for the BARC, the results in the CCRI(II)-K2.Zn-65 comparison agree within the combined uncertainty with the corresponding earlier SIR result when available. The BARC result in the SIR improved when comparing with their earlier CCRI(II)-K2.Zn-65 result and agrees with the key comparison reference value within expanded uncertainty (k = 2) as shown below.

NMI	Measurement method and acronym (see Appendix 3)	Activity** concentration / (kBq g ⁻¹)	Activity concentration selected for the KCDB / (kBq g ⁻¹)	Mass of solution in the SIR ampoule / g	Relative standard uncertainty from SIR × 10 ⁻⁴	SIR equivalent activity A _{ei} / kBq	Combined standard uncertainty $u(A_{ei})$ / kBq
BARC [#]	$4\pi IC\gamma$ (efficiency curve obtained in 1982 using BARC standards) 4P-IC-GR-00-00-00	52.77(53)		3.561 89	19	28 480	290
BEV	4πICγ traceable to NPL primary activity standards 4P-IC-GR-00-00-00	55.07(62)		3.630 73	15	29 670	330
CMI-IIR	$4\pi(PC)\beta^+$, e_A , x_e - γ coincidence 4P-PC-MX-NA-GR-CO	55.28(31)		3.605 12	14	29 850	170
CNEA	4π (PPC) β^+ , e_A , x_e - γ coincidence 4P-PP-MX-NA-GR-CO	55.71(23)		3.682 10	14	30 030	130
ENEA	4πICγ 4P-IC-GR-00-00-00	54.92(29) ^a 55.00(29) ^b	54.96(20) ##	3.659 66	17	29 660	120
IFIN-HH	$\begin{array}{l} 4\pi(PC)\beta^{+},e_{A},x_{e}\text{-}\gamma \text{ coincidence }^{h} [18, 19] \\ 4\text{P-PC-MX-NA-GR-CO} \end{array}$	54.78(27)		3.593 39	13	29 550	150
IRA	$4\pi(PC)\beta^+$, e_A , x_e - γ coincidence 4P-PC-MX-NA-GR-CO	55.20(24) ^g		3.607 66	16	29 720	140
IRMM	$4\pi(PPC) \beta^+, e_A, x_e - \gamma \text{ coincidence }^i$ $4P-PP-MX-NA-GR-CO$ $4\pi(LS) CIEMAT/NIST$ $4P-LS-MX-00-00-CN$	55.06(10) 55.1(5)	55.06(10) ##	3.643 16	14	29 661	68

Table 4b.Results of the 2003 CCRI(II) comparison of ⁶⁵Zn and links to the SIR

NMI	Measurement method and acronym (see Appendix 3)	Activity** concentration / (kBq g ⁻¹)	Activity concentration selected for the KCDB / (kBq g ⁻¹)	Mass of solution in the SIR ampoule / g	Relative standard uncertainty from SIR × 10 ⁻⁴	SIR equivalent activity A _{ei} / kBq	Combined standard uncertainty $u(A_{ei})$ / kBq
KRISS	4π (PPC) β^+ , e_A , x_e - γ coincidence 4P-PP-MX-NA-GR-CO	55.20(22)		3.654 34	17	29 780	130
LNE- LNHB ^d	4π(LS) TDCR [20] 4P-LS-MX-00-00-TD	54.92(29)	55.28(22) ^c	3.673 49	15	29 810	130
	$\begin{array}{l} 4\pi(PC)\beta^{+},e_{A},x_{e}-\gamma \text{ anticoincidence [21]} \\ 4\text{P-PC-PO-GH-GR-AC} \\ 4\pi(LS)\beta^{+},e_{A},x_{e}-\gamma \text{ coincidence }^{j} \end{array}$	55.42(22)					
	4P-LS-MX-NA-GR-CO	55.43(31)					
LNMRI /IRD	$4\pi(PC)\beta^+$, e_A , x_e - γ coincidence 4P-PC-MX-NA-GR-CO	55.68(28) ^e	55.68(28)	3.624 85	19	30 040	160
	4π(LS) CIEMAT/NIST 4P-LS-MX-00-00-CN	57.90(32)					
CNEN- IPEN*	$4\pi(PC)\beta^+$, e_A , x_e - γ coincidence 4P-PC-MX-NA-GR-CO	56.00(29) ^f					
MKEH	$4\pi(PPC)\beta^+$, e_A , x_e - γ coincidence and anticoincidence 4P-PP-MX-NA-GR-CO 4P-PP-MX-NA-GR-AC	54.91(20)		3.650 86	14	29 590	120

Table 4b continued. Results of the 2003 CCRI(II) comparison of ⁶⁵Zn and links to the SIR

Measurement method and acronym (see Appendix 3)	Activity** concentration / (kBq g ⁻¹)	Activity concentration selected for the KCDB / (kBq g ⁻¹)	Mass of solution in the SIR ampoule / g	Relative standard uncertainty from SIR × 10 ⁻⁴	SIR equivalent activity A _{ei} / kBq	Combined uncertainty $u(A_{ei})$ / kBq
4π (PC) β^+ , e_A , x_e - γ coincidence 4P-PC-MX-NA-GR-CO	55.12(28)		3.525 77	13	29 700	150
$4\pi(LS)\beta^+$, e_A , x_e - γ coincidence [12] 4P-LS-MX-NA-GR-CO	55.48(17)		3.668 22	16	29 870	110
$\begin{array}{c} 4\pi(PC)\beta^{+}\!,\!e_{A}\!,\!x_{e}\!\!-\!\!\gamma\ coincidence\\ \text{4P-PC-MX-NA-GR-CO}\\ 4\pi(LS)\beta^{+}\!,\!e_{A}\!,\!x_{e}\!\!-\!\!\gamma\ coincidence\ with\ DCC\ ^{k}\\ \text{4P-LS-MX-NA-GR-CO} \end{array}$	55.58(33) 55.58(22)	55.58(18) ##	3.630 22	14	29 990	110
4π (PPC) β^+ , e_A , x_e - γ coincidence 4P-PP-MX-NA-GR-CO 4π (LS) CIEMAT/NIST 4P-LS-MX-00-00-CN	55.14(23) 54.7(6)	55.14(23)	3.625 07	16	29 710	130
4π IC γ calibrated at the PTB in Nov. 2002 4P-IC-GR-00-00-00	54.0(1.2)		3.616 07	15	29 200	670
4π (PC)β ⁺ ,e _A ,x _e -γ coincidence [18] 4P-PC-MX-NA-GR-CO Kx-γ coincidence ^m [22, 23]	55.05(69) 55.17(14)	55.17(14) ##	3.656 33	15	29 727	87
	(see Appendix 3) $4\pi(PC)\beta^{+},e_{A},x_{e}-\gamma \text{ coincidence} 4P-PC-MX-NA-GR-CO 4\pi(LS)\beta^{+},e_{A},x_{e}-\gamma \text{ coincidence [12]} 4P-LS-MX-NA-GR-CO 4\pi(PC)\beta^{+},e_{A},x_{e}-\gamma \text{ coincidence} 4P-PC-MX-NA-GR-CO 4\pi(LS)\beta^{+},e_{A},x_{e}-\gamma \text{ coincidence with DCC}^{k} 4P-LS-MX-NA-GR-CO 4\pi(PPC)\beta^{+},e_{A},x_{e}-\gamma \text{ coincidence} 4P-PP-MX-NA-GR-CO 4\pi(LS) \text{ CIEMAT/NIST} 4P-LS-MX-00-00-CN 4\pi IC\gamma \text{ calibrated at the PTB in Nov. 2002} 4P-IC-GR-00-00-00 4\pi(PC)\beta^{+},e_{A},x_{e}-\gamma \text{ coincidence [18]} 4P-PC-MX-NA-GR-CO$	(see Appendix 3)concentration / (kBq g ⁻¹) $4\pi(PC)\beta^+, e_A, x_e^-\gamma$ coincidence $4P$ -PC-MX-NA-GR-CO $55.12(28)$ $4\pi(LS)\beta^+, e_A, x_e^-\gamma$ coincidence [12] $4P$ -LS-MX-NA-GR-CO $55.48(17)$ $4\pi(PC)\beta^+, e_A, x_e^-\gamma$ coincidence $4\pi(LS)\beta^+, e_A, x_e^-\gamma$ coincidence $4P$ -LS-MX-NA-GR-CO $55.58(33)$ $4P$ -PC-MX-NA-GR-CO $55.58(22)$ $4\pi(PC)\beta^+, e_A, x_e^-\gamma$ coincidence with DCC k $4P$ -LS-MX-NA-GR-CO $55.14(23)$ $4\pi(PC)\beta^+, e_A, x_e^-\gamma$ coincidence $4P$ -LS-MX-NA-GR-CO $55.14(23)$ $4\pi(PC)\beta^+, e_A, x_e^-\gamma$ coincidence $4\pi(LS)$ CIEMAT/NIST $4P$ -LS-MX-00-00-CN $54.7(6)$ $4\pi(PC)\beta^+, e_A, x_e^-\gamma$ coincidence [18] $4P$ -PC-MX-NA-GR-CO $55.05(69)$ $4\pi(PC)\beta^+, e_A, x_e^-\gamma$ coincidence [18] $4P$ -PC-MX-NA-GR-CO $55.05(69)$ $4\pi(PC)\beta^+, e_A, x_e^-\gamma$ coincidence [18] $4P$ -PC-MX-NA-GR-CO $55.17(14)$	$ \begin{array}{ c c c c c } (see Appendix 3) & concentration \\ / (kBq g^{-1}) & concentration \\ / (kBq g^{-1}) & concentration \\ selected for the \\ KCDB \\ / (kBq g^{-1}) & concentration \\ \\ 4\pi (PC)\beta^+,e_A,x_e^-\gamma coincidence \\ 4P-PC-MX-NA-GR-CO & 55.12(28) & \\ 4\pi (PC)\beta^+,e_A,x_e^-\gamma coincidence \\ 4P-PC-MX-NA-GR-CO & 55.58(33) & 55.58(18) ^{\#\#} \\ 4P-PC-MX-NA-GR-CO & 55.58(33) & 55.58(18) ^{\#\#} \\ 4P-PC-MX-NA-GR-CO & 55.58(22) & \\ 4\pi (PPC)\beta^+,e_A,x_e^-\gamma coincidence & 55.14(23) & 55.14(23) \\ 4\pi (PC)\beta^+,e_A,x_e^-\gamma coincidence & 55.14(23) & 55.14(23) \\ 4P-PP-MX-NA-GR-CO & 54.7(6) & \\ 4\pi IC\gamma calibrated at the PTB in Nov. 2002 & 54.0(1.2) & \\ 4\pi (PC)\beta^+,e_A,x_e^-\gamma coincidence [18] & 55.05(69) & 55.17(14) ^{\#\#} & \\ 4P-PC-MX-NA-GR-CO & Kx-\gamma coincidence \\ Kx-\gamma coincidence ^m [22, 23] & 55.17(14) & \\ \end{array}$	$ \begin{array}{ c c c c c } \mbox{(see Appendix 3)} & \begin{tabular}{ c c c c c } \mbox{(see Appendix 3)} & \begin{tabular}{ c c c c c c c } \mbox{(concentration} & \begin{tabular}{ c c c c c c c } \mbox{(concentration} & \begin{tabular}{ c c c c c c c } \mbox{(concentration} & \begin{tabular}{ c c c c c c c c c c c } \mbox{(concentration} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c } \hline (see Appendix 3) & \hline concentration \\ / (kBq g^{-1}) & \hline concentration \\ / (kBq g^{-1}) & \hline concentration \\ selected for the \\ KCDB \\ / (kBq g^{-1}) & \hline concentration \\ results (KCDB \\ / (kBq g^{-1}) & \hline concentration \\ results (KCDB \\ / (kBq g^{-1}) & \hline concentration \\ results (KCDB \\ / (kBq g^{-1}) & \hline concentration \\ results (KCDB \\ / (kBq g^{-1}) & \hline concentration \\ results (KCDB \\ / (kBq g^{-1}) & \hline concentration \\ results (KCDB \\ / (kBq g^{-1}) & \hline concentration \\ results (KCDB \\ / (kBq g^{-1}) & \hline concentration \\ results (KCDB \\ / (kBq g^{-1}) & \hline concentration \\ results (KCDB \\ / (kBq g^{-1}) & \hline concentration \\ results (KCDB \\ / (kBq g^{-1}) & \hline concentration \\ results (KCDB \\ / (kBq g^{-1}) & \hline concentration \\ results (KCDB \\ / (kBq g^{-1}) & \hline concentration \\ results (KCDB \\ / (kBq g^{-1}) & \hline concentration \\ results (KCDB \\ / (kBq g^{-1}) & \hline concentration \\ results (KCDB \\ / (kBq g^{-1}) & \hline concentration \\ results (KCDB \\ results (KCDB \\ / (kBq g^{-1}) & \hline concentration \\ results (KCDB \\ results (KEQ \\ results (KCDB \\ results (KDB \\ results (KDB \\ results (KDB \\ resu$	$ \begin{array}{ c c c c c c c } \hline (see Appendix 3) & \hline concentration \\ / (kBq g^{-1}) & \hline concentration \\ selected for the \\ KCDB \\ / (kBq g^{-1}) & \hline concentration \\ selected for the \\ KCDB \\ / (kBq g^{-1}) & \hline row SIR \\ mpoule \\ / g & \hline rw SIR \\ mpoule \\ / g & \hline rw SIR \\ \times 10^4 & \hline rw SIR \\ / (kBq g^{-1}) & \hline rw SIR \\ / (kHq g^{$

Table 4b continued. Results of the 2003 CCRI(II) comparison of ⁶⁵Zn and links to the SIR

* superseded in the KCDB by the SIR submission in 2006

** weighted mean result

* another laboratory in the country

** referenced to 00:00 UTC 1 January 2003

- ^a IC calibrated in 2002 with another ⁶⁵Zn solution by the 4π (LS) CIEMAT/NIST method.
- ^b IC calibrated in 2002 with another ⁶⁵Zn solution by the 4π (PC) β^+ , e_A , x_e - γ coincidence method.
- ^c weighted mean value with the uncertainty taken as the uncertainty of the anticoincidence measurement
- ^d a value of 54.40 kBq g⁻¹, u = 0.32 kBq g⁻¹ was obtained by γ spectrometry. This motivated the EUROMET action 721 [13] which enabled to update the DDEP data sheet for ⁶⁵Zn in 2006 [5].
- $^{\rm e}~$ obtained with a γ window set between 300 keV and 1250 keV
- $^{\rm f}$ obtained with a γ window set between 970 keV and 1250 keV
- g other determinations were carried out in order to characterise the dependence of the results on the γ emission intensity values used
- ^h a lead absorber of 9 mm thickness was placed between the proportional counter and the scintillation detector to ensure the fulfilment of the linearity conditions
- ⁱ using a 6"x 6"well-type NaI(Tl) scintillation detector in the gamma channel
- ^j using a TDCR system in the beta channel
- ^k with a two-dimensional extrapolation from two γ channels

^m using two NaI(Tl) detectors of different thicknesses to detect the x-rays and the γ -rays respectively under small solid angles

4.1 <u>The key comparison reference value</u>

In May 2013 the CCRI(II) decided to no longer calculate the key comparison reference value (KCRV) by using an unweighted mean but rather by using the power-moderated weighted mean [14]. This type of weighted mean is similar to a Mandel-Paule mean in that the NMIs' uncertainties may be increased until the reduced chi-squared value is one. In addition, it allows for a power smaller than two in the weighting factor. Therefore, all SIR key comparison results can be selected for the KCRV with the following provisions:

- a) only results for solutions standardized by primary techniques are accepted, with the exception of radioactive gas standards (for which results from transfer instrument measurements that are directly traceable to a primary measurement in the laboratory may be included);
- b) each NMI or other laboratory has only one result (normally the most recent result or the mean if more than one ampoule is submitted);
- c) possible outliers can be identified on a mathematical basis and excluded from the KCRV using the normalized error test with a test value of 2.5 and using the modified uncertainties;
- d) results can also be excluded for technical reasons.
- e) The CCRI(II) is always the final arbiter regarding excluding any data from the calculation of the KCRV.

The data set used for the evaluation of the KCRVs is known as the "KCRV file" and is a reduced data set from the SIR master-file. Although the KCRV may be modified when other NMIs participate, on the advice of the Key Comparison Working Group of the CCRI(II), such modifications are made only by the CCRI(II) during one of its biennial meetings, or by consensus through electronic means (e.g., email) as discussed at the CCRI(II) meeting in 2013.

Consequently, the KCRV for ⁶⁵Zn has been calculated as 29 740(43) kBq on the basis of the SIR results from the ASMW (1977), ANSTO, NIST (1999) and the BARC and of the SIR results for the following CCRI(II)-K2 participants: the CMI-IIR, CNEA, IFIN-HH, IRA, IRMM, KRISS, LNE-LNHB, LNMRI/IRD, MKEH, NMIJ, NMISA, NPL, PTB and the VNIIM. The P3KRBiN SIR result has been identified as an outlier. This can be compared with the previous KCRV value of 29 710(40) kBq published in 2004 [3] and the value of 29 694(65) kBq obtained using the SIRIC efficiency curve of the SIR [15, 16] and nuclear data from [5].

4.2 <u>Degrees of equivalence</u>

Every participant in a comparison is entitled to have one result included in the KCDB as long as the NMI is a signatory or designated institute listed in the CIPM MRA, and the result is valid (i.e., not older than 20 years). Normally, the most recent result is the one included. An NMI may withdraw its result only if all other participants agree.

The degree of equivalence of a given measurement standard is the degree to which this standard is consistent with the KCRV [2]. The degree of equivalence is expressed quantitatively in terms of the deviation from the key comparison reference value and

the expanded uncertainty of this deviation (k = 2). The degree of equivalence between any pair of national measurement standards is expressed in terms of their difference and the expanded uncertainty of this difference and is independent of the choice of key comparison reference value.

4.2.1 Comparison of a given NMI result with the KCRV

The degree of equivalence of the result of a particular NMI, i, with the key comparison reference value is expressed as the difference D_i between the values

$$D_i = A_{e_i} - \text{KCRV} \tag{1}$$

and the expanded uncertainty (k = 2) of this difference, U_i , known as the equivalence uncertainty; hence

$$U_i = 2u(D_i). \tag{2}$$

When the result of the NMI *i* is included in the KCRV with a weight w_i , then

$$u^{2}(D_{i}) = (1-2w_{i}) u_{i}^{2} + u^{2}(\text{KCRV}).$$
(3)

However, when the result of the NMI *i* is not included in the KCRV, then

$$u^{2}(D_{i}) = u_{i}^{2} + u^{2}(\text{KCRV}).$$
(4)

4.2.2 *Comparison between pairs of NMI results*

The degree of equivalence between the results of any pair of NMIs, i and j, is expressed as the difference D_{ij} in the values

$$D_{ij} = D_i - D_j = A_{e_i} - A_{e_j}$$
(5)

and the expanded uncertainty (k = 2) of this difference, $U_{ij} = 2u(D_{ij})$, where

$$u_{Dij}^{2} = u_{i}^{2} + u_{j}^{2} - 2u(A_{ei}, A_{ej})$$
(6)

where any obvious correlations between the NMIs (such as a traceable calibration, or correlations normally coming from the SIR or from the linking factor in the case of linked comparison) are subtracted using the covariance $u(A_{ei}, A_{ej})$ (see [17] for more detail). However, the CCRI decided in 2011 that these "pair-wise degrees of equivalence" no longer need to be published as long as the methodology is explained.

Table 5 shows the matrix of all the degrees of equivalence as they will appear in the KCDB. It should be noted that for consistency within the KCDB, a simplified level of nomenclature is used with A_{ei} replaced by x_i . The introductory text is that agreed for the comparison. The graph of the results in Table 5, corresponding to the degrees of equivalence with respect to the KCRV (identified as x_R in the KCDB), is shown in Figure 1. This graphical representation indicates in part the degree of equivalence between the NMIs but obviously does not take into account the correlations between the different NMIs. It should be noted that the final data in this paper, while correct at the time of publication, will become out-of-date as NMIs make new comparisons. The formal results under the CIPM MRA [2] are those available in the KCDB.

Conclusion

The BIPM ongoing key comparison for ⁶⁵Zn, BIPM.RI(II)-K1.Zn-65 currently comprises two results. These have been analysed with respect to the updated KCRV determined for this radionuclide. The results of the CCRI(II)-K2.Zn-65 comparison held in 2003 have been linked to the BIPM comparison through the measurement in the SIR of the ampoules of the K2 comparison, before despatch to the participants. This has enabled the table of degrees of equivalence to include nineteen results in total.

The degrees of equivalence have been approved by the CCRI(II) and are published in the BIPM key comparison database. Further results may be added when other NMIs contribute ⁶⁵Zn activity measurements to the ongoing K1 comparison or take part in other linked comparisons.

Acknowledgements

The authors would like to thank Anuradha and D.B. Kulkarni from the BARC for their participation in this comparison, all the participants in the CCRI(II)-K2.Zn-65 comparison and Dr J.M. Los Arcos of the BIPM for editorial assistance.

References

- [1] Ratel G., The Système International de Référence and its application in key comparisons, *Metrologia*, 2007, 44(4), S7-S16
- [2] CIPM MRA: Mutual recognition of national measurement standards and of calibration and measurement certificates issued by national metrology institutes, International Committee for Weights and Measures, 1999, 45 pp. <u>http://www.bipm.org/en/cipm-mra/</u>.
- [3] Ratel G., Michotte C., BIPM comparison BIPM.RI(II)-K1.Zn-65 of activity measurements of the radionuclide ⁶⁵Zn, *Metrologia*, 2004, **41**, Tech. Suppl., 06014.
- [4] Auble R.L., Nuclear Data Sheets, 1975, 16, 351.
- [5] Bé M.-M., Chisté V., Dulieu C., Browne E., Baglin C., Chechev V., Helmer R., Kondev F., MacMahon T. D., Lee K.B., 2006, Table of radionuclides, <u>Monographie BIPM-5</u>, Vol 3.
- [6] IAEA-TECDOC-619, X-ray and gamma-ray standards for detector calibration, 1991, Vienna, IAEA.
- [7] BNM-CEA, *Table de Radionucléides*, Version 1984, BNM-LNHB, Gif-sur-Yvette.
- [8] BNM-CEA/DTA/DAMRI/LPRI, 1998, *Nucléide*, Nuclear and Atomic Decay Data Version : 1-98 19/12/98 CD ROM, BNM-LNHB, Gif-sur-Yvette.

- [9] Michotte C., Efficiency calibration of the Ge(Li) detector of the BIPM for SIRtype ampoules, *Rapport BIPM*-1999/03, 15 pp.
- [10] Comité Consultatif pour les Étalons de Mesures des Rayonnements Ionisants 16th meeting (1999), 2001, CCRI(II) 81-82.
- [11] Michotte C., Protocol on the use of the calibrated spectrometer of the BIPM for the measurement of impurities in ampoules submitted to the SIR, CCRI(II)/01-01, 2001, 2 pp.
- [12] Van Wyngaardt W.M., Simpson B.R.S., Absolute activity measurement of the electron-capture-based radionuclides ¹³⁹Ce, ¹²⁵I, ¹⁹²Ir and ⁶⁵Zn by liquid scintillation coincidence counting, *Appl. Radiat. Isot.*, 2006, **64**, 1454 - 1458.
- [13] Bé M.-M., Activity measurements and determination of gamma-ray emission intensities in the decay of ⁶⁵Zn, *Appl. Radiat. Isot.*, 2006, 64, 1396 - 1402.
- [14] Pommé S., Determination of a reference value, associated standard uncertainty and degrees of equivalence for CCRI(II) key comparison data, European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, 2012, Report EUR 25355 EN. Errata notice published in the CCRI(II) working document, 2013, CCRI(II)/13-18.
- [15] Cox M.G., Michotte C., Pearce A.K., Measurement modelling of the International Reference System (SIR) for gamma-emitting radionuclides, Monographie BIPM-7, 2007, 48 pp.
- [16] Michotte C., Pearce A.K., Cox M.G., Gostely J.-J., An approach based on the SIR measurement model for determining the ionization chamber efficiency curves, and a study of ⁶⁵Zn and ²⁰¹Tl photon emission intensities, *Appl. Radiat. Isot.*, 2006, 64, 1147 – 1155.
- [17] Michotte C. and Ratel G., Correlations taken into account in the KCDB, CCRI(II) working document, 2003, <u>CCRI(II)/03-29</u>.
- [18] Grigorescu E.L., Sahagia M., Razdolescu A., Ivan C., Standardization of some electron capture radionuclides, *Nucl. Instr. and Meth. in Phys. Res.*, 1996, A369, 414-420.
- [19] Sahagia M., Ivan C., Grigorescu E.L., Capogni M., De Felice P., Fazio A., Standardization of ⁶⁵Zn by the 4piPC-gamma efficiency extrapolation method, *Appl. Radiat. Isot.*, 2004, **60**, 2-4, 423-427.
- [20] Cassette Ph. and Vatin R., Experimental evaluation of TDCR models for the 3 PM scintillation counter, *Nucl. Instr. and Meth.*, 1992, A312, 95-99.
- [21] Bouchard J., "IMPECC" a new beta/gamma coincidence system, *IEEE transactions on Nuclear Sciences*, August 1994, vol. **41**, 4.
- [22] Konstantinov A.A., Sazanova T.E., Sepman S.V., Zanevsky A.V. and Karmalitsyn N.I., *Nucl. Instr. And Meth. in Phys. Res.*, 1994, A339, 200-202.
- [23] Konstantinov A.A., Sazanova T.E., Vyday Yu T., Sepman S.V., Izmeritelnaja Technika, 1989, 6, 51.

 Table 5.
 Table of degrees of equivalence and introductory text for ⁶⁵Zn

Key comparison BIPM.RI(II)-K1.Zn-65

MEASURAND : Equivalent activity of ⁶⁵Zn

Key comparison reference value: the SIR reference value for this radionuclide is $x_R = 29740$ kBq with a standard uncertainty, $u_R = 43$ kBq (see Section 4.1 of the Final Report). The value x_i is the equivalent activity for laboratory *i*.

The degree of equivalence of each laboratory with respect to the reference value is given by a pair of terms: $D_i = (x_i - x_R)$ and U_i , its expanded uncertainty (k = 2), both expressed in MBq, and $U_i = 2((1 - 2w_i)u_i^2 + u_R^2)^{1/2}$ when each laboratory has contributed to the calculation of x_R .

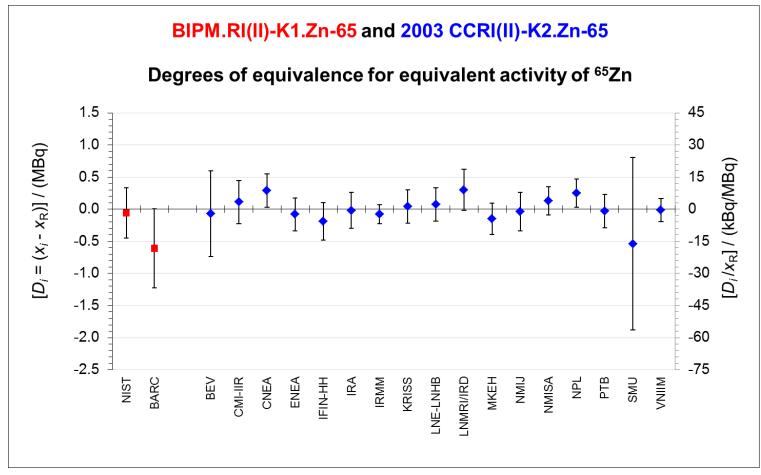
When required, the degree of equivalence between two laboratories is given by a pair of terms: $D_{ij} = D_i - D_j = (x_i - x_j)$ and U_{ij} its expanded uncertainty (k = 2), both expressed in MBq. The approximation $U_{ij} \sim 2(u_j^2 + u_j^2)^{1/2}$ may be used in the following table.

Linking CCRI(II)-K2.Zn-65 (2003) to BIPM.RI(II)-K1.Zn-65

The value x_i is the equivalent activity for laboratory *i* participant in CCRI(II)-K2.Zn-65 whose ampoule was also measured in the SIR (see Final report).

The degree of equivalence of laboratory *i* participant in CCRI(II)-K2.Zn-65 with respect to the key comparison reference value is given by a pair of terms: $D_i = (x_i - x_R)$ and U_{i_i} its expanded uncertainty (k = 2), both expressed in MBq and $U_i = 2((1 - 2w_i)u_i^2 + u_R^2)^{1/2}$ when each laboratory has contributed to the calculation of x_R .

When required, the degree of equivalence between two laboratories *i* and *j*, one participant in BIPM.RI(II)-K1.Zn-65 and one in CCRI(II)-K2.Zn-65, or both participant in CCRI(II)-K2.Zn-65, is given by a pair of terms: $D_{ij} = D_i - D_j$ and U_{ij} , its expanded uncertainty (k = 2),


both expressed in MBq, where the approximation $U_{ij} \sim 2(u_i^2 + u_j^2)^{1/2}$ may be used.

These statements make it possible to extend the BIPM.RI(II)-K1.Zn-65 matrices of equivalence to the other participants in CCRI(II)- K2.Zn-65.

Lab <i>i</i> ✓		
	Di	Ui
	/ N	IBq
NIST	-0.06	0.39
BARC	-0.61	0.61
BEV	-0.07	0.67
CMI-IIR	0.11	0.34
CNEA	0.29	0.26
ENEA	-0.08	0.25
IFIN-HH	-0.19	0.29
IRA	-0.02	0.28
IRMM	-0.08	0.15
KRISS	0.04	0.26
LNE-LNHB	0.07	0.26
LNMRI/IRD	0.30	0.32
MKEH	-0.15	0.24
NMIJ	-0.04	0.30
NMISA	0.13	0.22
NPL	0.25	0.22
РТВ	-0.03	0.26
SMU	-0.54	1.34
VNIIM	-0.01	0.18

Figure 1. Graph of degrees of equivalence with the KCRV for ⁶⁵Zn

(as it appears in Appendix B of the MRA)

N.B. The right hand axis shows approximate values only

Appendix 1. Uncertainty budgets for the activity of ⁶⁵Zn submitted to the SIR

BARC, 2006

Relative standard uncertainties	$u_i \times 10^4$	
	evaluated by method	
Contributions due to	Α	В
counting statistics	50	—
weighing	_	5
dead time	-	3
resolving time of coincidence analyser	—	34
background	_	6
half-life	—	8
extrapolation	85	_
Quadratic summation	99	36
Relative combined standard uncertainty, u_c	1)5

	Laboratory Method					
Uncertainty components		ARC εICγ	ΒΕΝ 4πΙCγ			
	Relative value / (%)	Evaluation method	Relative value / (%)	Evaluation method		
counting statistics	0.45	А	0.37			
weighing			0.05			
background			0.81			
half-life			0.11			
calibration factor	0.8	В	0.67			
source positioning	0.2	В				
source volume	0.2	В				
collection efficiency	0.1	В				
electrometer non-linearity	0.1	В				
wall thickness of source container	0.15	В				
current from radium source	0.1	В				
current measurement			0.10			
Combined uncertainty (as quadratic sum of all uncertainty components)	1.0		1.12			

Appendix 2. Uncertainty budgets for the activity measurements of ⁶⁵Zn in the CCRI(II)-K2.Zn-65 comparison

	Laboratory Method						
	CM	II-IIR	CNEA				
Uncertainty components	4 π(PC)	$\beta^+, e_A, x_e-\gamma$	4π(PPC	$C)\beta^+,e_A,x_e-\gamma$			
		cidence		cidence			
	Relative	Evaluation	Relative	Evaluation			
	value	method	value	method			
	/ (%)		/ (%)				
counting statistics	0.3		0.2				
weighing	0.05		0.15				
dead time	0.01		< 0.01				
background	0.1		0.2				
pile-up	0.01						
resolving time	0.05		0.05				
Gandy effect	0.02						
counting time	0.02		0.01				
adsorption	0.05						
impurities	0.01						
half-life	0.04		0.2				
extrapolation of efficiency curve	0.45		0.16				
Combined uncertainty (as quadratic sum of all uncertainty components)	0.56		0.41				

	Laboratory Method							
Uncertainty components	$\frac{\text{ENEA}}{4\pi \text{IC}\gamma^{1)}}$		ENEA $4\pi IC\gamma^{2}$		IFIN-HH 4π(PC)β ⁺ ,e _A ,x _e -γ coincidence			
	Relative value / (%)	Evaluation method	Relative value / (%)	Evaluation method	Relative value / (%)	Evaluation method		
counting statistics	0.3	А	0.42	А	0.37			
weighing	0.05	А	0.03	В	0.05			
dead time	0.1	В	0.01	В	0.015			
background	0.006	А	0.02	В	0.23 ³⁾			
resolving time			0.01	В	0.003			
Gandy effect			0.01	В				
counting time	0.01	В						
adsorption	0.02	В						
tracer (³ H standard)	0.01	В						
input parameters and statistical model	0.1	В						
quenching	0.1	А						
decay-scheme parameters	0.01	В						
half-life	< 0.01	В			0.013			
photomultipliers asymmetry	0.1	В						
ionization quench	0.2	В						
scintillator stability	0.1	А						
TSIE determination	0.04	А						
mass determination	0.1	В						
extrapolation of efficiency curve					0.22			
ionization chamber measurement	0.3	В	0.3	В				
Combined uncertainty (as quadratic sum of all uncertainty components)	0.53		0.52 ⁴⁾		0.49			

¹⁾ ionization chamber calibrated with another solution standardized by the 4π (LS) CIEMAT/NIST method in 2002.

²⁾ ionization chamber calibrated with another solution standardized by the 4π(PC)β⁺,e_A,x_e-γ coincidence method in 2002 [14].
³⁾ in the γ channel. 0.042 % in the 4π (PC) channel.
⁴⁾ the u_A value is prevalent because of the low coincidence counting rates originating in low counting

efficiencies in the β and γ channels.

	Laboratory Method							
	IR	A	IRMM		IRMM			
Uncertainty	4π(PC)β			$\beta^+, e_A, x_e - \gamma$		MAT/NIST		
components	coinci			dence	(22) 012			
	Relative	Evaluation	Relative	Evaluation	Relative	Evaluation		
	value / (%)	method	value / (%)	method	value / (%)	method		
counting statistics			0.05		0.15)			
weighing	0.03 ⁶⁾	В	0.05		0.1			
dead time	0.001 ⁷⁾	В	< 0.01		0.1			
background	0.31 ⁸⁾	В	< 0.02 ⁹⁾		0.005			
pile-up	10)							
resolving time			< 0.01					
timing	0.002 ¹¹⁾	В						
Gandy effect			0.01					
counting time			< 0.001		0.05			
adsorption			0.06		0.06			
interpolation from calibration curve					0.9			
decay scheme parameters					0.23			
half-life	0.02 ¹²⁾	В	0.02		0.02			
extrapolation of efficiency curve	0.30 ¹³⁾	А	0.17 ¹⁴⁾					
wall effect					0.05			
kB					0.3			
sample stability					0.1			
Combined uncertainty (as quadratic sum of all uncertainty components)	0.43		0.18		1.0			

⁵⁾ for individual measurements.

 $^{6)}\Delta m/m_{\rm min}.$

⁶⁾ Δm/m_{min}.
⁷⁾ Δτ N_{βmax} / (1 - N_{βmax}τ).
⁸⁾ ΔN_{zγ}/N_{γmin}.
⁹⁾ included in counting statistics.
¹⁰⁾ included in type A evaluation.
¹¹⁾ worst case time base error.
¹²⁾ Δdecay factor/decay factor.
¹³⁾ standard deviation of the weighted mean of intercepts for three γ gate settings i.e.: 467 keV - ∞; 561 keV - ∞ and 1015 keV - ∞.
¹⁴⁾ including statistical uncertainty, mass uncertainty, confidence limits.

	Laboratory Method						
Uncertainty components	KR 4π(PPC)		LNE-LNHB 4π(LS) TDCR				
	coinci	dence					
	Relative	Evaluation	Relative	Evaluation			
	value / (%)	method	value / (%)	method			
counting statistics	$0.08^{15)}$		0.1				
weighing	0.07^{16}		0.05				
dead time	0.04 ¹⁷⁾		< 0.01				
background	0.13 ¹⁸⁾		< 0.02				
pile-up			0.03				
resolving time	0.05 ¹⁹⁾		< 0.000001				
counting time	0.01 ²⁰⁾		< 0.01				
adsorption	0.08						
scheme correction							
impurities							
quenching (kB)			0.2				
decay-scheme parameters			0.48 ²¹⁾				
half-life	0.01		0.0059				
extrapolation of efficiency curve	0.34 ²²⁾						
Combined uncertainty (as quadratic sum of all uncertainty components)	0.39		0.53				

¹⁵⁾ standard uncertainty of 7 results. ¹⁶⁾ calculated from $\Delta m/m$. ¹⁷⁾ estimated from measured uncertainty. ¹⁸⁾ calculated from measured uncertainty. ¹⁹⁾ estimated from measured uncertainty. ²⁰⁾ estimated from time distribution. ²¹⁾ $P_{\rm K}$, 0.1 %; $I_{\beta+}$, 0.2 %, $P_{\rm absorption}$ K $_{\alpha}$, 0.3 %; $P_{\rm absorption}$ K $_{\beta}$, < 0.001 %; $P_{\rm absorption}\gamma$, 0.2 %. ²²⁾ from residuals for linear extrapolations.

	Laboratory Method							
		LNHB	$\frac{\text{LNE-LNHB}}{4\pi(\text{LS})\beta^+,e_A,x_e-\gamma}$					
Uncertainty components	-	B ⁺ ,e _A ,x _e -γ ncidence	coinci					
	Relative value / (%)	Evaluation	Relative value / (%)	Evaluation method				
counting statistics	0.23		0.22					
weighing	0.05		0.05					
dead time	23)		24)					
background	0.15	0.15						
pile-up								
resolving time								
counting time	0.01		0.01					
scheme correction	0.13 ²⁶⁾		0.13 ²⁷⁾					
impurities								
quenching (kB)								
decay-scheme parameters								
half-life	0.015		0.015					
extrapolation of efficiency curve	0.24		0.5					
Combined uncertaint y (as quadratic sum of all uncertainty components)	0.39		0.56					

²³⁾ neglected because acquisition of data in live time mode. ²⁴⁾ neglected because acquisition of data in live time mode ²⁵⁾ included in statistics. ²⁶⁾ due to uncertainty of $P_{\rm K}$. ²⁷⁾ due to uncertainty of $P_{\rm K}$.

	Laboratory Method							
	LMNRI/IRD		LMNRI/IRD		CNEN-IPEN			
Uncertainty components	$4\pi(\mathbf{PC})$	$B^+, e_A, x_e - \gamma$	4π	(LS)	4 π(PC)	$\beta^+, e_A, x_e - \gamma$		
Uncertainty components	coinc	idence	CIEMA	AT/NIST	coine	cidence		
	Relative value / (%)	Evaluation method	Relative value / (%)	Evaluation method	Relative value / (%)	Evaluation method		
counting statistics	0.46 ²⁸⁾		0.24		29)			
weighing	0.10		< 0.01		0.1			
dead time	0.17				0.1			
background	0.02				0.3			
resolving time	0.10							
Gandy effect	0.17							
quench determination of ³ H standards			0.23					
³ H counting			0.04					
photomultiplier efficiency loss			0.07					
photomultiplier asymmetry			0.10					
weighing of ³ H samples			< 0.01					
quench determination of ⁶⁵ Zn samples			0.21					
ionization quench			0.10					
³ H activity standardization			0.19					
decay-scheme parameters			0.30		0.14			
half-life	0.02				0.11			
extrapolation of efficiency curve	0.43				0.35			
satellite pulses								
Combined uncertainty (as quadratic sum of all uncertainty components)	0.51		0.55		0.51			

 ²⁸⁾ included in the fitting of efficiency extrapolation curve.
 ²⁹⁾ included in the extrapolation procedure.

	Laboratory Method							
Uncertainty components	MKEH 4π (PPC)β ⁺ ,e _A ,x _e -γ coincidence and anticoincidence		NMIJ 4π(PC)β ⁺ ,e _A ,x _e -γ coincidence		NMISA 4π(LS)β ⁺ ,e _A ,x _e -γ coincidence			
	Relative value / (%)	Evaluation method	Relative value / (%)	Evaluation method	Relative value / (%)	Evaluation method		
counting statistics	0.26		0.1		0.11			
weighing	0.005		0.1		0.02			
dead time	0.005		0.05		0.006			
background	0.05		0.05		0.10			
pile-up			0.05					
resolving time	0.01		0.05		< 0.001			
Gandy effect	0.05		0.1					
counting time	0.005		0.05					
adsorption	0.02		0.05					
impurities	0.04		0.1^{30}		< 0.012			
interpolation from calibration curve			0.1					
decay-scheme parameters			0.1					
half-life	< 0.02		0.1		0.25			
self-absorption			0.1					
extrapolation of efficiency curve	0.25		0.4		0.26			
satellite pulses					0.06			
Combined uncertainty (as quadratic sum of all uncertainty components)	0.37		0.5		0.31			

³⁰⁾ no impurity found by HP Ge spectrometry.

	Laboratory Method				
Uncertainty components	$\frac{\text{NPL}}{4\pi(\text{PC})\beta^+,e_A,x_e-\gamma}$		$\frac{\text{NPL}}{4\pi(\text{LS})\beta^{+}-\gamma}$		
	coincidence		coincidence with DCC		
	Relative	Evaluation	Relative	Evaluation	
	value	method	value	method	
	/ (%)		/ (%)		
counting statistics	0.27		0.23		
weighing	0.05		0.05		
dead time	0.01		0.01		
background	0.05		0.05		
pile-up	< 0.01		< 0.01		
resolving time	0.004		0.004		
Gandy effect	< 0.001		< 0.001		
counting time	< 0.01		< 0.01		
adsorption	0.01		0.01		
impurities	< 0.001		< 0.001		
half-life	0.018		0.01		
extrapolation of efficiency curve	0.52		0.30		
Combined uncertainty (as quadratic sum of all uncertainty components)	0.59		0.39		

	Laboratory Method				
		ГВ	РТВ		
Uncertainty	4π(PC)β ⁺ ,e _A ,x _e -γ coincidence		4π(LS) CIEMAT/NIST		
components					
	Relative	Evaluation	Relative	Evaluation	
	value	method	value	method	
	/ (%)		/ (%)		
counting statistics	0.15		0.061		
weighing	0.03		0.062		
dead time	< 0.02 ³¹⁾		0.1		
background	0.40		0.01		
resolving time	< 0.02 ³²⁾				
Gandy effect	0.02				
counting time	< 0.001 ³³⁾		< 0.01		
impurities	34)				
tracer			0.923		
input parameters and			0.1		
statistical model					
quenching			0.05		
interpolation from calibration curve			35)		
decay-scheme parameters			0.01		
half-life	0.03		0.037 ³⁶⁾		
source stability			0.2		
extrapolation of efficiency curve	0.01				
Combined uncertainty					
(as quadratic sum of all uncertainty components)	0.41 ³⁷⁾		0.96		

³¹⁾ negligible. ³²⁾ negligible. ³³⁾ negligible. ³⁴⁾ no impurities detected. ³⁵⁾ part of tracer uncertainty. ³⁶⁾ $\Delta t = 122$ d. ³⁷⁾ coefficients of correlation taken into account in the summation reducing the combined uncertainty by about 0.02 % about 0.02 %.

	Laboratory Method					
Uncertainty components	SMU 4πICγ		VNIIM 4π(PC)β ⁺ ,e _A ,x _e -γ coincidence		VNIIM Kx-γ coincidence	
	Relative value / (%)	Evaluation method	Relative value / (%)	Evaluation method	Relative value / (%)	Evaluation method
counting statistics	$1.8^{38)}$		0.13		0.235	
weighing	0.0003		0.1		0.05	
dead time			< 0.001		< 0.001	
background	1.0 ³⁹⁾		0.1		0.02	
resolving time			0.003		0.006	
interpolation from calibration curve	1.0 ⁴⁰⁾					
decay-scheme parameters	0.4 ⁴¹⁾				0.02 ⁴²⁾	
half-life	0.012^{43}		0.004		0.004	
self-absorption	$0.2^{44)}$					
extrapolation of efficiency curve			0.16			
511 keV to 1115 keV γ- ray efficiency ratio setting			1.2			
γ-ray efficiency of the Kx-ray detector					0.04	
Combined uncertainty (as quadratic sum of all uncertainty components)	2.3		1.25		0.25	

³⁸⁾ standard deviation of sample measurements. ³⁹⁾ standard deviation of background measurements relative to sample. ⁴⁰⁾ estimated overall calibration curve uncertainty. ⁴¹⁾ according to PTB tables used. ⁴²⁾ β^+ emission probability: $P_{\beta+} = 1.42$ %; u = 0.02 %. ⁴³⁾ including uncertainty in decay time. ⁴⁴⁾ differences in ampoule dimensions and filling.

Appendix 3. Acronyms used to identify different measurement methods

Each acronym has six components, geometry-detector (1)-radiation (1)-detector (2)-radiation (2)-mode. When a component is unknown, ?? is used and when it is not applicable 00 is used.

Geometry	acronym	Detector	acronym
4π	4P	proportional counter	PC
defined solid angle	SA	press. prop. counter	PP
2π	2P	liquid scintillation counting	LS
undefined solid angle	UA	Nal(TI)	NA
		Ge(HP)	GH
		Ge(Li)	GL
		Si(Li)	SL
		CsI(TI)	CS
		ionization chamber	IC
		grid ionization chamber	GC
		bolometer	BO
		calorimeter	CA
		PIPS detector	PS
Radiation	acronym	Mode	acronym
positron	PO	efficiency tracing	ET
beta particle	BP	internal gas counting	IG
Auger electron	AE	CIEMAT/NIST	CN
conversion electron	CE	sum counting	SC
mixed electrons	ME	coincidence	CO
bremsstrahlung	BS	anti-coincidence	AC
gamma rays	GR	coincidence counting with efficiency tracing	СТ
X - rays	XR	anti-coincidence counting with efficiency tracing	AT
photons (x + γ)	PH	triple-to-double coincidence TD ratio counting	
alpha - particle	AP	selective sampling SS	
mixture of various radiations	MX	high efficiency	HE

Examples method	acronym
$4\pi(PC)\beta-\gamma$ -coincidence counting	4P-PC-BP-NA-GR-CO
4π (PPC) β - γ -coincidence counting eff. trac.	4P-PP-MX-NA-GR-CT
defined solid angle α -particle counting with a PIPS detector	SA-PS-AP-00-00-00
4π (PPC)AX- γ (Ge(HP))-anticoincidence counting	4P-PP-MX-GH-GR-AC
4π CsI- β ,AX, γ counting	4P-CS-MX-00-00-HE
calibrated IC	4P-IC-GR-00-00-00
internal gas counting	4P-PC-BP-00-00-IG