Final report of CCQM-K86.c Relative quantification of genomic DNA fragments extracted from a biological tissue

Study organizers: Zoltan Mester and Philippe Corbisier

Authors:

Zoltan Mester¹, Philippe Corbisier², Stephen L. R. Ellison⁶

Maria Roxana Beaz Hidalgo², Yunhua Gao³, Chunyan Niu³, Vincent Tang⁴, Foo-wing Lee⁴, Melina Pérez-Urquiza⁵, Angel Ramirez Suárez⁵, Malcolm Burns⁶, Mojca Milavec⁷, Kanjana Wiangnon⁸, Kate R. Griffiths⁹, Jacob L.H. McLaughlin⁹, Sachie Shibayama¹⁰, Akiko Takatsu¹⁰, Muslum Akgoz¹¹, Maxim Vonsky¹², Andrei Runov¹², John Emerson Leguizamon Guerrero¹³.

Affiliations

¹National Research Council Canada

²Joint Research Centre, Geel, EU

³National Institute of Metrology P. R. China, Beijing, China

⁴Government Laboratory Hong Kong, Kowloon, Hong Kong

⁵Centro Nacional de Metrología, Querétaro, México

⁶LGC, Teddington, United Kingdom

⁷National Institute of Biology, Ljubljana, Slovenia

⁸National Institute of Metrology Thailand, Pathumthani, Thailand

⁹National Measurement Institute Australia, Lindfield, Australia

¹⁰National Metrology Institute of Japan, AIST, Japan

¹¹TUBITAK/UME (National Metrology Institute), Gebze, Kocaeli, Turkey

¹² D.I.Mendeleev Institute for Metrology, Russia

¹³Instituto Nacional de Metrologia de Colombia

Abstract

Key comparison CCQM-K86.c was performed to demonstrate the capacity of National Metrology Institutes (NMIs) and Designated Institutes (DIs) in the determination of the relative quantity of two specific genomic DNA fragments present in a canola powder. The study provides direct support for the following measurement claim: "Quantification of the ratio of the number of copies of specified intact sequence fragments of a length up to 150 nucleotides following extraction from an unprocessed, high fat/oil ground seed matrix, with a copy number ratio from 0.001 to 1".

The study was carried out under the auspices of the Nucleic Acids Working Group (NAWG) of the Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology (CCQM) and was jointly coordinated by the National Research Council of Canada (NRC) and the EU Joint Research Centre, Geel (JRC). The following laboratories (in alphabetical order) submitted measurement results in this key comparison study: Centro Nacional de Metrología, Mexico ("CENAM"); D.I. Mendeleyev Institute of Metrology, Russia ("VNIIM"); EU Joint Research Centre, Geel (JRC); Hong Kong Government Laboratory ("GLHK"); Instituto Nacional de Metrología de Colombia ("INM"); LGC (United Kingdom); National Institute of Biology, Slovenia ("NIB"); National Institute of Metrology, P.R. of China ("NIM China"/"NIMC" [figures]); National Institute of Metrology, Thailand (NIMT); National Measurement Institute, Australia ("NMIA"); National Metrology Institute of Japan, AIST, Japan ("NMIJ"); National Metrology Institute of Turkey ("TÜBITAK").

1 Introduction

Genetically modified (GM) crops are now ubiquitous in the global feed, fiber, food, and biofuel applications. However, the regulatory framework around the approval and use of GM traits and crops differs significantly in various jurisdictions. Consequently, the accurate quantification of GM content in such products represents a technical international trade issue.

The quantification of the relative abundance of two DNA fragments, one being present at a ratio between 1/1000 and 1/10, in a difficult matrix such as plant material, has been

demonstrated in previous Key Comparisons (CCQM-K86 [1] and CCQM-K86.b [2]).

The matrix in CCQM-K86 was a maize seed powder, whereas in CCQM-K86.b it was a rice seed powder. Both matrixes are rich (between 75 and 80 g/100g) in polymeric carbohydrate (amylose and amylopectin) and poor in fat (<5 g/100g) requiring adapted DNA extraction method to remove substances that can hinder the polymerase activity.

In this study, the NAWG decided to challenge laboratories with a plant material with elevated oil/fat content, such as rapeseed. As the rapeseed is genetically engineered, validated DNA extraction and qPCR quantification methods are available.

The quantification was performed by quantitative digital Polymerase Chain Reaction (dPCR). The methodology requires extraction and purification of genomic DNA and accurate detection and quantification of the relative amount of two defined DNA sequences in the extracted genomic DNA. It was agreed to organize two studies in parallel: a key comparison, CCQM-K86.c and a concurrently run pilot study, CCQM-P113.4, based on materials provided by NRC and JRC Geel.

2 Measurement Claim

The measurement claim for CCQM-K86.c is "Quantification of the ratio of the number of copies of specified intact sequence fragments of a length up to 150 nucleotides following extraction from an unprocessed, high fat/oil ground seed matrix, with a copy number ratio from 0.001 to 1".

The lower limit for fragment length depends on the particular primer set. A capability for measurement of a copy number ratio of 0.001 indicates a capability to measure a copy number ratio of 1000 (1/0.001).

The study demonstrates the participants' competence to extract DNA from an oil rich matrix and to perform measurements on the extracted DNA using dPCR.

3 Participation in CCQM-K86.c

The 12 national Measurement Institutes and Designated Institutes ("participants") that participated in CCQM-K86.c are listed in Table 1. A protocol (Appendix A) was sent to all participants prior to sample distribution. The protocol provided information concerning the storage and analysis of the samples. Participants were free to use a method of their choice

for the determination of the copy number ratio. They were asked to report results as copy number ratio, expressed as a percentage, on the two unknown samples as received.

Institute / Organisation	Country	Contact
JRC Geel	EU	P. Corbisier
NIMT	Thailand	K Wiangnon
NMIA	Australia	K. Griffiths
TUBITAK	Turkey	M. Akgoz
NMIJ	Japan	S. Shibayama
VNIIM	Russia	M. Vonsky
LGC	UK	M. Burns
INM	Colombia	J. E. Leguizamon Guerrero
NIB	Slovenia	M. Milavec
CENAM	Mexico	M. Pérez-Urquiza
GLHK	Hong Kong	V. Tang
NIM China	China	L. Dong

Table 1. CCQM-K86.c participants.

4 Study Materials

4.1 Test samples

The participating laboratories were provided with two unknown samples:

- Sample T1: One rapeseed powder containing a defined mass fraction of genetically modified (GM) DP-Ø73496-4 rapeseed (Brassica napus L.). The samples were produced under the responsibility of the JRC and were prepared by mixing of ground fullfat non-GM rapeseed and ground full-fat DP-Ø73496-4 GM rapeseed.
- Sample T2: One rapeseed powder containing a defined mass fraction of genetically modified (GM) GT73/RT73 rapeseed (*Brassica napus L.*). The samples were produced under the responsibility of NRC and were prepared by mixing of commercially processed non-GM rapeseed powder and ground GT73/RT73 rapeseed.
 Note: Commercial processing results in a reduction in oil content.

4.2 Homogeneity of the test samples

Homogeneity assessment of the mass fraction in samples T1 and T2 was performed by JRC and NRC respectively, and the uncertainty related to the homogeneity was provided to participants as a relative standard uncertainty. For T1, the relative standard uncertainty related to an estimate of the maximum between-unit heterogeneity that could be hidden by the intermediate precision of the qPCR method was 5.2 % [3]. For T2, the relative standard uncertainty related to the homogeneity was 5.5 % [4]. The sample intake used for determining the homogeneity was 200 mg for both samples T1 and T2.

4.3 Stability of the test samples

For sample T1 JRC performed a short-term stability study using an isochronous design. In this approach, samples were stored for a certain time at different temperature conditions. After the planned exposure times, the samples were moved to conditions where further degradation can be assumed to be negligible (reference conditions). At the end of the isochronous storage, the samples were analysed simultaneously under intermediate precision conditions. The study concluded that the samples could be dispatched without further precautions under ambient conditions [3].

The stability of sample T1 had also been monitored since production and the material was found stable at 4°C over a period of 6 years [3]. Sample T2 was found to be stable for over 10 years [4].

5 Methods and instrumentation

Sample T1 was dispatched from JRC; sample T2 from NRC Canada. General advice to participants included:

- a) Participants were requested to use their preferred methodology for the extraction of genomic DNA from samples T1 and T2. Attention was, however, drawn to the extraction method referred to by the European Union reference Laboratory for GM Food and Feed [5].
- b) Special care was recommended in preparing sufficiently purified genomic DNA.
- c) Dilution of the unknowns was suggested in order to verify the absence of PCR inhibitors in the extracted DNA.
- d) Digital PCR is the preferred method to quantify DNA sequences in the absence of calibrant solutions but other technologies could also be used.
- e) Participants were permitted free choice of digital PCR platform and chemistry.

In addition, a detailed study protocol was provided, giving information on study timescale, sample preparation, suggested methodology, probe and primer sequences, and reporting requirements was provided; the study protocol is included as Appendix A of this report

6 Measurands and reporting requirements

Participants were required to report:

- The absolute copy number of both sequence targets for samples T1 and T2 per μ L DNA in the PCR MasterMix;
- The ratio of both sequence targets expressed in percent for samples T1 and T2 as well as the uncertainty;
- An outline of the methodology, a measurement equation and a breakdown of the uncertainty estimation submitted.

Table 2 summarizes the extraction methods, instrumentation and the chemistries, used by the participants.

	Extraction	-		Primers and	Primers and
Institute	method (sample intake)	Instrument	PCR Reagents	probes used for T1	probes used for T2
JRC Geel (IRMM)	CTAB-Tip20 (200 mg)	BioRad QX-100 + C1000 Touch [™] Thermo cyclerThermal Cycler	ddPCR™ Supermix	As defined in Appendix A DP-073496-4 fatA(A)	As defined in Appendix A RT73 fatA
NIMT	EURL GMFF protocol (200 mg)	Bio-Rad QX200	-	As defined in Appendix A DP-073496-4 fatA(A)	As defined in Appendix A RT73 fatA
NMIA	in-house DNA isolation with paramagnetic beads	Bio-Rad QX100	-	As defined in Appendix A DP-073496-4 fatA(A)	As defined in Appendix A RT73 fatA
TUBITA K	СТАВ	QuantSudio3D Digital PCR 20K	Master Mix (Thermo Fisher Scientific)	As defined in Appendix A DP-073496-4 fatA(A)	As defined in Appendix A RT73 fatA(A)
NMIJ	GM quicker 2 (NipponGene, Japan)	QuantStudio 3D Digital PCR system	Master Mix v2 (Thermo Fisher Science Inc.)	As defined in Appendix A DP-073496-4 fatA(A)	As defined in Appendix A RT73 fatA
VNIIM	EURL GMFF protocol (200 mg).	BioRad QX-200 + C1000 Touch Thermal Cycler	2x ddPCR Super Mix for Probes	As defined in Appendix A DP-073496-4 fatA(A) + locked dGTP	As defined in Appendix A RT73 fatA(A)
LGC	-	Bio-Rad QX200	-	As defined in Appendix A DP-073496-4 fatA(A)	As defined in Appendix A RT73 fatA
INM	EURL GMFF protocol (200 mg)	BioRad QX200	ddPCR SuperMix (no UTP)	As defined in Appendix A DP-073496-4 fatA(A)	As defined in Appendix A RT73 fatA(A)

Table 2. Analytical methods and instrumental techniques used by participants in CCQM-
CCQM-K86.c. ^{Note 1}

Institute	Extraction method (sample intake)	Instrument	PCR Reagents	Primers and probes used for T1	Primers and probes used for T2
NIB	CTAB (02G- Pos06): 100 µl H2O	BioRad QX100 (20µl reactions)	-	As defined in Appendix A DP-073496-4 fatA(A)	As defined in Appendix A RT73 fatA(A)
CENAM	Fast ID method (300 mg)	Bio-Rad QX200	-	As defined in Appendix A DP-073496-4 fatA(A)	As defined in Appendix A RT73 fatA
GLHK	DNeasy® mericon® Food Kit	Bio-Rad QX200 + C1000 Touch TM Thermal Cycler	ddPCR™ Supermix	As defined in Appendix A DP-073496-4 fatA(A)	As defined in Appendix A RT73 fatA
NIM China	Wizard® magnetic purification/ DNAsecure plant kit/ DNeasy® plant mini kit	Biomark (T1) Biomark, QX200 (T1, T2)	-	As defined in Appendix A DP-073496-4 fatA(A)	As defined in Appendix A RT73 fatA(A)

Note 1: "-" indicates no additional information available

7 Results

7.1 CCQM-K86.c participants' results

Measured replicate copy number concentrations of both sequence targets for samples T1 and T2 per μ L DNA as well as the final dilution of the DNA in the PCR assays are presented in Tables 3 and 4, respectively. All participants quantified the respective targets by simplex PCR, except INM which analysed samples T1 and T2 in duplex PCR.

The number of copies of the DNA sequence targets that are assayed in a given PCR reaction depends on both the concentration of the DNA solution added to the dPCR and the volume of the DNA solution added to the dPCR. Tables 3 and 4 show that the number of copies of the DNA sequence targets were assayed at different concentrations by different participants. The less abundant target (for DP-Ø73496-4) present in T1 had to be tested using an undiluted DNA extract or (for higher copy number per partition) could be concentrated as did NMIJ, whereas the DNA extracts used for the endogenous targets (FATA(A)) assay had to be diluted first. The same strategy could be applied for the T2 sample even if the transgenic target was about 50 times more abundant than the DP-Ø73496-4 target. Not all participants optimised the concentration of the DNA sample to quantity the endogenous targets. Some participants quantified the DP-Ø73496-4 target at a very low copy number (probably very close to the LOQ of their method).

	DP-Ø73496-4 target		FatA(A) target		
NMI/DI	copy number	final	copy number	final	
	concentration (cp/µL)	dilution	concentration (cp/µL)	dilution	
	193	2.857	170047	77.139	
IDMM ¹	157	2.857	180547	77.139	
	130	2.857	163154	77.139	
	179	2.857	165482	77.139	
	178.7	10	183032	1000	
NIMT	151.8	10	154799	1000	
	146.6	10	142509	1000	
	169.5	10	150043	1000	
	159.0	10	159814	1000	
	59.2	2.625	48900	53.592	
	64.2	2.596	55400	55.020	
NMIA ^{1,2}	40.1	2.595	43200	54.863	
	18.3	2.618	18200	51.576	
	25.7	2.656	26000	51.911	
	25.4	2.611	25700	51.176	
TUBITAK	140	2.415	132415	65.476	
	143	2.427	135561	67.063	
NMIJ	1069	5.069	980367	476.948	
	1114	5.061	1030279	504.091	
	1112	5.190	990469	4//.024	
VNIIM	8.6	4	89//	40	
	20.7	4	1/650	40	
	14.1	4	13030	40	
	119	39.822	110675	39.822	
LGC	131	40.087	119073	40.087	
	109	40.576	117710	41.447	
	125	180.6	153867	180.6	
	169	188.9	166537	180.0	
	134	190.6	126138	190.6	
	159	197.2	143595	190.0	
INM^1	217	222.2	147219	222.2	
	176	183.3	115512	183.3	
	204	216.7	170169	216.7	
	182	215.3	161959	215.3	
	128	161.1	135605	161.1	
	17	5	9489	5	
NIB ¹	12	5	8709	5	
	9	5	9933	5	
CENAM	65	5	45400	20	
	5.99	3.991	4122	3.991	
CLHK	5.38	2.011	4412	4.040	
GLHK	6.18	4.105	4275	4.105	
	6.40	2.009	4442	8.049	
	32.57	1	22639	104.1	
	33.99	1	22743	104.1	
NIM China ^{1,2}	40.48	1	26122	104.1	
	17.86	1	10519	15.03	
	18.13	1	11393	15.03	
1		1		1	

Table 3. CCQM-K86.c participants' measurement results for sample T1.

n.p.: not provided; ¹: reported by individual extraction; ²: tested at two concentration levels.

	RT73 target	RT73 target		FatA target		
NMI/DI	copy number	final	copy number	final		
	concentration (cp/µL)	dilution	concentration (cp/µL)	dilution		
	5966	2.857	296396	171.429		
IRMM ^{1,2}	15149	7.143	779091	356.571		
	14590	7.143	753974	377.143		
	15632	5.714	745648	356.571		
	19337	200	905596	2000		
	19791	200	1204671	2000		
NUNT	21762	200	1163704	2000		
NIMI	18423	200	970579	2000		
	30207	200	10/0120	2000		
	1/924	200	998555	2000		
	2620	200	981021	2000		
	5410	2.388	120000	82.308 77.001		
12	4640	2.008	148000	77.660		
NMIA ^{1,2}	15200	30 772	471000	324.016		
	10800	26 695	364000	292 133		
	10500	26 309	367000	292.133		
1.2	7996	25.250	162901	100.806		
TUBITAK ^{1,3}	19640	54 644	354580	228.035		
	22350	104 191	833110	503 572		
NMLI	22550	105 512	784616	529 133		
	21961	105.512	743460	523 318		
	1556	8	28320	80		
VNIIM ³	1350	8	25520	80		
	1400	8	28900	80		
	1872	8	35253	80		
	1788	8	32547	80		
	14352	242 408	575038	242 408		
	14813	247.037	571363	247.037		
LGC	17281	252 480	603463	252 480		
	15902	252.878	611920	252.878		
	12732	376.7	417283	376.7		
	15359	473.3	523757	473.3		
	10163	305.0	326292	305.0		
	14781	276.7	500522	276.7		
INM^1	18753	476.7	680000	476.7		
	13829	340.0	510607	340.0		
	21334	540.0	727771	540.0		
	23348	446.7	814949	446.7		
	37688	683.3	1243197	683.3		
	2767	5	60892	50		
NIB ³	2949	5	65081	50		
	2460	5	51220	50		
CENAM	2716	20	93708	40		
	145	7.98	4273	16.028		
GLHK	147	4.027	4443	8.094		
0.Liiii	139	2.010	4023	8.087		
	31.23	18	706.33	18		
	6.67	12	144.79	12		
	7.88	18	172.71	18		
	8.04	18	168.00	18		
NIM China ^{2,3}	15.95	15	482.92	15		
	41.96	30	1285.03	30		
	57.14	10	1353.13	10		
	54.83	10	1312.25	10		
	79.31	10	2047.50	10		

Table 4. CCQM-K86.c participants' measurement results for sample T2.

n.p.: not provided; ¹: reported by individual extraction; ²: tested at two concentration levels; ³: reported as Fat(A) but tested with FatA(A).

The reported ratio of both sequence targets expressed in percent for samples T1 and T2 as well as the uncertainty as reported by the participants are presented in Tables 5 and 6. The results are shown graphically in Figures 3 and 4. The median of the study results and the values are shown on Figures 1 and 2.

Consistency plots in figure 3 and 4, show significant pairwise differences in sample T1 only for the NIM China results, while for sample T2, multiple results at both low and high extremes show significant inconsistencies.

Inspection of the methods used by participants for sample T2 showed that the laboratories reporting the four highest results in the key comparison had used the same reference gene for the GM ratio as for sample T1 (see annotation in Figure 2). For sample T2, this is expected to result in overestimation of the required copy number ratio (see Discussion, below).

Participant	Reported results x (cp/cp) (%)	Standard uncertainty u (cp/cp) (%)	Expanded uncertainty U(cp/cp)(%)
IRMM	0.10	0.009	0.03
NIMT	0.102	0.003	0.007
NMIA	0.105	0.007	0.015
TUBITAK	0.105	0.007	0.015
NMIJ	0.110	0.008	0.015
VNIIM	0.110	0.013	0.026
LGC	0.120	0.013	0.04
INM	0.12	0.023	0.046
NIB	0.130	0.048	0.096
CENAM	0.14	0.04102	0.08204
GLHK	0.140	0.023	0.045
NIM China	0.160	0.010	0.020

Table 5. CCQM-K86.c participants' measurement results for sample T1.

Figure 1. Reported results with expanded uncertainties: Sample T1.

Results are shown as copy number ratio (cp/cp) expressed as a percentage. The horizontal line shows the median (solid line).

Participant	Reported results	Standard uncertainty	Expanded uncertainty
	x (cp/cp) (70)	<i>u</i> (cp/cp) (76)	0 (ep/ep) (
NIMT	1.918	0.077	0.155
IRMM	2.00	0.13208	0.42
LGC	2.6	0.09428	0.300
CENAM	2.9	0.1392	0.2784
NMIJ	2.91	0.185	0.37
INM	2.93	0.17	0.34
NMIA	3.06	0.088	0.21
GLHK	3.39	0.415	0.83
NIM China*	4.1	0.55	1.1
NIB*	4.63	0.19	0.38
TUBITAK*	5.22	0.27876	0.63
VNIIM*	5.52	0.64	1.28

Table 6. CCQM-K86.c participants' measurement results for sample T2.

*fatA(A) reference gene

Figure 2. Reported results with expanded uncertainties: Sample T2.

Results are shown as copy number ratio (cp/cp) expressed as a percentage. The horizontal line shows the median (solid line). The reference gene used by each laboratory [fatA vs. fatA(A)] is shown above the *x*-axis.

Figure 3. Pairwise consistency plot, Sample T1.

The blue scale shows the *p*-value for a pairwise test of significance of the difference between two laboratories given their reported uncertainty. *p*-values are adjusted for multiple comparisons using Holm's correction [6]

Figure 4.Pairwise consistency plot, Sample T2.

The blue scale shows the *p*-value for a pairwise test of significance of the difference between two laboratories given their reported uncertainty. *p*-values are adjusted for multiple comparisons using Holm's correction [1]. The solid rectangle encloses participants using the recommended reference gene.

7.2 Key comparison reference value (KCRV)

The key comparison reference value (KCRV) was estimated following the CCQM guidance note CCQM13-22 [7]. All CCQM-K86.c participants' results were used to calculate the KCRV for T1; only participants which used the prescribed reference genes were included in the KCRV calculation for T2. NIM China, NIM, TUBITAK and VNIIM data were excluded from KCRV calculation for sample T2 because they used the reference gene fatA(A) instead of the prescribed fatA gene, effectively estimating the value of a different measurand.

Overall the results were remarkably consistent considering the overall complexity of the methodologies especially for sample T1. For sample T2 larger dispersion was observed. The working group concluded that the overall discrepancy would warrant the use of estimators more robust that a simple arithmetic means. Also there has been a significant debate on using robust estimators which are using the reported uncertainties as input variables.

A number of candidate KCRVs are compared in Table 7 and Figure 5. The candidate KCRVs for Sample T1 vary from 0.105 to 0.120 depending on the estimator used, with a standard uncertainty between 0.002 and 0.006. The candidate KCRVs for Sample T2 vary from 2.51 to 2.90 depending on the estimator used, with a standard uncertainty between 0.04 and 0.25. Figures 5a) and 5b) give a graphical representation of the same data.

Noting a level of disagreement around the practices of various laboratories in arriving at their uncertainty estimates, the comparative similarity of results for outlier-resistant estimators, and the evidence of excess dispersion visible in non-zero between-laboratory standard deviations from the REML and DSL estimators, it was decided that a simple median calculation should be used for KCRV assignment.

	Estimator	KCRV	и	DF	U	Remarks
		(cp/cp, %)	(cp/cp, %)		(cp/cp, %)	
	Arithmetic mean	0.1202	0.0054	11	0.0119	Arithmetic mean
	Median/MADe	0.1150	0.0062	11	0.0136	Median/MADe basis
<u> </u>	DerSimonian-Laird					Between-lab SD:
e T		0.1146	0.0053	11	0.0116	0.0132
lqn	REML					Between-lab SD:
Sar		0.1153	0.0060	11	0.0132	0.0159
• 1	Weighted mean	0.1074	0.0022	11	0.0048	Weighted mean
	H15	0.1191	0.0068	11	0.0149	Huber (omitting u[i])
	Huber	0.1053	0.0023	11	0.0050	Huber (including u[i])
	Arithmetic mean	2.7135	0.1819	7	0.4301	Arithmetic mean
	Median/MADe	2.9050	0.1511	7	0.3573	Median/MADe basis
5	DerSimonian-Laird					Between-lab SD:
e T		2.6770	0.1946	7	0.4602	0.522
lqn	REML					Between-lab SD:
San		2.6717	0.1777	7	0.4203	0.472
-1	Weighted mean	2.5160	0.0412	7	0.0974	Weighted mean
	H15	2.7135	0.2584	7	0.6110	Huber (omitting u[i])
	Huber	2.6228	0.2044	7	0.4834	Huber (including u[i])

Table 7. Candidate KCRV estimators

Note 1: Results and uncertainties are shown as copy number ratio, expressed as a percentage.

Note 2: Uncertainties cited here do not include an allowance for between-unit inhomogeneity of the test materials.

Note 3: "DF" is the degrees of freedom associated with the standard uncertainty *u*.

Note 4: The arithmetic mean is the simple average of reported results. The median is the median of reported results; MADe is the median absolute deviation scaled to provide a consistent estimate of standard deviation for a normal distribution. The DerSimonian-Laird (DSL) and REML approaches estimate an additional variance contribution, shown under "Remarks", that allows for dispersion that is not accounted for by the laboratories' reported measurement uncertainty. The DSL approximation is a simpler one-step calculation; REML is an iterative approach. The weighted mean is the Graybill-Deal weighted mean, using only the reported uncertainties for weighting. H15 is Huber's proposal 2, applied to the reported values but without using the reported uncertainties. "Huber" uses the same distance-dependent weighting function in a robust regression weighted by laboratory uncertainties.

Figure 5. KCRV calculation approaches with expanded uncertainty

KCRV calculation approaches for a) sample T1 b) sample T2 (see Table 7). Values are copy number ratio expressed as a percentage

The median was accordingly used for the calculation of the KCRV as decided by the WG. The median is **0.115** % for sample T1 and **2.91** % for Sample T2. Uncertainties associated with potential inhomogeneity were set at 5.2 % and 5.5 % (as relative standard uncertainties) for samples T1 and T2 respectively, giving contributions of 0.0568 % and 0.160 % in copy number ratio. The measurement uncertainty combined with the uncertainty introduced by the inhomogeneity of the samples resulted in combined expanded uncertainty of 0.017 % and 0.44 % for sample T1 and sample T2, respectively. The KCRVs, with expanded uncertainties, are shown in Figures 6 and 7 and in Table 8. Expanded KCRV uncertainties used a coverage factor k=2.

	KCRV ^{Note 1, Note 2} (cp/cp, %)	<i>u</i> (cp/cp, %)	<i>U</i> (cp/cp, %)
Sample T1	0.115	0.0086	0.017 (<i>k</i> =2)
Sample T2	2.91	0.22	0.44 (<i>k</i> =2)

Table 8. KCRV for CCQM-K86.c – median based estimator

Note 1: All values are given as copy number ratio, expressed as a percentage.

Note 2: The KCRV is given to three significant digits; the standard and expanded uncertainties to two.

Figure 6. Reported results and uncertainties: sample T1. a) Standard uncertainties; b) expanded uncertainties.

All values are copy number ratios expressed as a percentage. Horizontal lines show the median as the Key Comparison Reference Value (solid line) with its uncertainty (dashed lines) using coverage factors a) k=1, b) k=2.23. Note the change in vertical scale from a) to b).

Figure 7. Reported results and uncertainties: sample T2. a) Standard uncertainties; b) expanded uncertainties.

All values are copy number ratios expressed as a percentage. Horizontal lines show the median as the Key Comparison Reference Value (solid line) with its uncertainty (dashed lines) using coverage factors a) k=1, b) k=2.45.

7.3 Degree of equivalence with respect to KCRV

The equivalence statements were calculated following CCQM guidance note CCQM13-22 on the calculation of degree of equivalence and associated uncertainty. [7] The resulting degrees of equivalence with expanded uncertainties are shown in Tables 9 and 10 and illustrated graphically in Figures 8 and 9.

	T1					
Participant	D_i	u(Di)	$U(D_i)$			
-	(cp/cp, %)	(cp/cp, %)	(k=2)			
			(cp/cp, %)			
IRMM	-0.015	0.013	0.026			
NIMT	-0.013	0.009	0.018			
NMIA	-0.010	0.011	0.022			
TUBITAK	-0.010	0.011	0.022			
NMIJ	-0.005	0.011	0.023			
VNIIM	-0.005	0.016	0.031			
LGC	0.005	0.015	0.030			
INM	0.005	0.025	0.049			
NIB	0.015	0.049	0.098			
CENAM	0.025	0.042	0.084			
GLHK	0.025	0.024	0.048			
NIM China	0.045	0.013	0.026			

Table 9. Degrees of equivalence (DoE) for sample $T1^{Note 1}$

Note 1. All values shown as copy number ratio, expressed as a percentage

	Τ2				
Participant	D_i	u(Di)	$U(D_i)$		
	(cp/cp, %)	(cp/cp, %)	(k=2)		
			(cp/cp, %)		
NIMT	-0.99	0.23	0.47		
IRMM	-0.91	0.26	0.51		
LGC	-0.31	0.24	0.48		
CENAM	-0.01	0.26	0.52		
NMIJ	0.00	0.29	0.57		
INM	0.02	0.28	0.56		
NMIA	0.16	0.24	0.47		
GLHK	0.49	0.47	0.94		
NIM China ^{Note 2}	1.20	0.59	1.18		
NIB ^{Note 2}	1.73	0.29	0.58		
TUBITAK ^{Note 2}	2.32	0.36	0.71		
VNIIM ^{Note 2}	2.62	0.68	1.35		

Table 10. Degrees of equivalence (DoE) for sample $T2^{Note 1}$

Note 1. All values shown as copy number ratio, expressed as a percentage

Note 2. Reference gene: fatA(A)

Figure 8. Degree of equivalence D_i with expanded uncertainties $U(D_i)$ (k=2) with respect to the KCRV for Sample T1

Note: Degrees of equivalence are shown in units of copy number ratio, expressed as a percentage, and not as a percentage of the KCRV

Figure 9. Degree of equivalence D_i with expanded uncertainties $U(D_i)$ (k=2) with respect to the KCRV for Sample T2 (all participants).

Note: Degrees of equivalence are shown in units of copy number ratio, expressed as a percentage, and not as a percentage of the KCRV

8 Discussion

Considering the complexity of the analytical challenge a reasonable level of agreement between the laboratories was observed. The only significant deviation observed was related to choice of reference gene; four laboratories for the analysis of sample T2 chose fatA(A) as their reference gene instead of the suggested use of fatA.

Brassica napus L. species originates from the crossing between *B. oleracea* (e.g. broccoli, cabbage) and *B. rapa* (e.g. Pak Choi, Chinese cabbage) [8]. *B. napus* is called an amphidiploid species; it has 10 chromosomes from *B. rapa* (A genome) and 9 chromosomes from *B. Oleracea* (C genome). Due to its origin, some gene loci (in particular, fatA) exist as duplicates in the genome of *B. napus*. This is the case for the fatA gene coding for oleoyl hydrolase which is present as single copy on both the A and C genomes. The gene fatA(A) is only present as a single copy in the A genome and is not present on the C genome (see, for example, [9]).

Because of this, the four laboratories using fatA(A) as a reference gene for sample T2 were not considered for KCRV calculation. Degrees of equivalence were assigned for these laboratories after calculating the KCRV based on the remaining participant results. We note, however, that the data presented by the four laboratories were in good agreement among themselves. During the working group evaluation stage it was considered whether a simple correction factor of 2, reflecting the number of copies of the reference sequences in the genome, could be used to correct the data for these labs but this proposal was rejected because several untested assumptions would have to be made to support this action.

9 Conclusions

CCQM-K86.c supports measurement claims for the quantification of the ratio of the number of copies of specified intact sequence fragments of a length up to 150 nucleotides following extraction from an unprocessed, high fat/oil ground seed matrix, with a copy number ratio from 0.001 to 1.

The complexity of analyzing animal tissue, cell culture or other similar samples represent a lower level of complexity than the plant based samples studied here, so this study can also

be used as evidence of a general capability for DNA quantitation in those areas. Obviously the farther the measurement claim is from this exact comparison the more additional evidence is needed.

10 References

- P. Corbisier, S. Vincent, H. Schimmel, A-M Kortekaas, S. Trapmann, M. Burns, C. Bushell, M. Akgoz, S. Akyürek, L. Dong, B. Fu, L. Zhang, J. Wang, M. Pérez Urquiza, J L. Bautista, A. Garibay, B. Fuller, A. Baoutina, L. Partis, K. Emslie, M. Holden, W. Y. Chum, H-H Kim, N. Phunbua, M. Milavec, J. Zel, M. Vonsky, L. A. Konopelko, T. L. T. Lau, B. Yang, M. H. K. Hui, A. C. H. Yu, D. Viroonudomphol, C. Prawettongsopon, K. Wiangnon, R. Takabatake, K. Kitta, M. Kawaharasaki, H. Parkes (2012) CCQM-K86/P113.1: Relative quantification of genomic DNA fragments extracted from a biological tissue. Metrologia, 49, 1A 08002 http://stacks.iop.org/0026-1394/49/i=1A/a=08002
- L. Dong, Z. Sui, J. Wang, V. H. M Tang, W. W. Y. Chum, F-W Lee, D. W. M. Sin, M. Pérez–Urquiza, M. Burns, S. L. R. Ellison, H. Parkes, M. Milavec, C. Prawettongsopon, K. R. Griffiths, J. L. H. McLaughlin, S. Shibayama, S. Akyurek and M. Akgoz. (2018) *Final report for CCQM-K86.b relative quantification of Bt63 in GM rice matrix sample* Metrologia 55 (1A) 08017. <u>http://stacks.iop.org/0026-1394/55/i=1A/a=08017</u>
- B. Dimitrievska, A.M. Kortekaas, M. Contreras, J. Charoud-Got, P. Conneely, H. Emteborg, P. Corbisier, S. Trapmann (2013) Certification report. The certification of different mass fractions of the GM event 73496 in rapeseed powder. doi:10.2787/82091
- 4. NRC Canada, in-house data, accessed on September 2017
- 5. European Commission Joint Research Centre (2014) Event-specific Method for the Quantification of Oilseed Rape DP-073496-4 Using Real-time PCR; EURL-VL-02/12VP corrected version 1. <u>http://gmo-crl.jrc.ec.europa.eu/summaries/EURL-VL-02-12VP-EFSA-Corr1.pdf</u>
- 6. S. Holm (1979). *A simple sequentially rejective multiple test procedure*. Scand. J. Stats **6**, 65-70.
- CCQM13-22. CCQM Guidance note: Estimation of a consensus KCRV and associated Degrees of Equivalence, Version: 10, (2013). <u>https://www.bipm.org/cc/CCQM/Allowed/19/CCQM13-22_Consensus_KCRV_v10.pdf</u>,
- 8. R. K. Downey and S. R. Rimmer (1993). Agronomic Improvements in Oilseed Brassicas. Advances in Agronomy 50:1-66.
- N. Henderson, M. Harmon, C. X. Zhong (2016) PCR-Based Detection and Quantification of a Transgenic Glyphosate-Tolerant Canola Using a Novel Reference Gene System. Food Anal. Methods 9: 353. <u>https://doi.org/10.1007/s12161-015-0156-0</u>

Appendix A: Study protocol¹

CCQM-KC86.c: Key comparison "Relative quantification of genomic DNA fragments extracted from a biological tissue"

Study Protocol

Introduction

The quantification of the relative abundance of two DNA fragments, one being present between in ratio of 1/1000 to 1/10 in a difficult matrix such as plant material has been demonstrated in previous Key Comparisons (CCQM-K86 and CCQM-K86.b).

The matrix in CCQM-K86 was a maize seed powders, whereas in CCQM-K86.b it was a rice seed powder. Both matrixes are rich (between 75 and 80 g/100g) in polymeric carbohydrate (amylose and amylopectine) and poor in fat (<5 g/100g) requiring adapted DNA extraction method to remove substances that can hinder the polymerase activity.

In this study, the NAWG decided to challenge laboratories with a plant material rich (40 g/100g) in fat, such as rapeseed. As the rapeseed is genetically engineered, validated DNA extraction and qPCR quantification methods are available.

Description of the Measurands

Both samples to be analysed are rapeseed powders each containing a low but different number of copies of the same defined DNA sequences.

Preparation of Unknown Samples

Sample T1, one rapeseed powder containing a defined mass fraction of genetically modified

¹ The study protocol is reproduced as distributed to participants *except that* abbreviated references to other studies (e.g. "K86b") have been amended to full references (e.g. "CCQM-K86.b") for consistency with the body of this report, and page numbers continue from the body of the report.

(GM) DP-Ø73496-4 rapeseed (*Brassica napus* L.). The samples were produced under the responsibility of the JRC and were prepared by mixing of dried non-GM rapeseed powder and DP-Ø73496-4 GM dried rapeseed powder.

Sample T2, one rapeseed powder containing a defined mass fraction of genetically modified (GM) GT73/RT73 rapeseed (*Brassica napus* L.). The samples were produced under the responsibility of NRC and were prepared by mixing of dried non-GM rapeseed powder and GT73/RT73 dried rapeseed powder.

PCR assays

GM rapeseed can be assayed by adapting a qPCR method validated by the European Union reference Laboratory for GM food and feed (EURL-GMFF)^{1,2} and/or Monsanto Regulatory Sciences method³ to digital PCR or similar approaches.

No calibrant for the quantification of the unknown samples by qPCR will be provided.

Sample T1

For the specific detection of the DP-Ø73496-4 event, a 84 bp fragment that spans the 5' junction between the DP-Ø73496-4 insert and the flanking rapeseed genomic DNA is amplified using two specific primers and a probe. The forward primer is situated within the rapeseed genomic DNA, the reverse primer is situated within the inserted DNA and the probe spans the transition between the DP-Ø73496-4 insert and rapeseed genomic DNA.

For the specific detection of the rapeseed reference, a 126 bp fragment of the fatA(A) gene is amplified using two specific primers and a probe. This rapeseed specific PCR system was designed to detect the oleoyl hydrolase fatA(A) gene from *Brassica rapa*, *Brassica napus* and *Brassica juncea*. It is used as reference system for relative quantification of event DP-

¹ <u>http://gmo-crl.jrc.ec.europa.eu/summaries/EURL-VL-02-12VP-EFSA-Corr1.pdf</u>

² <u>http://gmo-crl.jrc.ec.europa.eu/summaries/RT73_validated_Method.pdf</u>

³ <u>http://gmo-crl.jrc.ec.europa.eu/detectionmethods/MON-Art47-pcrGT73rapeseed.pdf</u>

Ø73496-4.

The ratio between the copy number of those two DNA sequences in the sample must be determined:

Target sequence 1: (84 bp) GTTCTTCTTCATAGCTCATTACAGTTTTCATTAG<u>TTAGATCAGGATATTCTTG</u>T TTAAGATGTTGAACTCTATGGAGGTTTG

Target sequence 2 (126 bp): <u>ACAGATGAAGTTCGGGACGAGTAC</u>TTGGTTTTCTGTCCTCGAGAACCCAGGTG<u>A</u> <u>AGAAGAATCATCATGCTTC</u>CCTTATAATTGCTAGTTAAACAGTTA<u>ATATTTAAGC</u> <u>ATGTGGATCTCAACCTG</u>

Note: the amplified fatA(A) fragment is of 126 bp in a majority of *Brassica napus* varieties, in all *Brassica juncea* varieties and in some of the *Brassica rapa* varieties tested; it is of 129 bp in a minority of *Brassica napus* varieties and in some Brassica *rapa* varieties tested.

Participants should determine the absolute number of both DNA targets by digital PCR and to provide the ratio of those two numbers.

Sample T2 Forward Primer Name: RT73 primer 1 Sequence: CCATATTGACCATCATACTCATTGCT Size: 26 bases

Reverse Primer Name: RT73 primer 2 Sequence: GCTTATACGAAGGCAAGAAAGGA Page 32 of 38

Size: 24 bases

Probe

Name: RT73 Probe Sequence: TTCCCGGACATGAAGATCATCCTCCTT Size: 27 bases

Amplicon Size: 108bp

Forward Primer Name: FatA primer1 Sequence: GGTCTCTCAGCAAGTGGGTGAT Size: 22 bases

Reverse Primer Name: FatA primer2 Sequence: TCGTCCCGAACTTCATCTGTAA Size: 22 bases

Probe Name: FatA probe Sequence: ATGAACCAAGACACAAGGCGGCTTCA Size: 26 bases

Amplicon Size: 76 bp

Information on the RT73 assay on the proposed fatA amplicon could be found in ref 1 and 2. Participants should determine the absolute number of both DNA targets by digital PCR and to provide the ratio of those two numbers.

Page 33 of 38

Participants have the possibility to use any other type of calibrant which they think enables them to report a copy number ratio, expressed in percent, between the DP- \emptyset 73496-4 / RT73 and *fatA(A)* fragments. In this study two different fatA fragments are being suggested for the two samples. The reason being that the samples were assessed only with these amplicons.

Homogeneity testing

Homogeneity analysis of the DNA sequences in sample T1 and 2 has been performed by JRC and NRC and the uncertainty related to the homogeneity will be provided. The sample intake used for determining the homogeneity was 200 mg.

Stability testing

For sample T1 JRC performed a short-term stability study was carried out using an isochronous design. In this approach, samples were stored for a certain time at different temperature conditions. Afterwards, the samples were moved to conditions where further degradation can be assumed to be negligible (reference conditions). At the end of the isochronous storage, the samples are analysed simultaneously under intermediate precision conditions. The study concluded that the samples can be dispatched without further precautions under ambient conditions.

The CRM ERM-BF434e (containing 100 g of DP-Ø73496-4 rapeseed per kg of rapeseed powder) has been produced at the same time and under the same conditions as the CRM ERM-BF434c (which is sample T1 and contains 1 g of DP-Ø73496-4 rapeseed per kg of rapeseed powder). The stability of CRM ERM-BF434e has been monitored since the production in 2013 and was found stable at 4°C over a period of 6 years (Fig 1A) which suggests that the stability of T1 produced and kept under the same conditions is assured.

Appendix A - Study protocol

Figure A1: Long term stability of ERM-BF434e kept at 4°C.

- Note 1 : Each points represent the average ratio of the DP-Ø73496-4/FatA(A) content of samples kept at 4°C (normal stock) and at -70°C (reference stock) over a period of 6 years.
- Note 2: Errors bars represent the expanded uncertainty (*k*=2) associated to the qPCR results and the upper and lower certified ranges are given by the dashed lines. The certified value divided by the certified value at time point 0 (22 Jan 2014) is given by an open circle.

Sample T2 has been found stable for over 10 years (data not shown).

Instructions for use

Participants will receive 2 glass bottles each containing at least 1 g of samples 1 and 1g of sample T2. Samples 1 and 2 should be stored at 4 °C.

Methodology

Sample T1 will be dispatched from JRC sample T2 will dispatched from NRC Canada.

Participants are requested to use their preferred methodology for the extraction of genomic DNA from samples 1 and 2. Special care should be taken to prepare sufficiently purified genomic DNA. The unknowns can be diluted to verify the absence of PCR inhibitors in the extracted DNA. For example, the extraction method referred to by the European Union reference Laboratory for GM Food and Feed can be applied³.

Digital PCR is the preferred method to quantify DNA sequences when calibrant solution are not existing but other technologies can also be used. The digital PCR platform and chemistry can be chosen by the participants.

Reporting

A reporting template and detailed questionnaire will be provided to the participants. The participants shall submit an electronic version of the reporting template and questionnaire by e-mail to <u>Zoltan.Mester@nrc-cnrc.gc.ca</u>. In addition, a signed and dated copy of the report shall be sent by surface mail to the address mentioned below or as a PDF-file by e-mail to <u>Zoltan.Mester@nrc-cnrc.gc.ca</u>. The participants shall burn a copy of the report and of the raw data on a CD-ROM or memory stick.

The results indicating the relative percentage of both sequences present should be reported for each DNA extraction of the unknown replicates as well as the stated uncertainty. An overall combined result for each sample should also be included.

All results returned should include,

• The absolute copy number of both sequence targets for samples 1 and 2 per μ L DNA in the PCR MasterMix

³ http://gmo-crl.jrc.ec.europa.eu/summaries/EURL-VL-02-12XP-EFSA.pdf

- The ratio of both sequence targets expressed in percent for samples 1 and 2 as well as the uncertainty
- An outline of the methodology, a measurement equation and a breakdown of the uncertainty estimation submitted.

Please report results by e-mail to:

Dr Zoltan Mester National Research Council Canada 1200 Montreal Rd, Ottawa, ON, K1W1E4 CANADA Phone: +1 613 993 5008 Fax: +1 613 993 2451 E-mail: zoltan.mester@nrc-cnrc.gc.ca

Proposed Comparison Timetable

Deadline for signup to the study ⁴ :	November 11, 2016
Distribution of sample materials:	November 28, 2016
Deadline for submission of results:	March 31 2017
preliminary report:	NAWG meeting, April 2017
Draft A report one month after the NAWG meeting	
Final Report Fall NAWG meeting 2017	

⁴ The study co-ordinator is requesting that, in view of the cost of the samples, participants should commit to submission of results within the study deadline.