## International comparison CCQM-K112 Biogas Final Report

Adriaan M.H. van der Veen<sup>1</sup>, Ewelina T. Zalewska<sup>1</sup>, Deborah R. van Osselen<sup>1</sup>, Teresa E. Fernández<sup>2</sup>, Concepción Gómez<sup>2</sup>, Jan Beránek<sup>3</sup>, Rutger J. Oudwater<sup>4</sup>, Denise C. Sobrinho<sup>4</sup>, Mariana C. Brum<sup>4</sup>, Cristiane R. Augusto<sup>4</sup>, Judit Fükö<sup>5</sup>, Tamás Büki<sup>5</sup>, Zsófia Nagyné Szilágyi<sup>5</sup>, Paul J. Brewer<sup>6</sup>, Michael L. Downey<sup>6</sup>, Richard J.C. Brown<sup>6</sup>, Miroslava Valkova<sup>7</sup>, Zuzana Durisova<sup>7</sup>, Karine Arrhenius<sup>8</sup>, Bertil Magnusson<sup>8</sup>, Haleh Yaghooby<sup>8</sup>, Tanıl Tarhan<sup>9</sup>, Erinç Engin<sup>9</sup>, L.A. Konopelko<sup>10</sup>, T.A. Popova<sup>10</sup>, M.N. Pir<sup>10</sup>, and O.V. Efremova<sup>10</sup>

<sup>1</sup>Van Swinden Laboratorium (VSL), Thijsseweg 11, 2629 JA Delft, the Netherlands <sup>2</sup>Centro Español de Metrología,(CEM), Calle del Alfar, 2, 28760 Tres Cantos, Madrid, Spain

 <sup>3</sup>Czech Metrology Institute (CMI), Radiová 3, 102 00 Praha-Hostivař, Czech Republic
 <sup>4</sup>Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO), Rua Nossa Senhora das Graças, 50, Prédio 4, Xerém RJ, CEP 25250-020, Brasil
 <sup>5</sup>Government Office of the Capital City Budapest (BFKH), Németvolgyi ut 37-39, Budapest, 1124 Hungary

<sup>6</sup>National Physical Laboratory (NPL), Teddington, Middlesex, TW11 0LW, United Kingdom

<sup>7</sup>Slovak Institute of Metrolog (SMU), Karloveska 63, SK-842 55 Bratislava, Slovakia
 <sup>8</sup>Research Institutes of Sweden (RISE), Brinellgatan 4, SE-504 62 Borås, Sweden
 <sup>9</sup>National Metrology Institute (UME), Gas Metrology Laboratory, TÜBİTAK Gebze
 Yerleskesi, Baris Mah. Dr. Zeki Acar Cad. No:1, 41470 Gebze Kocaeli Turkey

<sup>10</sup>D.I. Mendeleyev Institute for Metrology (VNIIM), Research Department for the State Measurement Standards in the field of Physico-Chemical Measurements., 19, Moskovsky Prospekt, 198005 St-Petersburg, Russia

12 March 2020

# Contents

| Fie | eld                                                                                                                                                                                                                                                          | 3                                      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Su  | bject                                                                                                                                                                                                                                                        | 3                                      |
| 1   | Introduction                                                                                                                                                                                                                                                 | 3                                      |
| 2   | Design and organisation of the key comparison2.1Participants2.2Measurement standards2.3Measurement protocol2.4Schedule2.5Assessment of the transfer standards2.6Measurement equation2.7Measurement methods used by the participants2.8Degrees of equivalence | <b>3</b><br>4<br>5<br>5<br>7<br>7<br>8 |
| 3   | Results3.1Stability assessment                                                                                                                                                                                                                               | <b>9</b><br>9<br>17<br>17<br>17        |
| 4   | Support to CMC claims                                                                                                                                                                                                                                        | 28                                     |
| 5   | Discussion and conclusions                                                                                                                                                                                                                                   | 29                                     |
| A   | Measurement data used for calculating the reference valuesA.1A.2Calculation of reference values                                                                                                                                                              |                                        |
| B   | Measurement reports of the participating institutes                                                                                                                                                                                                          | 45                                     |

# Field

Amount of substance

# Subject

Composition of biogas (track C key comparison)

# 1 Introduction

Biogas is of increasing importance world wide as an energy vector. It presents an environmentally friendly alternative to natural gas and contributes to reduction of the emission of greenhouse gases from fossil fuels. The two mainstream approaches for producing biogas are fermentation and the gasification of biomass.

This key comparison is about the macro composition of biogas from fermentation. Such biogas is mainly composed of methane, nitrogen, and carbon dioxide, and also contains smaller fractions of oxygen and hydrogen. In some of these biogases, also ethane and propane are found, typically at an amount fraction levels in the 100s of ppm (parts-per-million).

The most commonly used methods for determining the calorific value of biogas involve the (gas chromatographic) determination of the composition, followed by the calculation of the calorific value. The same applies to the density of biogas, which plays a key role in the conversion of the volume of gas from actual (metering) conditions to reference conditions.

The key comparison aims to support calibration and measurement capabilities (CMCs) for the composition of biogas obtained by fermentation and from landfills.

The evaluation of the results of this key comparison was done using a consensus value. For the different measurands (i.e., the amount fractions of methane, carbon dioxide, nitrogen, hydrogen, oxygen, ethane and propane), different statistical approaches to obtain a consensus value were used. In the calculation of the consensus value, effects of the (small) differences in properties of the transfer standards were taken into account.

# 2 Design and organisation of the key comparison

### 2.1 Participants

Table 1 lists the participants in this key comparison.

| Acronym           | Country | Institute                                                         |
|-------------------|---------|-------------------------------------------------------------------|
| CEM               | ES      | Centro Español de Metrología, Madrid, Spain                       |
| CMI               | CZ      | Český Metrologický Institut, Praha, Czech Republik                |
| INMETRO           | BR      | Instituto Nacional de Metrologia, Qualidade e Technologia, Xerém  |
|                   |         | RJ, Brasil                                                        |
| BFKH <sup>a</sup> | HU      | Government Office of the Capital City Budapest, Budapest, Hungary |
| NPL               | GB      | National Physical Laboratory, Teddington, United Kingdom          |
| SMU               | SK      | Slovak Institute of Metrology, Bratislava, Slovak Republic        |
| RISE              | SE      | RISE Research Institutes of Sweden, Borås, Sweden                 |
| UME               | TR      | TÜBİTAK Ulusal Metroloji Enstitüsü, Gebze/KOCAELİ, Turkey         |
| VNIIIM            | RU      | D.I. Mendeleyev Institute for Metrology, St Petersburg, Russia    |
| VSL               | NL      | Van Swinden Laboratorium, Delft, The Netherlands                  |

Table 1: Participating national metrology institutes in CCQM-K112

<sup>a</sup> During the comparison the name of Hungarian institute changed from MKEH (Hungurian Trade Licencing Office) to BFKH (Government Office of the Capital City Budapest).

#### 2.2 Measurement standards

A set of gravimetrically prepared mixtures was obtained from an external party. The nominal composition of the mixtures is within the following ranges (see table 2). The pressure in the cylinders was approximately 70 bar; aluminium cylinders having a 5 L water volume were used. These gas mixtures were assessed for homogeneity and stability by the coordinating laboratory.

The assessment involved two measurements before dispatch and four measurements after return of the cylinders to the coordinating laboratory. for methane, carbon dioxide, nitrogen and hydrogen. For ethane and propane, only three measurements were taken after return of the cylinders to the coordinating laboratory. An overview of the dates of measurements is given in table 3. The measurements performed by the participating national metrology institute were performed between measurements 2 and 3. The link between cylinder code and participant is presented in annex A, tables 16–22.

| Component      | Amount fraction $x$ (cmol mol <sup>-1</sup> ) |
|----------------|-----------------------------------------------|
| Methane        | 40 – 56                                       |
| Carbon dioxide | 36 – 42                                       |
| Nitrogen       | 12 – 16                                       |
| Hydrogen       | 0.8 - 1.2                                     |
| Oxygen         | 0.3 – 0.6                                     |
| Ethane         | 0.02 - 0.08                                   |
| Propane        | 0.005 - 0.020                                 |
|                |                                               |

Table 2: Specifications for the transfer standards

| Measurement number           | Major components | Ethane and propane |  |  |  |
|------------------------------|------------------|--------------------|--|--|--|
| 1                            | 2014-12-05       | 2014-12-11         |  |  |  |
| 2                            | 2014-12-16       | 2014-12-18         |  |  |  |
| Measurements by participants |                  |                    |  |  |  |
| 3                            | 2015-11-16       | 2015-11-24         |  |  |  |
| 4                            | 2015-11-27       | 2015-11-30         |  |  |  |
| 5                            | 2015-12-02       | 2015-12-04         |  |  |  |
| 6                            | 2016-06-13       | —                  |  |  |  |

Table 3: Dates of measurement of the suite of measurement standards

### 2.3 Measurement protocol

The measurement protocol requested the participating national metrology institutes to perform at least 3 measurements, each with its own calibration. The 5 replicates, leading to a measurement, were to be carried out under repeatability conditions. The protocol informed the participants also about the nominal concentration ranges. The laboratories were also requested to submit a description of their calibration method, how the result was calculated, and a summary of their uncertainty evaluation used for estimating the uncertainty of their result.

### 2.4 Schedule

The schedule of this key comparison was as follows (table 4).

| Date                   | Event                                    |
|------------------------|------------------------------------------|
| December 2013          | Agreement of draft protocol              |
| February 2014          | Registration of participants             |
| April 2014             | Preparation of mixtures                  |
| May 2014-February 2015 | Characterisation of mixture compositions |
| March 2015             | Dispatch of mixtures                     |
| June 2015              | Reports and cylinder arrived at VSL      |
| September 2015         | Re-characterisation of the mixtures      |
| March 2017             | Draft A report available                 |
| March 2019             | Draft B report available                 |
|                        |                                          |

Table 4: Schedule for CCQM-K112

### 2.5 Assessment of the transfer standards

The transfer standards have been analysed as detailed in table 3. These data have been used to

- evaluate the stability of the amount fractions of the components;
- evaluate the homogeneity of the amount fraction of the components;
- calculate corrections to the amount fractions reported by the participants for the calculation of the key comparison reference values (KCRVs).

The measurements have been performed on two instruments:

- 1. GC/FID for propane and ethane; Agilent 7980A with  $10' \times 1/8''$  Sulfinert Molsieve 5A column and a flame ionization detector (FID);
- 2. GC/TCD for methane, carbon dioxide, nitrogen, hydrogen and oxygen; Agilent 7980A with precolumn HayeSep Q and HayeSep T and a thermal conductivity detector (TCD). Helium as carrier, carbon dioxide and methane are determined. Hayesep/Molsieve column equipped with TCD and argon as carrier gas was used to determine hydrogen, oxygen and nitrogen.

The GCs have been calibrated with a suite of 5 Primary Standard gas Mixtures (PSMs), prepared in accordance with ISO 6142-1 [1]. The purity analysis of the materials used was done in accordance with ISO 19229 [2]. For the measurements before shipment and those after return of the transfer standards, the same calibration function has been used. The sixth measurement on the GC/TCD has been done using a new calibration function, using the same suite of PSMs. The errors-in-variables regression has been performed in accordance with ISO 6143 [3]. A calibration function was only accepted if the goodness-of-fit, as required by ISO 6143, did not exceed a value of 2. For all components, a quadratic polynomial has been used, satisfying the goodness-of-fit criterion.

The values of the amount fractions have been obtained using the calibration function. The assigned value for the amount fraction of a component is obtained by using the calibration function and using the bisection algorithm [4] to find for a response  $A_0$  the corresponding amount fraction  $x_0$ 

$$A_0 = f(x_0; \boldsymbol{a}) \tag{1}$$

where *f* denotes the calibration function, *a* the vector holding the coefficients of the calibration function, and  $A_0$  the instrument response, calculated as peak area ratio.

Using the law of propagation of uncertainty of GUM Supplement 2 (GUM-S2) [5], the standard uncertainty associated with  $x_0$  can be computed as [6]

$$u(x_0) = \left( \left[ \frac{\partial f(x; \boldsymbol{a})}{\partial x} \right]^{-2} \left[ u^2(A_0) + \boldsymbol{C} \boldsymbol{U}_{\boldsymbol{a}} \boldsymbol{C}^{\mathsf{T}} \right] \right)^{\frac{1}{2}}$$
(2)

where  $U_a$  denotes the covariance matrix associated with the vector of the coefficients of the calibration function, and  $C = (1, x, x^2)$ , evaluated at  $x = x_0$ . These calculations have been performed using VSL's own software [7].

Based on the data thus obtained, it was concluded that there were no stability issues (see for a discussion section 3.1). Hence, to obtain a representative for the amount fraction of the components in each transfer standard, the six (five for ethane and propane) amount fractions were converted into a mean value using meta-analysis. This method would also include in the uncertainty evaluation a reproducibility effect. The amount fraction  $\xi$  is obtained by fitting the data to the following equation

$$x_i = \xi + B_i + \epsilon_i \tag{3}$$

where  $x_i$  denotes the amount fraction of a component in a transfer standard of measurement *i*,  $\xi$  the mean value,  $B_i$  a bias term modelling the reproducibility effect and  $\epsilon_i$  a random error term. The calculation of the amount fractions in the transfer standards has been performed using equation (3). As model, the DerSimonian-Liard model (DL) [8] was chosen. The calculations were performed using R [9] and the metafor package [10] that implements many models from meta-analysis under which the DL.

The results obtained from this calculation are shown in figures 8 and 9 in section 3.3. Based on these results, it was decided to establish the key comparison reference value (KCRV) as the consensus value of the laboratory results, and to use the results from the homogeneity and stability study to establish corrections to the amount fractions due to the differences in the composition of these mixtures. A fixed effects model was used [11, 12] to obtain the corrections as

$$\Delta x_i = x_i - \bar{x}$$

where  $\bar{x}$  denotes the arithmetic mean. The standard uncertainty of the correction to the amount fraction  $\Delta x_j$  was taken to be the amount fraction computed for  $x_j$  from the DL in the previous step (in that model, see equation 3,  $x_j$  appears as  $\xi$ ).

#### 2.6 Measurement equation

The calculation of the KCRV for the amount fractions of the seven components was performed as follows. A priori three alternatives were considered

- 1. the weighted mean, if the dataset was homogeneous (also known as "procedure A" [13]);
- 2. the median, if the dataset was heterogeneous (also known as "procedure B" [13]
- 3. the largest consistent subset (LCS) in combination with the weighted mean, if the dataset was heterogeneous [14]

As a component-by-component approach was chosen, it was decided that the evaluation procedure could differ from component to component. The datasets were generally not homogeneous (see for a discussion section 3.1). The root cause of the heterogeneity was deemed to be different for the various components. As the amount fractions of nitrogen, carbon dioxide and methane had also been subject of several key comparisons on natural gas [15–18] already, it was deemed appropriate to consider the discrepant results as being caused by a flaw in the measurement. For these components, the LCS was used. For the other component fractions, such experience did not exist, and it was assumed that discrepancies would arise from, among others, understating the measurement uncertainty. For these components, procedure B using the median as KCRV was used.

The LCS for nitrogen, carbon dioxide, and methane were formed manually, after applying the correction to the amount fraction as reported by the participant as discussed previously. Applying this correction precludes eliminating results because of differences in the composition of the transfer standards. The largest consistent subset (LCS) [14] was formed by removing one by one the most discrepant result, i.e., the result that contributed most to the value of  $\chi^2$  as defined in procedure A [13]. This process was repeated until a dataset was obtained satisfying the  $\chi^2$  criterion as described in procedure A. In none of the datasets there was any ambiguity concerning the set of results that formed the largest consistent subset.

When applying procedure B, also first the correction due to batch inhomogeneity was applied to the measurement results stated by the participants. Using the Monte Carlo method of GUM Supplement 1 (GUM-S1) [19]. The Monte Carlo method was implemented in R [9] using 1 000 000 Monte Carlo trials. The amount fractions of the participants were assigned normal distributions with as mean the amount fraction after correction and as standard deviation the standard uncertainty as reported by the NMI, combined with the standard uncertainty from the correction for batch inhomogeneity.

#### 2.7 Measurement methods used by the participants

The measurement methods used by the participants are described in annex B of this report. A summary of the calibration methods, dates of measurement and reporting, and the way in which metrological traceability is established is given in table 5.

| Laboratory | Measurement dates                                                                                         | Calibration<br>method                          | Traceability                                       | Matrix                             | Measurement<br>technique   |
|------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------|------------------------------------|----------------------------|
| CEM        | 24/29/30 July 2015<br>and 07/10/11/12 Au-<br>gust 2015                                                    | Multipoint cali-<br>bration (3 stan-<br>dards) | Own standards<br>(ISO 6142)                        | Methane                            | GC/TCD/FID<br>Paramagnetic |
| CMI        | 27 August 2015 and 12/14 October 2015                                                                     | Multipoint cali-<br>bration (3 stan-<br>dards) | Own standard                                       | Methane                            | GC/TCD/FID                 |
| INMETRO    | 13/15 May 2015 and<br>17/19 May 2015 and<br>09/23 June 2015 and<br>16/24 June 2015 and<br>24/25 June 2015 | ISO 6143                                       | Own standards<br>(ISO 6142) and 3<br>NPL standards | Methane                            | GC/TCD/FID                 |
| BFKH       | 29/30/31 July 2015                                                                                        | Matching stan-<br>dard                         | Own standard                                       | Methane                            | GC/TCD/FID                 |
| NPL        | 22/23 July 2015 and<br>03/04/05 August<br>2015                                                            | Bracketing                                     | Own standard                                       | Methane                            | GC/TCD/FID                 |
| SMU        | 04/11/18/23/24/25<br>March 2015 and<br>02/09/10 April 2015                                                | ISO 6143                                       | Own standards                                      | Nitrogen,<br>methane and<br>helium | GC/TCD/FID                 |
| RISE       | 05/11/12 March 2015                                                                                       | Bracketing                                     | NPL standards                                      | Unknown                            | GC/TCD/FID                 |
| UME        | 27 May 2015 and 02/03/20/21 June 2015                                                                     | Multipoint cali-<br>bration (3 stan-<br>dards) | Own standards                                      | Methane                            | GC/TCD/FID                 |
| VNIIIM     | 01/02/03 July 2015                                                                                        | Matching stan-<br>dard                         | Own standards                                      | Methane                            | GC/TCD/FID                 |
| VSL        | 24/25/27/31 Au-<br>gust 2015 and 04/08<br>September 2015                                                  | ISO 6143                                       | Own standards<br>(ISO 6142)                        | Methane                            | GC/TCD/FID                 |

Table 5: Overview of calibration methods and metrological traceability

### 2.8 Degrees of equivalence

The unilateral degree-of-equivalence for laboratory i is defined as

$$d_i = x_{\text{lab},i} - x_{\text{KCRV},i} \tag{4}$$

and its associated expanded uncertainty. In case of applying the LCS, the uncertainty calculation was performed in accordance with procedure A [13].

The KCRV for transfer standard *i* is obtained as  $x_{\text{KCRV},i} = x_{\text{KCRV}} + \Delta x_i$ , where the correction  $\Delta x_i$  is made for the difference in amount fraction between the transfer standards.

In case of procedure B, the uncertainty calculation was embedded in the implementation of the Monte Carlo method. The expanded uncertainty was computed as the half-width of the 95% coverage interval. The coverage factor was computed as the ratio of the expanded and standard uncertainty.

## **3** Results

### 3.1 Stability assessment

The results from the analysis of the transfer standards before shipment and after their return are given in figures 1 through 7. The relationship between the identifications of the gas mixtures and the participants is given in annex A, tables 16–22. The values and standard uncertainties used in these calculations are also given in annex A, tables 23–29.

Based on these results, the amount fraction was considered to be stable. The mean value as obtained from fitting the DL is denoted in the figures by the solid line; the dotted lines are giving the boundaries of the 95% coverage interval.

From the figures 1 through 7, it is readily seen that the batch homogeneity for methane (figure 1) and hydrogen (figure 4) for instance is rather good, but that for other components, such as nitrogen (figure 2), carbon dioxide (figure 3) and oxygen (figure 5) there are substantial differences to the mean value assigned to the amount fraction of these components.

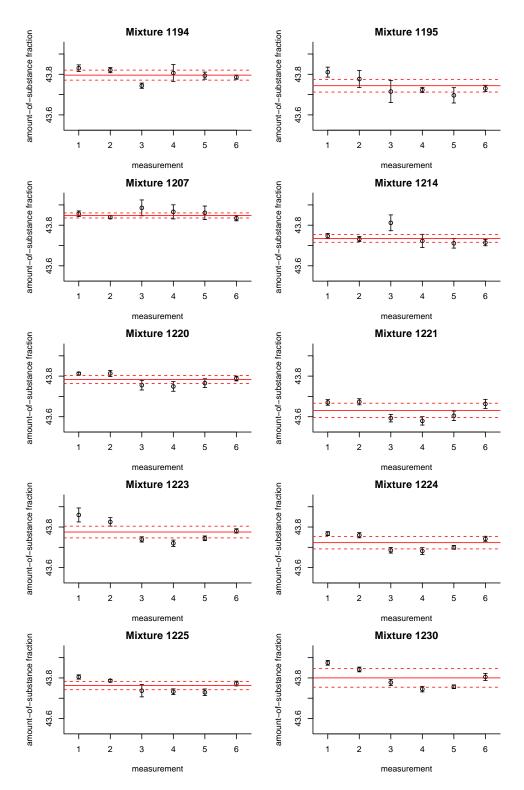



Figure 1: Results of the analysis of the transfer standards before shipment to the participants and after return to the coordinating laboratory for methane

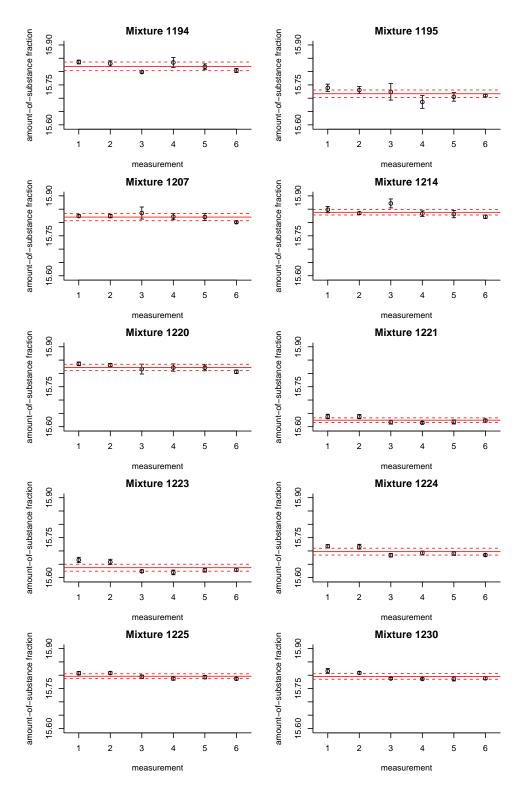



Figure 2: Results of the analysis of the transfer standards before shipment to the participants and after return to the coordinating laboratory for nitrogen

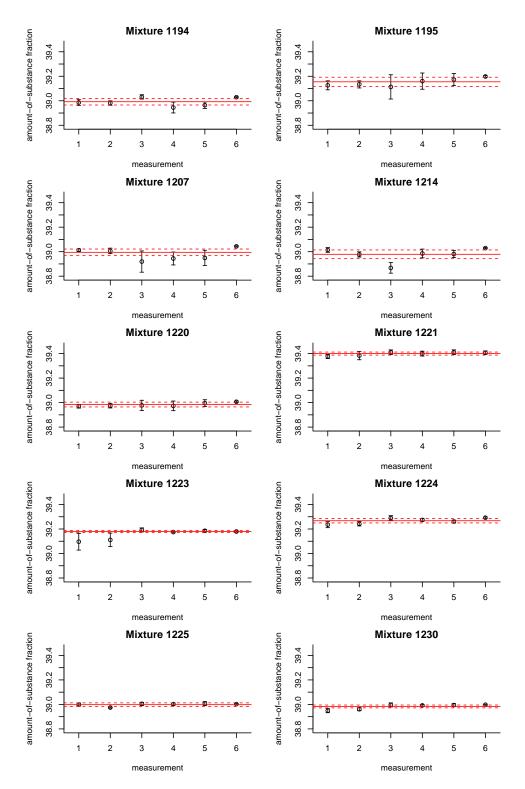



Figure 3: Results of the analysis of the transfer standards before shipment to the participants and after return to the coordinating laboratory for carbon dioxide

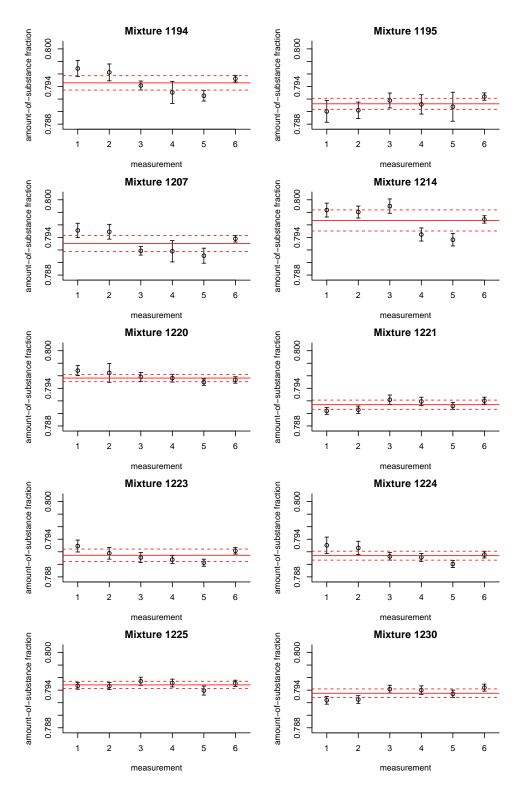



Figure 4: Results of the analysis of the transfer standards before shipment to the participants and after return to the coordinating laboratory for hydrogen

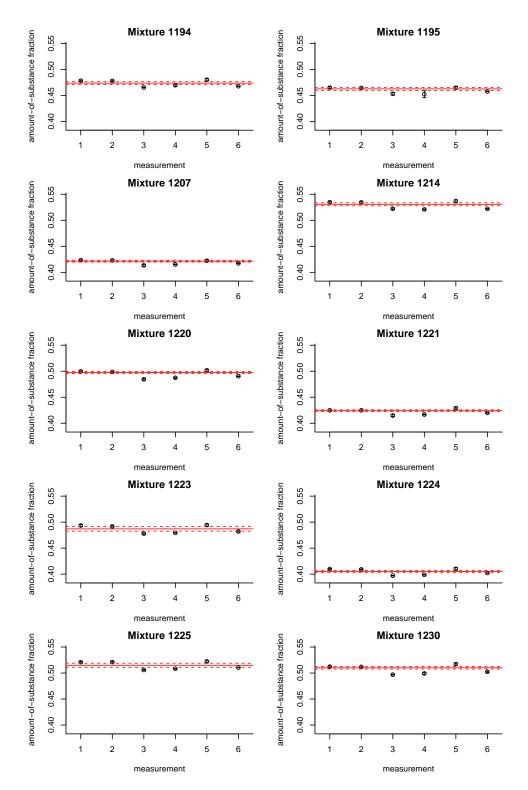



Figure 5: Results of the analysis of the transfer standards before shipment to the participants and after return to the coordinating laboratory for oxygen

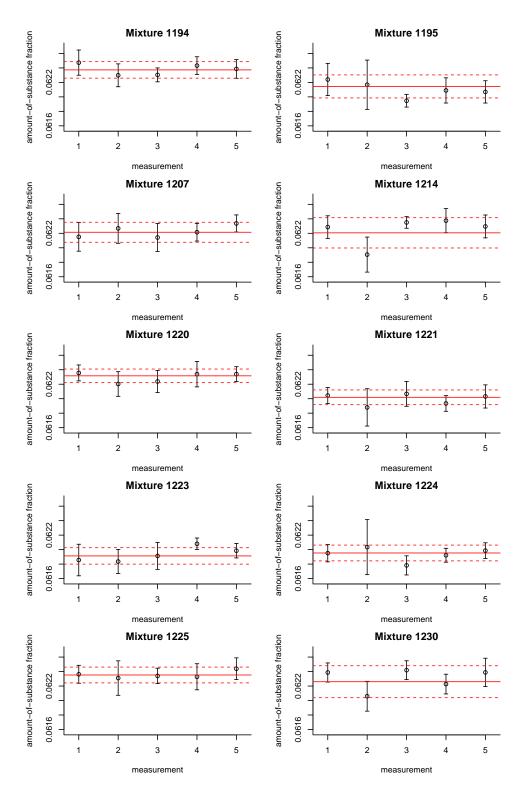



Figure 6: Results of the analysis of the transfer standards before shipment to the participants and after return to the coordinating laboratory for ethane

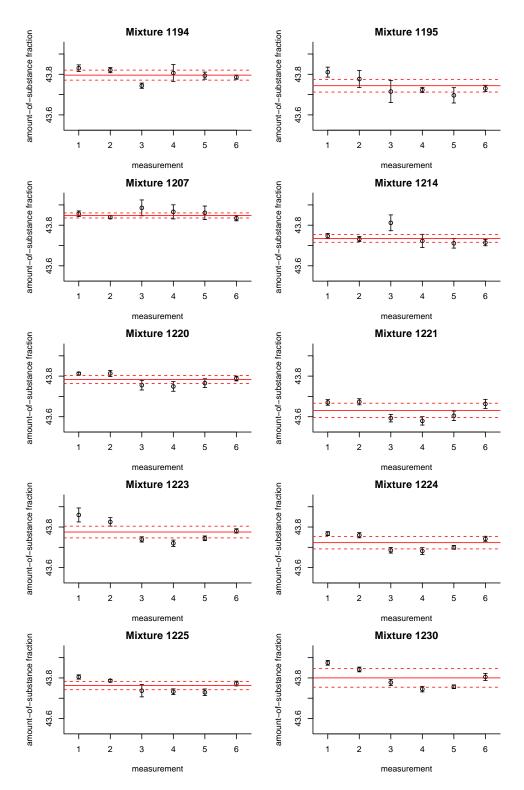



Figure 7: Results of the analysis of the transfer standards before shipment to the participants and after return to the coordinating laboratory for propane

#### 3.2 Comparison of the results on the transfer standards

In figures 8 and 9, the results from the analyses discussed in section 3.1 have been plotted alongside the results reported by the participants. The latter are given in annex B and summarised in annex A, tables 16-14. The error bars show expanded uncertainties. The solid lines indicate the KCRV obtained using procedure B (see also table 7); the dotted lines indicate the 95% coverage interval of the KCRV.

For oxygen (figure 8e) and to a lesser extent carbon dioxide (figure 8c), there seems to be a systematic difference between the results from the assessment of the transfer standards and the results of the participants (that is, leaving aside some incidental discrepant results). At the same time, it should be noted that these deviations are substantially smaller than the discrepancies in the datasets from the participants.

For the other components, the results generally agree well. In those instances, it is readily seen that there is a strong correlation between the results.

#### 3.3 Calculation of corrections due to between-bottle inhomogeneity

From the results shown in figures 8 and 9, corrections have been calculated to the amount fractions due to batch inhomogeneity, using a fixed effects model. The corrections are shown in figures 10 and 11. The error bars represent standard uncertainties. These values have been summarised in annex A, tables 16 to 22. For many of the components and mixtures, these corrections are significant. These corrections have been applied to the laboratory results before applying procedure B to compute the KCRV and the degrees-of-equivalence.

#### 3.4 Degrees-of-equivalence

An overview of the largest consistent subsets is given in table 6. From this table, it is readily seen that applying this approach to all datasets leads to a strong reduction in size of some of the datasets, especially those of oxygen (only 5 results left) and propane (only 6 results left).

|         | $CH_4$ | $CO_2$ | $N_2$ | $H_2$ | 0 <sub>2</sub> | $C_2H_6$ | $C_3H_8$ | Total |
|---------|--------|--------|-------|-------|----------------|----------|----------|-------|
| VNIIM   | Х      | Х      | Х     | Х     | Х              | Х        | _        | 6     |
| INMETRO | Х      | Х      | Х     | -     | -              | Х        | Х        | 5     |
| BFKH    | -      | _      | -     | -     | -              | Х        | Х        | 2     |
| SMU     | Х      | Х      | Х     | Х     | Х              | Х        | Х        | 7     |
| CEM     | Х      | Х      | Х     | Х     | -              | Х        | -        | 5     |
| CMI     | -      | Х      | -     | Х     | Х              | Х        | Х        | 5     |
| RISE    | Х      | Х      | Х     | Х     | -              | Х        | Х        | 6     |
| VSL     | Х      | Х      | Х     | Х     | Х              | Х        | Х        | 7     |
| NPL     | Х      | Х      | Х     | -     | Х              | Х        | -        | 5     |
| UME     | Х      | Х      | Х     | Х     | —              | Х        | -        | 5     |
| Total   | 8      | 9      | 8     | 7     | 5              | 10       | 6        |       |

Table 6: Largest consistent subsets for the components in the mixtures; "X" denotes included in the subset, "–" denotes excluded from the subset

For comparison purposes, the LCS have been used to compute consensus values for the amount fractions methane, carbon dioxide, nitrogen, and ethane. For the other components, datasets larger than the LCS were used, as the LCS was considered to be unrepresentative for the data reported in this key comparison. For hydrogen, INMETRO and BFKH were removed from the dataset. For oxygen, BFKH, CEM, and UME were removed from the dataset. In the case of propane, VNIIM and UME were removed. For those (reduced) datasets that were not consistent, the DL has been used to compute the consensus value,

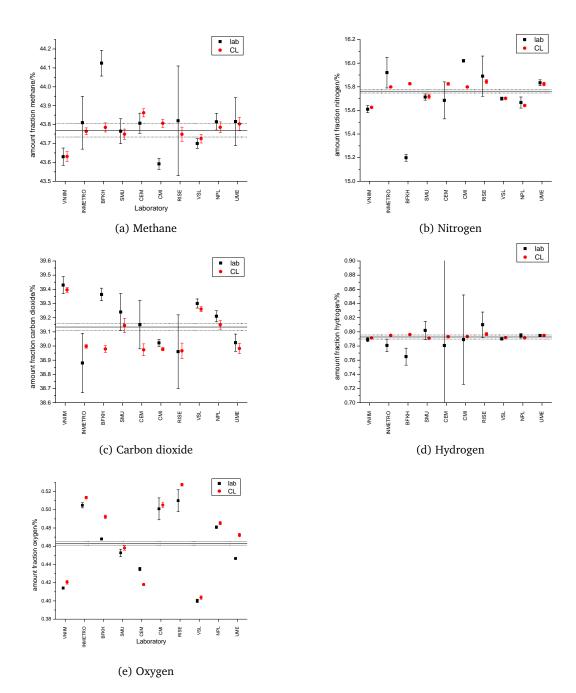



Figure 8: Comparison between the results obtained from the homogeneity and stability study of the transfer standards and the participants for methane, carbon dioxide, nitrogen, hydrogen and oxygen. The solid line represents the KCRV and the dotted lines its 95 % coverage interval

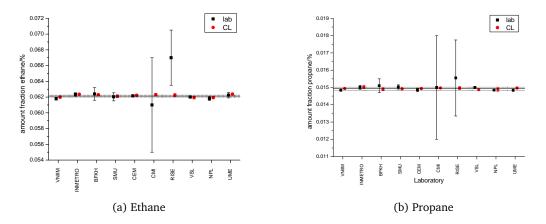



Figure 9: Comparison between the results obtained from the homogeneity and stability study of the transfer standards and the participants for ethane and propane. The solid line represents the KCRV and the dotted lines its 95 % coverage interval

including an uncertainty contribution for the excess dispersion of the data. The values  $\bar{x}$  and associated standard uncertainties  $u(\bar{x})$  are given in table 7 in the second and third columns.

The key comparison has eventually been evaluated using procedure B [13] with the median as KCRV. The KCRV  $x_{\text{KCRV}}$  and its associated standard uncertainty  $u(x_{\text{KCRV}})$  are given in table 7 in the fourth and fifth columns. In figures 8 and 9, the KCRVs and their 95% coverage intervals are shown alongside the reported results by the participants.

| Lab            | LCS/E     | xcess        | Proced        | lure B            |
|----------------|-----------|--------------|---------------|-------------------|
| Component      | $\bar{x}$ | $u(\bar{x})$ | $x_{ m KCRV}$ | $u(x_{\rm KCRV})$ |
| Methane        | 43.75521  | 0.00888      | 43.76990      | 0.01780           |
| Carbon dioxide | 39.12853  | 0.00799      | 39.13397      | 0.01247           |
| Nitrogen       | 15.75998  | 0.00483      | 15.76297      | 0.00776           |
| Hydrogen       | 0.79630   | 0.00310      | 0.79270       | 0.00141           |
| Oxygen         | 0.46270   | 0.00200      | 0.46308       | 0.00095           |
| Ethane         | 0.06213   | 0.00012      | 0.06213       | 0.00006           |
| Propane        | 0.01495   | 0.00005      | 0.01493       | 0.00004           |
|                |           |              |               |                   |

Table 7: Consensus values based on selected results from participants and the key comparison reference values as computed using procedure B using the median, expressed as amount fractions  $(\text{cmol}\,\text{mol}^{-1})$ 

In figures 12-18 the degrees of equivalence for all participating laboratories are given relative to the KCRV as obtained from procedure B. These degrees-of-equivalence are calculated from the amount fractions reported by the laboratories, after correction for batch inhomogeneity. The corrected results ( $x'_{lab}$  and  $u(x'_{lab})$ ) are given in tables 8–14. The reported results from which these have been calculated are given in annex A, tables 16–22. These corrections are necessary as each NMI received its own transfer standards, and for most components, a part of the dispersion of the results can be explained from differences in the composition of the transfer standards. After applying this correction, the results can be used for calculating the KCRV.

Another way of putting it is to say that each transfer standard has for each component its own KCRV, just as in other key comparisons in this area [15–18]. The only difference is that in the natural gas key comparisons so far an independent value, calculated from gravimetric gas mixture preparation has been

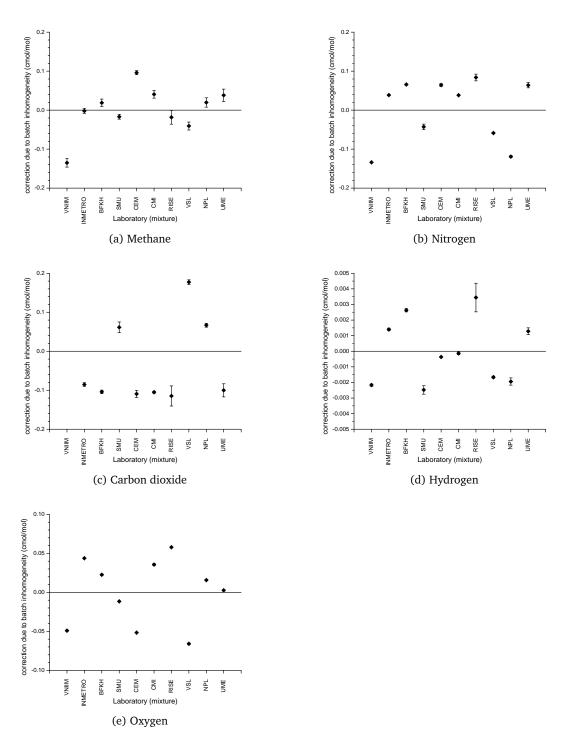



Figure 10: Corrections due to batch inhomogeneity for the amount fractions for methane, carbon dioxide, nitrogen, hydrogen and oxygen

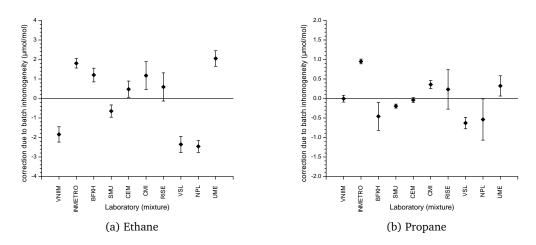



Figure 11: Corrections due to batch inhomogeneity for the amount fractions ethane and propane

used, whereas in this key comparison a consensus value is used as KCRV, with for each transfer standard and component an individual correction due to the observed differences in the amount fraction of the components (see sections 3.1 and 3.3).

The uncertainties of the degrees-of-equivalence are, as required by the MRA [20], given as 95 % coverage intervals. These intervals have been computed as probabilistically-symmetric coverage intervals from the output of the Monte Carlo method applied in procedure B [13]. The standard uncertainty of the corrected laboratory results was obtained by combining the standard uncertainty of the laboratory result with the standard uncertainty of the correction for the amount fraction of the component and the transfer standard used. For obtaining the standard uncertainty of the laboratory results, the expanded uncertainty (stated at a confidence level of 95 %) from the laboratory was divided by the reported coverage factor, which in all cases was k = 2.

For the evaluation of uncertainty of the degrees of equivalence, the normal distribution has been assumed, and a coverage factor k = 2 was used throughout. For obtaining the standard uncertainty of the laboratory results, the expanded uncertainty (stated at a confidence level of 95%) from the laboratory was divided by the reported coverage factor, which in all cases was k = 2 (see also tables 8-14).

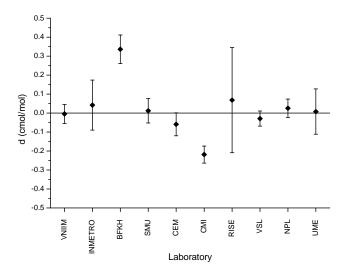



Figure 12: Degrees-of-equivalence for methane

Most of the results reported by the participants agree with the reference value (see figure 12). The data reported by the participants are not completely internally consistent. The results of the degrees-of-equivalence calculation are summarised in table 8.

Table 8: Corrected amount fraction of methane from the participants  $(x'_{lab})$ , the associated standard uncertainty  $(u(x'_{lab}))$ , and the degree-of-equivalence (difference *d*, standard uncertainty u(d), and expanded uncertainty (U(d))) (cmol mol<sup>-1</sup>)

| Lab     | $x'_{\rm lab}$ | $u(x'_{\rm lab})$ | d      | u(d)  | U(d)  |
|---------|----------------|-------------------|--------|-------|-------|
| VNIIM   | 43.765         | 0.023             | -0.005 | 0.024 | 0.050 |
| INMETRO | 43.812         | 0.070             | 0.042  | 0.066 | 0.132 |
| BFKH    | 44.106         | 0.034             | 0.336  | 0.038 | 0.075 |
| SMU     | 43.782         | 0.033             | 0.012  | 0.031 | 0.064 |
| CEM     | 43.711         | 0.027             | -0.059 | 0.031 | 0.060 |
| CMI     | 43.551         | 0.015             | -0.219 | 0.023 | 0.045 |
| RISE    | 43.838         | 0.145             | 0.068  | 0.140 | 0.277 |
| VSL     | 43.741         | 0.013             | -0.029 | 0.021 | 0.040 |
| NPL     | 43.795         | 0.022             | 0.025  | 0.025 | 0.048 |
| UME     | 43.778         | 0.064             | 0.008  | 0.059 | 0.119 |

In the data for carbon dioxide (see figure 13), there is only one result not agreeing with the reference value. The results of the degrees-of-equivalence calculation are summarised in table 9.

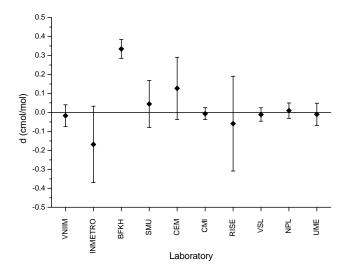



Figure 13: Degrees-of-equivalence for carbon dioxide

Table 9: Corrected amount fraction of carbon dioxide from the participants  $(x'_{lab})$ , the associated standard uncertainty  $(u(x'_{lab}))$ , and the degree-of-equivalence (difference *d*, standard uncertainty u(d), and expanded uncertainty (U(d))) (cmol mol<sup>-1</sup>)

| Lab     | $x'_{ m lab}$ | $u(x'_{\rm lab})$ | d      | u(d)  | U(d)  |
|---------|---------------|-------------------|--------|-------|-------|
| VNIIM   | 39.117        | 0.030             | -0.017 | 0.029 | 0.058 |
| INMETRO | 38.965        | 0.105             | -0.168 | 0.104 | 0.201 |
| BFKH    | 39.468        | 0.022             | 0.334  | 0.025 | 0.050 |
| SMU     | 39.179        | 0.065             | 0.045  | 0.063 | 0.124 |
| CEM     | 39.260        | 0.085             | 0.126  | 0.085 | 0.164 |
| CMI     | 39.127        | 0.013             | -0.007 | 0.015 | 0.032 |
| RISE    | 39.075        | 0.130             | -0.059 | 0.126 | 0.249 |
| VSL     | 39.123        | 0.016             | -0.011 | 0.018 | 0.036 |
| NPL     | 39.143        | 0.020             | 0.009  | 0.020 | 0.040 |
| UME     | 39.124        | 0.031             | -0.010 | 0.029 | 0.059 |
|         |               |                   |        |       |       |

The dataset for nitrogen is not entirely consistent. Most of the laboratories report a result that is consistent with the reference value (see figure 14). The degrees-of-equivalence are shown in table 10.

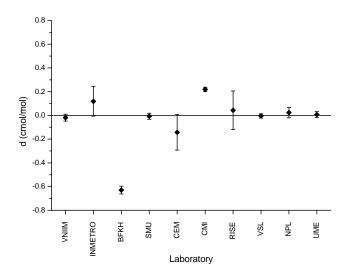



Figure 14: Degrees-of-equivalence for nitrogen

Table 10: Corrected amount fraction of nitrogen from the participants  $(x'_{lab})$ , the associated standard uncertainty  $(u(x'_{lab}))$ , and the degree-of-equivalence (difference *d*, standard uncertainty u(d), and expanded uncertainty (U(d))) (cmol mol<sup>-1</sup>)

| Lab     | $x'_{ m lab}$ | $u(x'_{\rm lab})$ | d      | u(d)  | U(d)  |
|---------|---------------|-------------------|--------|-------|-------|
| VNIIM   | 15.744        | 0.015             | -0.019 | 0.016 | 0.029 |
| INMETRO | 15.881        | 0.065             | 0.118  | 0.065 | 0.125 |
| BFKH    | 15.133        | 0.015             | -0.630 | 0.016 | 0.032 |
| SMU     | 15.756        | 0.013             | -0.007 | 0.013 | 0.025 |
| CEM     | 15.621        | 0.078             | -0.142 | 0.078 | 0.151 |
| CMI     | 15.982        | 0.006             | 0.219  | 0.010 | 0.019 |
| RISE    | 15.806        | 0.085             | 0.043  | 0.082 | 0.163 |
| VSL     | 15.759        | 0.007             | -0.004 | 0.009 | 0.018 |
| NPL     | 15.786        | 0.024             | 0.023  | 0.023 | 0.044 |
| UME     | 15.770        | 0.012             | 0.007  | 0.012 | 0.024 |

The results for hydrogen (see figure 15) are more homogeneous than those for nitrogen and methane. All but two results are consistent with the reference value.

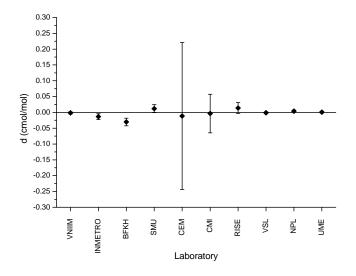



Figure 15: Degrees-of-equivalence for hydrogen

Table 11: Corrected amount fraction of hydrogen from the participants  $(x'_{lab})$ , the associated standard uncertainty  $(u(x'_{lab}))$ , and the degree-of-equivalence (difference *d*, standard uncertainty u(d), and expanded uncertainty (U(d))) (cmol mol<sup>-1</sup>)

| Lab     | $x'_{ m lab}$ | $u(x'_{\rm lab})$ | d       | u(d)   | U(d)   |
|---------|---------------|-------------------|---------|--------|--------|
| VNIIM   | 0.7913        | 0.0016            | -0.0014 | 0.0018 | 0.0035 |
| INMETRO | 0.7794        | 0.0045            | -0.0133 | 0.0047 | 0.0092 |
| BFKH    | 0.7624        | 0.0060            | -0.0303 | 0.0062 | 0.0121 |
| SMU     | 0.8045        | 0.0065            | 0.0118  | 0.0065 | 0.0125 |
| CEM     | 0.7811        | 0.1188            | -0.0117 | 0.1181 | 0.2317 |
| CMI     | 0.7891        | 0.0315            | -0.0036 | 0.0309 | 0.0609 |
| RISE    | 0.8066        | 0.0090            | 0.0138  | 0.0089 | 0.0170 |
| VSL     | 0.7917        | 0.0007            | -0.0010 | 0.0015 | 0.0030 |
| NPL     | 0.7965        | 0.0016            | 0.0038  | 0.0020 | 0.0038 |
| UME     | 0.7935        | 0.0007            | 0.0008  | 0.0015 | 0.0030 |

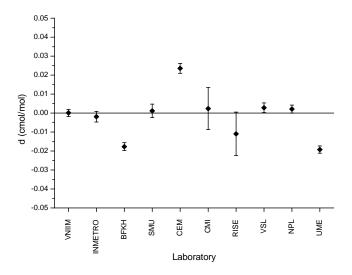



Figure 16: Degrees-of-equivalence for oxygen

The dataset for oxygen (see figure 16) is not very homogeneous. Furthermore, the reference value seems to be biased with respect to the majority of the reported results. The results of SMU, RISE, VNIIM, NPL, VSL, INMETRO and CMI form the largest consistent subset. The difference between the KCRVs and the consensus value is smaller than the dispersion of the results provided for the oxygen fraction.

Table 12: Corrected amount fraction of oxygen from the participants  $(x'_{lab})$ , the associated standard uncertainty  $(u(x'_{lab}))$ , and the degree-of-equivalence (difference *d*, standard uncertainty u(d), and expanded uncertainty (U(d))) (cmol mol<sup>-1</sup>)

| Lab     | $x'_{\rm lab}$ | $u(x'_{lab})$ | d        | u(d)    | U(d)    |
|---------|----------------|---------------|----------|---------|---------|
|         | IdD            | 1 IdD'        |          |         |         |
| VNIIM   | 0.46320        | 0.00060       | 0.00013  | 0.00098 | 0.00188 |
| INMETRO | 0.46116        | 0.00140       | -0.00192 | 0.00149 | 0.00280 |
| BFKH    | 0.44539        | 0.00050       | -0.01769 | 0.00107 | 0.00206 |
| SMU     | 0.46422        | 0.00200       | 0.00114  | 0.00178 | 0.00355 |
| CEM     | 0.48667        | 0.00095       | 0.02359  | 0.00134 | 0.00262 |
| CMI     | 0.46543        | 0.00600       | 0.00236  | 0.00553 | 0.01109 |
| RISE    | 0.45212        | 0.00600       | -0.01096 | 0.00598 | 0.01149 |
| VSL     | 0.46591        | 0.00095       | 0.00283  | 0.00132 | 0.00254 |
| NPL     | 0.46516        | 0.00070       | 0.00208  | 0.00114 | 0.00215 |
| UME     | 0.44385        | 0.00034       | -0.01923 | 0.00100 | 0.00192 |

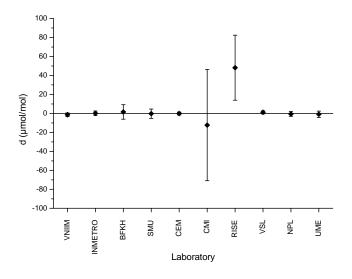



Figure 17: Degrees-of-equivalence for ethane

The results for ethane (see figure 17) are homogeneous and consistent, except for the result of RISE.

Table 13: Corrected amount fraction of ethane from the participants  $(x'_{lab})$ , the associated standard uncertainty  $(u(x'_{lab}))$ , and the degree-of-equivalence (difference *d*, standard uncertainty u(d), and expanded uncertainty (U(d))) (µmol mol<sup>-1</sup>)

| Lab     | $x'_{\rm lab}$ | $u(x'_{\rm lab})$ | d     | u(d) | U(d) |
|---------|----------------|-------------------|-------|------|------|
| VNIIM   | 619.8          | 0.9               | -1.4  | 1.0  | 1.9  |
| INMETRO | 621.4          | 1.2               | 0.1   | 1.2  | 2.4  |
| BFKH    | 622.8          | 4.0               | 1.5   | 3.9  | 7.7  |
| SMU     | 620.9          | 2.6               | -0.3  | 2.4  | 4.9  |
| CEM     | 621.1          | 0.6               | -0.1  | 0.7  | 1.5  |
| CMI     | 608.8          | 30.0              | -12.4 | 29.8 | 58.6 |
| RISE    | 669.4          | 17.5              | 48.2  | 17.5 | 34.4 |
| VSL     | 622.4          | 0.7               | 1.1   | 0.9  | 1.6  |
| NPL     | 620.7          | 1.3               | -0.6  | 1.2  | 2.5  |
| UME     | 620.3          | 1.7               | -0.9  | 1.6  | 3.3  |

The data for propane (see figure 18) are quite homogeneous. The result of VSL is not consistent with the reference value.

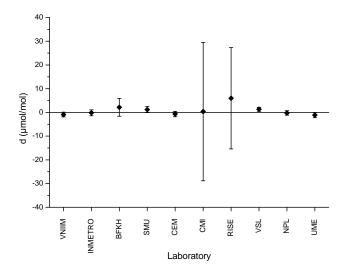



Figure 18: Degrees-of-equivalence for propane

Table 14: Corrected amount fraction of propane from the participants  $(x'_{lab})$ , the associated standard uncertainty  $(u(x'_{lab}))$ , and the degree-of-equivalence (difference *d*, standard uncertainty u(d), and expanded uncertainty (U(d))) (µmol mol<sup>-1</sup>)

| Lab     | $x'_{\rm lab}$ | $u(x'_{\rm lab})$ | d    | u(d) | U(d) |
|---------|----------------|-------------------|------|------|------|
| VNIIM   | 148.4          | 0.3               | -0.9 | 0.5  | 1.0  |
| INMETRO | 149.1          | 0.6               | -0.2 | 0.6  | 1.3  |
| BFKH    | 151.5          | 2.0               | 2.1  | 1.9  | 3.8  |
| SMU     | 150.5          | 0.6               | 1.2  | 0.7  | 1.3  |
| CEM     | 148.6          | 0.5               | -0.7 | 0.6  | 1.2  |
| CMI     | 149.6          | 15.0              | 0.4  | 14.8 | 29.1 |
| RISE    | 155.3          | 11.0              | 6.0  | 10.8 | 21.3 |
| VSL     | 150.6          | 0.1               | 1.3  | 0.5  | 0.8  |
| NPL     | 149.1          | 0.3               | -0.2 | 0.5  | 0.9  |
| UME     | 148.2          | 0.4               | -1.1 | 0.6  | 1.1  |
|         |                |                   |      |      |      |

# 4 Support to CMC claims

The support of CMC claims is described in more detail in the "GAWG strategy for comparisons and CMC claims" [21]. The results of this key comparison can be used to support CMC claims for the composition of biogas in the following ranges (see table 15). CMCs outsite the listed ranges are not supported by the results of this key comparison without further evidence.

| Component      | Amount fraction $x$ (cmol mol <sup>-1</sup> ) |
|----------------|-----------------------------------------------|
| Methane        | 35 – 95                                       |
| Carbon dioxide | 4 – 45                                        |
| Nitrogen       | 4 – 25                                        |
| Hydrogen       | 0.2 - 3.0                                     |
| Oxygen         | 0.2 - 1.5                                     |
| Ethane         | 0.002 - 0.5                                   |
| Propane        | 0.002 – 0.5                                   |

Table 15: Supported component ranges

## 5 Discussion and conclusions

The results in this Track C key comparison on the composition of biogas are generally good. Some of the datasets, especially that of oxygen, showed substantial extra dispersion, that could not be explained by the stated uncertainties.

This is the first key comparison of the CCQM-GAWG that has been evaluated using procedure B and the median as key comparison reference value. Corrections had to be made to the laboratory results to account for differences in the amount fractions of the components in the gas mixtures used as transfer standards. The calculation of the degrees-of-equivalence using this procedure B shows that it can also be applied in key comparisons with multiple transfer standards.

## Coordinator

VSL

Department of Chemisty, Mass, Pressure and Viscosity Adriaan M.H. van der Veen Thijsseweg 11 2629 JA Delft the Netherlands Phone +31 15 269 1733 E-mail avdveen@vsl.nl

# **Project reference**

CCQM-K112

# **Completion date**

March 2020

### References

- ISO 6142–1 Gas analysis Preparation of calibration gas mixtures Gravimetric method for Class I mixtures. ISO, International Organization for Standardization, Geneva, Switzerland, First edition 2015.
- [2] ISO 19229 Gas analysis Purity analysis and the treatment of purity data. ISO, International Organization for Standardization, Geneva, Switzerland, 2015. First edition.
- [3] ISO 6143 Gas analysis Comparison methods for determining and checking the composition of calibration gas mixtures. ISO, International Organization for Standardization, Geneva, Switzerland, 2001. Second edition.
- [4] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, New York, NY, USA, 2nd edition, 1992.
- [5] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. Supplement 2 to the 'Guide to the Expression of Uncertainty in Measurement' – Extension to any number of output quantities, JCGM 102:2011. BIPM, 2011.
- [6] M J T Milton, P M Harris, I M Smith, A S Brown, and B A Goody. Implementation of a generalized leastsquares method for determining calibration curves from data with general uncertainty structures. *Metrologia*, 43(4):S291, 2006.
- [7] Adriaan M.H. van der Veen. CurveFit 2.14 User's manual. Technical report, VSL, Dutch Metrology Institute, Delft, the Netherlands, 2014. Report S-CH.14.02.
- [8] Rebecca DerSimonian and Nan Laird. Meta-analysis in clinical trials. *Controlled Clinical Trials*, 7(3):177–188, 1986.
- [9] R Core Team. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria, 2016.
- [10] Wolfgang Viechtbauer. Conducting meta-analyses in R with the metafor package. *Journal of Statistical Software*, 36(3):1–48, 2010.
- [11] Guido Schwarzer, James R Carpenter, and Gerta Rücker. *Meta-Analysis with R (Use R!)*. Springer, 2015.
- [12] Blaza Toman and Antonio Possolo. Laboratory effects models for interlaboratory comparisons. Accreditation and Quality Assurance, 14(10):553–563, jun 2009.
- [13] M G Cox. The evaluation of key comparison data. *Metrologia*, 39(6):589–595, dec 2002.
- [14] Maurice G Cox. The evaluation of key comparison data: determining the largest consistent subset. *Metrologia*, 44(3):187–200, apr 2007.
- [15] A Alink. The first key comparison of primary standard gas mixtures. *Metrologia*, 37(1):35–49, feb 2000.
- [16] Adriaan M H van der Veen, Hans-Joachim Heine, Freek N C Brinkmann, Paul R Ziel, Ed W B de Leer, Wang Lin Zhen, Kenji Kato, Leonid A Konopelko, Tatjana A Popova, Yuri I Alexandrov, Elena N Kortchagina, Yuri A Kustikov, Stanislav Musil, Martin J T Milton, Franklin Guenther, and George Rhoderick. International comparison CCQM-K16: Composition of natural gas types IV and V. *Metrologia*, 42(1A):08003, 2005.

- [17] Adriaan M H van der Veen, Paul R Ziel, Ed W B de Leer, Damian Smeulders, Laurie Besley, Valnei Smarçao da Cunha, Zei Zhou, Han Qiao, Hans-Joachim Heine, Jan Tichy, Teresa Lopez Esteban, Tatiana Mace, Zsófia Nagyné Szilágyi, Jin-Chun Woo, Hyun-Kil Bae, Alejandro Perez Castorena, Melina Perez Urquiza, Francisco Rangel Murillo, Victor M Serrano Caballero, Carlos E Carbajal Alarcón, Carlos Ramírez Nambo, Manuel de Jesús Avila Salas, Agata Rakowska, Florbela Dias, Leonid A Konopelko, Tatjana A Popova, V V Pankratov, M A Kovrizhnih, A V Meshkov, O V Efremova, Yury A Kustikov, Stanislav Musil, Frantisek Chromek, Miroslava Valkova, and Martin J T Milton. Final report on international comparison CCQM-K23ac: Natural gas types I and III. *Metrologia*, 44(1A):08001– 08001, dec 2006.
- [18] Adriaan M H van der Veen, Hima Chander, Paul R Ziel, Ed W B de Leer, Damian Smeulders, Laurie Besley, Valnei Smarçao da Cunha, Zei Zhou, Han Qiao, Hans-Joachim Heine, Jan Tichy, Teresa Lopez Esteban, K Kato, Zsófia Nagyné Szilágyi, Jin Seog Kim, Jin-Chun Woo, Hyun-Gil Bae, Alejandro Pérez Castorena, Francisco Rangel Murillo, Victor M Serrano Caballero, Carlos Ramírez Nambo, Manuel de Jesús Avila Salas, Agata Rakowska, Florbela Dias, Leonid A Konopelko, Tatjana A Popova, V V Pankratov, M A Kovrizhnih, T A Kuzmina, O V Efremova, Yury A Kustikov, Stanislav Musil, and Martin J T Milton. International comparison CCQM-K23b: Natural gas type II. *Metrologia*, 47(1A):08013, 2010.
- [19] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. Supplement 1 to the 'Guide to the Expression of Uncertainty in Measurement' Propagation of distributions using a Monte Carlo method, JCGM 101:2008. BIPM, 2008.
- [20] CIPM. Mutual recognition of national measurement standards and of calibration and measurement certificates issued by national metrology institutes, October 1999.
- [21] P. Brewer and A. M. H. van der Veen. GAWG strategy for comparisons and CMC claims. GAWG, Gas Analysis Working Group, Sévres, France, October 2016.

# A Measurement data used for calculating the reference values

#### A.1 Measurement data

Tables 16–22 summarise the reported results by the participating NMIs (see also the measurement reports contained in annex B). In these tables, also the corrections due to batch inhomogeneity, as calculated using a fixed effects model, are provided.

Table 16: Reported laboratory results and corrections due to batch inhomogeneity for methane. All data are given as amount fractions in  $cmol mol^{-1}$ 

| Laboratory | Mixture | $x_{ m lab}$ | $u(x_{\rm lab})$ | k | $\Delta x_{\rm hom}$ | $u(\Delta x_{\rm hom})$ |
|------------|---------|--------------|------------------|---|----------------------|-------------------------|
| UME        | TS1194  | 43.8159      | 0.1271           | 2 | 0.0381               | 0.0157                  |
| SMU        | TS1195  | 43.765       | 0.066            | 2 | -0.0171              | 0.0061                  |
| CEM        | TS1207  | 43.8070      | 0.0535           | 2 | 0.0962               | 0.0051                  |
| RISE       | TS1214  | 43.82        | 0.29             | 2 | 0.0183               | 0.0177                  |
| BFKH       | TS1220  | 44.125       | 0.068            | 2 | 0.0188               | 0.0095                  |
| VNIIM      | TS1221  | 43.630       | 0.046            | 2 | -0.1352              | 0.0109                  |
| NPL        | TS1223  | 43.815       | 0.044            | 2 | 0.0196               | 0.0120                  |
| VSL        | TS1224  | 43.700       | 0.026            | 2 | -0.0407              | 0.0102                  |
| INMETRO    | TS1225  | 43.81        | 0.14             | 2 | -0.0020              | 0.0064                  |
| CMI        | TS1230  | 43.592       | 0.029            | 2 | 0.0407               | 0.0098                  |

Table 17: Reported laboratory results and corrections due to batch inhomogeneity for carbon dioxide. All data are given as amount fractions in  $cmol mol^{-1}$ 

| Laboratory | Mixture | $x_{\rm lab}$ | $u(x_{\rm lab})$ | $k  \Delta x_{\rm hom}$ | $u(\Delta x_{\rm hom})$ |
|------------|---------|---------------|------------------|-------------------------|-------------------------|
| UME        | TS1194  | 39.0234       | 0.0610           | 2 -0.1002               | 0.0168                  |
| SMU        | TS1195  | 39.24         | 0.13             | 2 0.0613                | 0.0137                  |
| CEM        | TS1207  | 39.1510       | 0.1706           | 2 -0.1094               | 0.0091                  |
| RISE       | TS1214  | 38.96         | 0.26             | 2 -0.1147               | 0.0257                  |
| BFKH       | TS1220  | 39.364        | 0.044            | 2 -0.1042               | 0.0044                  |
| VNIIM      | TS1221  | 39.43         | 0.06             | 2 0.3135                | 0.0029                  |
| NPL        | TS1223  | 39.210        | 0.039            | 2 0.0667                | 0.0050                  |
| VSL        | TS1224  | 39.300        | 0.032            | 2 0.1772                | 0.0060                  |
| INMETRO    | TS1225  | 38.88         | 0.21             | 2 -0.0853               | 0.0045                  |
| CMI        | TS1230  | 39.022        | 0.025            | 2 -0.1050               | 0.0026                  |

| Laboratory | Mixture | $x_{\rm lab}$ | $u(x_{\rm lab})$ | k | $\Delta x_{\rm hom}$ | $u(\Delta x_{\rm hom})$ |
|------------|---------|---------------|------------------|---|----------------------|-------------------------|
| UME        | TS1194  | 15.834        | 0.0248           | 2 | 0.0639               | 0.0067                  |
| SMU        | TS1195  | 15.713        | 0.026            | 2 | -0.0428              | 0.0070                  |
| CEM        | TS1207  | 15.6850       | 0.1565           | 2 | 0.0644               | 0.0035                  |
| RISE       | TS1214  | 15.89         | 0.17             | 2 | 0.0837               | 0.0086                  |
| BFKH       | TS1220  | 15.199        | 0.029            | 2 | 0.0657               | 0.0015                  |
| VNIIM      | TS1221  | 15.61         | 0.03             | 2 | -0.1339              | 0.0009                  |
| NPL        | TS1223  | 15.667        | 0.047            | 2 | -0.1192              | 0.0023                  |
| VSL        | TS1224  | 15.700        | 0.013            | 2 | -0.0588              | 0.0019                  |
| INMETRO    | TS1225  | 15.92         | 0.13             | 2 | 0.0387               | 0.0014                  |
| CMI        | TS1230  | 16.020        | 0.011            | 2 | 0.0381               | 0.0012                  |

Table 18: Reported laboratory results and corrections due to batch inhomogeneity for nitrogen. All data are given as amount fractions in  $cmol mol^{-1}$ 

Table 19: Reported laboratory results and corrections due to batch inhomogeneity for hydrogen. All data are given as amount fractions in  $cmol mol^{-1}$ 

| Laboratory | Mixture | $x_{\rm lab}$ | $u(x_{\rm lab})$ | k | $\Delta x_{\rm hom}$ | $u(\Delta x_{\rm hom})$ |
|------------|---------|---------------|------------------|---|----------------------|-------------------------|
| UME        | TS1194  | 0.79481       | 0.00133          | 2 | 0.00128              | 0.000 22                |
| SMU        | TS1195  | 0.802         | 0.013            | 2 | -0.00248             | 0.00027                 |
| CEM        | TS1207  | 0.7807        | 0.2376           | 2 | -0.00036             | 0.00003                 |
| RISE       | TS1214  | 0.810         | 0.018            | 2 | 0.003 45             | 0.00092                 |
| BFKH       | TS1220  | 0.765         | 0.012            | 2 | 0.00263              | 0.00011                 |
| VNIIM      | TS1221  | 0.7891        | 0.0031           | 2 | -0.00217             | 0.00007                 |
| NPL        | TS1223  | 0.7946        | 0.0032           | 2 | -0.00194             | 0.00023                 |
| VSL        | TS1224  | 0.7900        | 0.0014           | 2 | -0.00167             | 0.00007                 |
| INMETRO    | TS1225  | 0.7808        | 0.0089           | 2 | 0.00140              | 0.000 08                |
| CMI        | TS1230  | 0.789         | 0.063            | 2 | -0.00014             | 0.000 08                |

Table 20: Reported laboratory results and corrections due to batch inhomogeneity for oxygen. All data are given as amount fractions in  $cmol mol^{-1}$ 

| Mixture | $x_{\rm lab}$                                                                          | $u(x_{\rm lab})$                                                                                            | k                                                                                                                                                                | $\Delta x_{\rm hom}$                                                                                                                                                      | $u(\Delta x_{\rm hom})$                              |
|---------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| TS1194  | 0.44651                                                                                | 0.00068                                                                                                     | 2                                                                                                                                                                | 0.00266                                                                                                                                                                   | 0.00085                                              |
| TS1195  | 0.4527                                                                                 | 0.0040                                                                                                      | 2                                                                                                                                                                | -0.01152                                                                                                                                                                  | 0.00020                                              |
| TS1207  | 0.4350                                                                                 | 0.0019                                                                                                      | 2                                                                                                                                                                | -0.05167                                                                                                                                                                  | 0.00045                                              |
| TS1214  | 0.510                                                                                  | 0.012                                                                                                       | 2                                                                                                                                                                | 0.05788                                                                                                                                                                   | 0.00030                                              |
| TS1220  | 0.468                                                                                  | 0.001                                                                                                       | 2                                                                                                                                                                | 0.02261                                                                                                                                                                   | 0.00085                                              |
| TS1221  | 0.4141                                                                                 | 0.0012                                                                                                      | 2                                                                                                                                                                | -0.04910                                                                                                                                                                  | 0.00091                                              |
| TS1223  | 0.4809                                                                                 | 0.0014                                                                                                      | 2                                                                                                                                                                | 0.01574                                                                                                                                                                   | 0.00076                                              |
| TS1224  | 0.4000                                                                                 | 0.0019                                                                                                      | 2                                                                                                                                                                | -0.06591                                                                                                                                                                  | 0.00088                                              |
| TS1225  | 0.5049                                                                                 | 0.0028                                                                                                      | 2                                                                                                                                                                | 0.04374                                                                                                                                                                   | 0.00058                                              |
| TS1230  | 0.501                                                                                  | 0.012                                                                                                       | 2                                                                                                                                                                | 0.03557                                                                                                                                                                   | 0.00121                                              |
|         | TS1194<br>TS1195<br>TS1207<br>TS1214<br>TS1220<br>TS1221<br>TS1223<br>TS1224<br>TS1225 | TS11940.44651TS11950.4527TS12070.4350TS12140.510TS12200.468TS12210.4141TS12230.4809TS12240.4000TS12250.5049 | TS11940.446510.00068TS11950.45270.0040TS12070.43500.0019TS12140.5100.012TS12200.4680.001TS12210.41410.0012TS12230.48090.0014TS12240.40000.0019TS12250.50490.0028 | TS11940.446510.000682TS11950.45270.00402TS12070.43500.00192TS12140.5100.0122TS12200.4680.0012TS12210.41410.00122TS12230.48090.00142TS12240.40000.00192TS12250.50490.00282 | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ |

| Laboratory | Mixture | $x_{ m lab}$ | $u(x_{\rm lab})$ | k $\Delta x_{\rm hom}$ | $u(\Delta x_{\rm hom})$ |
|------------|---------|--------------|------------------|------------------------|-------------------------|
| UME        | TS1194  | 0.06224      | 0.00034          | 2 0.000 205            | 0.000040                |
| SMU        | TS1195  | 0.06203      | 0.00051          | 2 -0.000065            | 0.000031                |
| CEM        | TS1207  | 0.06216      | 0.00011          | 2 0.000 048            | 0.000042                |
| RISE       | TS1214  | 0.0670       | 0.0035           | 2 0.000059             | 0.000072                |
| BFKH       | TS1220  | 0.0624       | 0.0008           | 2 0.000120             | 0.000035                |
| VNIIM      | TS1221  | 0.06180      | 0.00018          | 2 -0.000184            | 0.000039                |
| NPL        | TS1223  | 0.06182      | 0.00025          | 2 -0.000246            | 0.000031                |
| VSL        | TS1224  | 0.06200      | 0.00013          | 2 -0.000236            | 0.000042                |
| INMETRO    | TS1225  | 0.06232      | 0.00024          | 2 0.000180             | 0.000024                |
| CMI        | TS1230  | 0.061        | 0.006            | 2 0.000118             | 0.000072                |

Table 21: Reported laboratory results and corrections due to batch inhomogeneity for ethane. All data are given as amount fractions in  $cmol mol^{-1}$ 

Table 22: Reported laboratory results and corrections due to batch inhomogeneity for propane. All data are given as amount fractions in  $cmol mol^{-1}$ 

| Laboratory | Mixture | $x_{\rm lab}$ | $u(x_{\rm lab})$ | k    | $\Delta x_{\rm hom}$ | $u(\Delta x_{\rm hom})$ |
|------------|---------|---------------|------------------|------|----------------------|-------------------------|
| UME        | 1194    | 0.01485       | 0.00008          | 2 0  | .000 032 3           | 0.0000259               |
| SMU        | 1195    | 0.01503       | 0.00012          | 2 -0 | .0000196             | 0.0000051               |
| CEM        | 1207    | 0.01486       | 0.00010          | 2 -0 | .000 003 9           | 0.0000060               |
| RISE       | 1214    | 0.01555       | 0.00220          | 2 0  | .000 023 4           | 0.0000507               |
| BFKH       | 1220    | 0.0151        | 0.0004           | 2 -0 | .000 045 9           | 0.0000357               |
| VNIIM      | 1221    | 0.01484       | 0.00006          | 2 -0 | .000 000 4           | 0.0000087               |
| NPL        | 1223    | 0.014854      | 0.000059         | 2 -0 | .000 053 8           | 0.0000529               |
| VSL        | 1224    | 0.015000      | 0.000021         | 2 -0 | .000 063 0           | 0.0000147               |
| INMETRO    | 1225    | 0.01501       | 0.00012          | 2 0  | .000 095 0           | 0.0000062               |
| CMI        | 1230    | 0.015         | 0.003            | 2 0  | .000 035 9           | 0.0000103               |

## A.2 Calculation of reference values

| TS1194 43.8302<br>TS1195 43.8107 | 302 0.0081<br>107 0.0123 | $^{\star2}$ | $u(x_2)$ | $x_3$   | $u(x_3)$ | $x_4$   | $u(x_4)$ | $x_5$   | $u(x_5)$ | $x_6$   | $u(x_6)$ |
|----------------------------------|--------------------------|-------------|----------|---------|----------|---------|----------|---------|----------|---------|----------|
| N                                | 0                        | 43.8206     | 0.0064   | 43.7439 | 0.0064   | 43.8066 | 0.0206   | 43.8022 | 0.0088   | 43.7860 | 0.0050   |
|                                  |                          | 3 43.7769   | 0.0209   | 43.7152 | 0.0272   | 43.7229 | 0.0064   | 43.6921 | 0.0064   | 43.7304 | 0.0078   |
|                                  | 565 0.0069               |             | 0.0039   | 43.8855 | 0.0195   | 43.8659 | 0.0173   | 43.8598 | 0.0103   | 43.8347 | 0.0065   |
| TS1214 43.7465                   |                          | N           | 0.0064   | 43.8118 | 0.0195   | 43.7227 | 0.0162   | 43.7193 | 0.0119   | 43.7144 | 0.0078   |
| TS1220 43.8                      | 124 0.0035               |             | 0.0075   | 43.7554 | 0.0119   | 43.7491 | 0.0119   | 43.7742 | 0.0109   | 43.7881 | 0.0058   |
| TS1221 43.6                      |                          |             | 0.0075   | 43.5929 | 0.0093   | 43.5795 | 0.0103   | 43.6129 | 0.0119   | 43.6631 | 0.0112   |
| TS1223 43.8!                     | 595 0.0172               |             | 0.0105   | 43.7390 | 0.0064   | 43.7201 | 0.0078   | 43.7530 | 0900.0   | 43.7809 | 0.0052   |
| TS1224 43.7676                   | 576 0.0048               | 3 43.7596   | 0.0064   | 43.6855 | 0.0069   | 43.6815 | 0.0083   | 43.7083 | 0.0048   | 43.7421 | 0.0062   |
| TS1225 43.8047                   | 0.0053 0.0053            |             | 0.0032   | 43.7370 | 0.0151   | 43.7324 | 0.0069   | 43.7379 | 0.0083   | 43.7725 | 0.0058   |
| TS1230 43.8746                   | 746 0.0058               | 3 43.8417   | 0.0058   | 43.7777 | 0.0073   | 43.7449 | 0.0069   | 43.7652 | 0.0049   | 43.8051 | 0.0087   |

Table 23: Measurement data for methane. All data are given as amount fractions in  $cmol mol^{-1}$ 

|                                                     | 7 38.9814<br>3 39.1338<br>7 39.0064<br>5 38.9776 | 0.0090<br>0.0144<br>0.0112<br>0.0116 | 39.0318<br>39.1133<br>38.9194 | 0.0088<br>0.0495 |         |        | c       | u(15)  | <b>x</b> 6 | (9v)n  |
|-----------------------------------------------------|--------------------------------------------------|--------------------------------------|-------------------------------|------------------|---------|--------|---------|--------|------------|--------|
| 39.1261<br>39.0125<br>39.0141<br>38.9700<br>39.3767 |                                                  | 0.0144<br>0.0112<br>0.0106           | 39.1133<br>38.9194            | 0.0495           | 38.9448 | 0.0221 | 38.9726 | 0.0131 | 39.0291    | 0.0021 |
| 39.0125<br>39.0141<br>38.9700<br>39.3767            |                                                  | 0.0112                               | 38.9194                       |                  | 39.1605 | 0.0330 | 39.1966 | 0.0155 | 39.1984    | 0.0035 |
| 39.0141<br>38.9700<br>39.3767                       |                                                  | 0.0106                               |                               | 0.0434           | 38.9444 | 0.0263 | 38.9739 | 0.0264 | 39.0438    | 0.0021 |
| 38.9700<br>39.3767                                  |                                                  | 001000                               | 38.8677                       | 0.0215           | 38.9854 | 0.0178 | 38.9892 | 0.0143 | 39.0294    | 0.0025 |
| 39.3767                                             |                                                  | 0.0090                               | 38.9773                       | 0.0209           | 38.9732 | 0.0196 | 39.0042 | 0.0137 | 39.0069    | 0.0030 |
|                                                     |                                                  | 0.0172                               | 39.4114                       | 0.0094           | 39.3999 | 0.0100 | 39.4192 | 0.0096 | 39.4077    | 0.0069 |
| TS1223 39.0963 0.0342                               |                                                  | 0.0276                               | 39.1927                       | 0.0082           | 39.1747 | 0.0026 | 39.1939 | 0.0047 | 39.1795    | 0.0025 |
| 39.2354 (                                           |                                                  | 0.0090                               | 39.2900                       | 0.0094           | 39.2741 | 0.0058 | 39.2691 | 0.0057 | 39.2924    | 0.0030 |
| 38.9991 (                                           |                                                  | 0.0024                               | 39.0045                       | 0.0064           | 39.0024 | 0.0047 | 39.0151 | 0.0079 | 39.0024    | 0.0021 |
| TS1230 38.9492 0.0084                               | 4 38.9609                                        | 0.0063                               | 38.9963                       | 0.0082           | 38.9922 | 0.0036 | 39.0028 | 0.0057 | 38.9976    | 0.0021 |

Table 24: Measurement data for carbon dioxide. All data are given as amount fractions in cmolmol<sup>-1</sup>

| 15.8360       0.0035       15.8303       0.0051         15.7391       0.0069       15.7307       0.0065         15.8242       0.0024       15.8373       0.0065         15.8242       0.0024       15.8352       0.0033         15.8359       0.0059       15.8352       0.0021         15.8359       0.0035       15.8352       0.0021         15.6383       0.0042       15.6379       0.0040         15.6661       0.0051       15.6587       0.0040         15.6671       0.0031       15.6587       0.0040         15.6707       0.0031       15.7161       0.0045         15.8076       0.0031       15.8083       0.0045 | Mixture | $x_1$   | $u(x_1)$ | $x_2$   | $u(x_2)$ | $x_3$   | $u(x_3)$ | $x_4$   | $u(x_4)$ | $x_5$   | $u(x_5)$ | $x_6$   | $u(x_6)$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------|---------|----------|---------|----------|---------|----------|---------|----------|---------|----------|
| 15.7391       0.0069       15.7307       0.0065         15.8242       0.0024       15.8244       0.0033         15.8482       0.0059       15.8352       0.0021         15.8359       0.0035       15.8351       0.0033         15.8353       0.0035       15.8311       0.0033         15.6383       0.0042       15.6377       0.0040         15.6661       0.0051       15.6587       0.0041         15.7174       0.0031       15.7161       0.0045         15.8076       0.0031       15.8083       0.0045                                                                                                                 | TS1194  | -       | 0.0035   | 15.8303 | 0.0051   | 15.7984 | 0.0022   | 15.8343 | 0.0093   | 15.8187 | 0.0052   | 15.8042 | 0.0037   |
| 15.8242       0.0024       15.8244       0.0033         15.8482       0.0059       15.8352       0.0021         15.8359       0.0035       15.8311       0.0033         15.6383       0.0042       15.6379       0.0040         15.6661       0.0051       15.6587       0.0040         15.7174       0.0031       15.7161       0.0045         15.8076       0.0031       15.8083       0.0045                                                                                                                                                                                                                                 | TS1195  | 15.7391 | 0.0069   | 15.7307 | 0.0065   | 15.7239 | 0.0155   | 15.6860 | 0.0120   | 15.7007 | 0.0031   | 15.7099 | 0.0024   |
| 15.8482       0.0059       15.8352       0.0021         15.8359       0.0035       15.8311       0.0033         15.6383       0.0042       15.6379       0.0040         15.6661       0.0051       15.6587       0.0051         15.7174       0.0031       15.7161       0.0045         15.8076       0.0031       15.8083       0.0024                                                                                                                                                                                                                                                                                         | TS1207  | 15.8242 | 0.0024   | 15.8244 | 0.0033   | 15.8355 | 0.0113   | 15.8219 | 0.0058   | 15.8174 | 0.0024   | 15.8012 | 0.0019   |
| 15.8359         0.0035         15.8311         0.0033           15.6383         0.0042         15.6379         0.0040           15.6661         0.0051         15.6587         0.0051           15.7174         0.0031         15.7161         0.0045           15.8076         0.0031         15.7083         0.0045                                                                                                                                                                                                                                                                                                           | TS1214  | 15.8482 | 0.0059   | 15.8352 | 0.0021   | 15.8716 | 0.0084   | 15.8333 | 0.0052   | 15.8323 | 0.0066   | 15.8217 | 0.0030   |
| 15.6383         0.0042         15.6379         0.0040           15.6661         0.0051         15.6587         0.0051           15.7174         0.0031         15.7161         0.0045           15.8076         0.0031         15.8083         0.0024                                                                                                                                                                                                                                                                                                                                                                           | TS1220  | 15.8359 | 0.0035   | 15.8311 | 0.0033   | 15.8162 | 0.0093   | 15.8219 | 0.0068   | 15.8218 | 0.0052   | 15.8060 | 0.0034   |
| 15.6661         0.0051         15.6587         0.0051           15.7174         0.0031         15.7161         0.0045           15.8076         0.0031         15.8083         0.0024                                                                                                                                                                                                                                                                                                                                                                                                                                           | TS1221  | 15.6383 | 0.0042   | 15.6379 | 0.0040   | 15.6170 | 0.0036   | 15.6145 | 0.0019   | 15.6193 | 0.0034   | 15.6230 | 0.0028   |
| 15.7174         0.0031         15.7161         0.0045           15.8076         0.0031         15.8083         0.0024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TS1223  | 15.6661 | 0.0051   | 15.6587 | 0.0051   | 15.6237 | 0.0027   | 15.6194 | 0.0044   | 15.6293 | 0.0032   | 15.6294 | 0.0030   |
| 15.8076 0.0031 15.8083 0.0024 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TS1224  | 15.7174 | 0.0031   | 15.7161 | 0.0045   | 15.6839 | 0.0032   | 15.6920 | 0.0036   | 15.6920 | 0.0032   | 15.6848 | 0.0021   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TS1225  | 15.8076 | 0.0031   | 15.8083 | 0.0024   | 15.7944 | 0.0032   | 15.7873 | 0.0029   | 15.7937 | 0.0025   | 15.7867 | 0.0025   |
| 15.8158 0.0047 15.8088 0.0021 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TS1230  | 15.8158 | 0.0047   | 15.8088 | 0.0021   | 15.7877 | 0.0020   | 15.7860 | 0.0018   | 15.7879 | 0.0038   | 15.7886 | 0.0027   |

Table 25: Measurement data for nitrogen. All data are given as amount fractions in cmol mol<sup>-1</sup>

|            |         | $u(x_1)$ | $x_2$   | $u(x_2)$ | $x_3$   | $u(x_3)$ | $x_4$   | $u(x_4)$ | $x_5$   | $u(x_5)$ | $x_6$   | $u(x_6)$ |
|------------|---------|----------|---------|----------|---------|----------|---------|----------|---------|----------|---------|----------|
| U          | 0.79688 | 0.00064  | 0.79625 | 0.00067  | 0.79416 | 0.00036  | 0.79306 | 0.00088  | 0.79325 | 0.00064  | 0.79526 | 0.00027  |
| TS1195 0.7 | 0.79004 | 0.00087  | 0.79022 | 0.00065  | 0.79177 | 0.00059  | 0.79115 | 0.00077  | 0.79264 | 0.00052  | 0.79240 | 0.00029  |
| -          | 0.79512 | 0.00057  | 0.79490 | 0.00059  | 0.79186 | 0.00034  | 0.79180 | 0.00085  | 0.79164 | 0.00090  | 0.79379 | 0.00027  |
|            |         |          | 0.79804 | 0.00048  | 0.79899 | 0.00057  | 0.79447 | 0.00052  | 0.79471 | 0.00052  | 0.79687 | 0.00029  |
|            |         | 0.00040  | 0.79647 | 0.00075  | 0.79583 | 0.00036  | 0.79562 | 0.00031  | 0.79607 | 0.00030  | 0.79534 | 0.00026  |
| -          |         |          | 0.79059 | 0.00029  | 0.79218 | 0.00037  | 0.79191 | 0.00034  | 0.79226 | 0.00031  | 0.79204 | 0.00028  |
| -          | 0.79292 |          | 0.79176 | 0.00047  | 0.79109 | 0.00039  | 0.79075 | 0.00031  | 0.79134 | 0.00032  | 0.79215 | 0.00026  |
| 0          | .79304  | 0.00065  | 0.79261 | 0.00053  | 0.79127 | 0.00030  | 0.79111 | 0.00031  | 0.79113 | 0.00032  | 0.79155 | 0.00027  |
| 0          | 0.79470 | 0.00027  | 0.79466 | 0.00027  | 0.79542 | 0.00032  | 0.79514 | 0.00031  | 0.79501 | 0.00039  | 0.79509 | 0.00025  |
| 0          | .79239  | 0.00031  | 0.79251 | 0.00031  | 0.79416 | 0.00031  | 0.79401 | 0.00034  | 0.79448 | 0.00034  | 0.79440 | 0.00028  |

| $ol^{-1}$                  |
|----------------------------|
| Ĕ                          |
| fractions in cmolm         |
| IJ                         |
| Ц.                         |
| ns                         |
| цi                         |
| aci                        |
| t fr                       |
| amoun                      |
| ŋ                          |
| ar                         |
| lata are given as amount f |
| en                         |
| giز.                       |
| e                          |
| l ai                       |
| data are given a           |
| -0                         |
| n. All                     |
| en. Al                     |
| rogen                      |
| qre                        |
| hy                         |
| for hy                     |
| a                          |
| dat                        |
| ent dat                    |
| nei                        |
| rer                        |
| sui                        |
| lea                        |
| Σ                          |
| 26:                        |
| le,                        |
| Table 26                   |
| Ĥ                          |

|                | 0 00057 | $x_2$   | $u(x_2)$ | $x_3$   | $u(x_3)$ | $x_4$   | $u(x_4)$ | $x_5$   | $u(x_5)$ | $x_6$   | $u(x_6)$ |
|----------------|---------|---------|----------|---------|----------|---------|----------|---------|----------|---------|----------|
| -              |         | 0.47814 | 0.00058  | 0.46531 | 0.00032  | 0.46957 | 0.00077  | 0.46781 | 0.00068  | 0.46766 | 0.00023  |
|                | 0.00080 | 0.46437 | 0.00067  | 0.45309 | 0.00116  |         | 0.00341  | 0.45326 | 0.00056  | 0.45758 | 0.00024  |
| TS1207 0.42338 | 0.00045 | 0.42295 | 0.00057  | 0.41340 | 0.00078  | 0.41517 | 0.00035  | 0.41286 | 0.00027  | 0.41714 | 0.00037  |
| TS1214 0.53484 |         | 0.53443 | 0.00072  | 0.52217 | 0.00073  | 0.52093 | 0.00049  | 0.52241 | 0.00130  | 0.52207 | 0.00038  |
| TS1220 0.49961 |         | 0.49863 | 09000.0  | 0.48449 | 0.00075  | 0.48740 | 0.00058  | 0.48839 | 0.00035  | 0.49029 | 0.00032  |
| TS1221 0.42495 |         | 0.42497 | 0.00056  | 0.41483 | 0.00106  | 0.41675 | 0.00037  | 0.41940 | 0.00026  | 0.41991 | 0.00028  |
| TS1223 0.49348 | 0.00089 | 0.49184 | 0.00058  | 0.47795 | 0.00065  | 0.47943 | 0.00025  | 0.48134 | 0.00065  | 0.48216 | 0.00054  |
| TS1224 0.40990 | 0.00045 | 0.40921 | 0.00041  | 0.39710 | 0.00030  | 0.39872 | 0.00029  | 0.40136 | 0.00062  | 0.40223 | 0.00026  |
| TS1225 0.52095 | 0.00073 | 0.52108 | 0.00077  | 0.50585 | 0.00035  | 0.50827 | 0.00037  | 0.50774 | 0.00052  | 0.51055 | 0.00023  |
| TS1230 0.51231 | 0.00071 | 0.51188 | 0.00062  | 0.49692 | 0.00044  | 0.49928 | 0.00079  | 0.50296 | 0.00040  | 0.50245 | 0.00057  |

Table 27: Measurement data for oxygen. All data are given as amount fractions in cmol mol<sup>-1</sup>

| Mixture | $x_1$    | $u(x_1)$ | $x_2$    | $u(x_2)$ | $x_3$    | $u(x_3)$ | $x_4$    | $u(x_4)$ | $x_5$    | $u(x_5)$ |
|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| TS1194  | 0.062473 | 0.000087 | 0.062298 | 0.000079 | 0.062304 | 0.000048 | 0.062432 | 0.000061 | 0.062386 | 0.000065 |
| TS1195  | 0.062240 | 0.000111 | 0.062168 | 0.000170 | 0.061947 | 0.000044 | 0.062089 | 0.000087 | 0.062069 | 0.000077 |
| TS1207  | 0.062151 | 0        | 0.062268 | 0.000103 | 0.062142 | 0.000096 | 0.062215 | 0.000061 | 0.062336 | 0.000059 |
| TS1214  | 0.062286 |          | 0.061906 | 0.000121 | 0.062350 | 0.000040 | 0.062375 | 0.000083 | 0.062295 | 0.000079 |
|         | 0.062356 | 0.000055 | 0.062203 | 0.000085 | 0.062238 | 0.000076 | 0.062339 | 0.000088 | 0.062340 | 0.000051 |
|         | 0.062044 | 0.000055 | 0.061880 | 0.000129 | 0.062067 | 0.000086 | 0.061934 | 0.000054 | 0.062031 | 0.000080 |
|         | 0.061856 | 0.000109 | 0.061835 | 0.000083 | 0.061913 | 0.000093 | 0.062080 | 0.000040 | 0.061985 | 0.000050 |
| TS1224  | 0.061951 | 0.000060 | 0.062034 | 0.000190 | 0.061782 | 0.000066 | 0.061922 | 0.000048 | 0.061986 | 0.000054 |
| TS1225  | 0.062362 | 0.000062 | 0.062310 | 0.000119 | 0.062340 | 0.000053 | 0.062328 | 0.000090 | 0.062439 | 0.000075 |
| TS1230  | 0.062387 | 0.000066 | 0.062059 | 0.000103 | 0.062419 | 0.000065 | 0.062227 | 0.000068 | 0.062388 | 0.000098 |
|         |          |          |          |          |          |          |          |          |          |          |

Table 28: Measurement data for ethane. All data are given as amount fractions in cmolmol<sup>-1</sup>

| ol <sup>-1</sup>                   |
|------------------------------------|
| is in cmolm                        |
| u cm                               |
| ins ii                             |
| actio                              |
| nt fr                              |
| ll data are given as amount fracti |
| ven a                              |
| e gi                               |
| a ar                               |
| dat                                |
| . All                              |
| pane                               |
| ata for prop                       |
| ı for                              |
| data                               |
| ement                              |
| easure                             |
| Ý.                                 |
| e 29                               |
| Table 29                           |
|                                    |

| Mixture | $x_1$    | $u(x_1)$ | $x_2$    | $u(x_2)$ | $x_3$    | $u(x_3)$ | $x_4$    | $u(x_4)$ | $x_5$    | $u(x_5)$ |
|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| TS1194  | 0.014898 | 0.000038 | 0.015038 | 0.000018 | 0.014953 | 0.000014 | 0.014975 | 0.000013 | 0.014974 | 0.000017 |
| TS1195  | 0.014903 | 0.000023 | 0.014920 | 0.000052 | 0.014910 | 0.000014 | 0.014914 | 0.000018 | 0.014931 | 0.000019 |
| TS1207  | 0.014897 |          | 0.014957 | 0.000075 | 0.014912 | 0.000024 | 0.014926 | 0.000017 | 0.014940 | 0.000013 |
| TS1214  | 0.014808 |          | 0.015084 | 0.000030 | 0.014977 | 0.000012 | 0.014953 | 0.000013 | 0.014975 | 0.000018 |
| TS1220  | 0.014934 |          | 0.014743 | 0.000048 | 0.014925 | 0.000025 | 0.014914 | 0.000021 | 0.014948 | 0.000012 |
| TS1221  | 0.014948 |          | 0.014983 | 0.000047 | 0.014925 | 0.000021 | 0.014894 | 0.000013 | 0.014912 | 0.000019 |
| TS1223  | 0.014716 | 0.000067 | 0.015005 | 0.000076 | 0.014885 | 0.000023 | 0.014899 | 0.000011 | 0.014909 | 0.000013 |
| TS1224  | 0.014884 |          | 0.014812 | 0.000042 | 0.014880 | 0.000016 | 0.014881 | 0.000014 | 0.014911 | 0.000014 |
| TS1225  | 0.015137 | 0.000057 | 0.015118 | 0.000112 | 0.014957 | 0.000011 | 0.014939 | 0.000021 | 0.014967 | 0.000018 |
| TS1230  | 0.014983 |          | 0.015017 | 0.000047 | 0.014973 | 0.000016 | 0.014929 | 0.000019 | 0.014944 | 0.000021 |

| TS119443.79590.01200.02770.00290.0123TS119543.74380.01540.03380.00290.0156TS120743.84810.00550.00950.00290.0062TS121443.73500.00900.01900.00290.0095TS122043.78350.00930.02110.00290.0098TS122143.63110.01740.04160.00290.0177TS122343.77540.01420.03350.00290.0145TS122443.72290.01510.03660.00290.0154TS122543.76250.00990.02290.00290.0103TS123043.80010.02270.05530.00290.0229 | Mixture | $\mu$   | $s(\mu)$ | τ      | $u_{\rm cal}$ | u(μ)   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------|--------|---------------|--------|
| TS120743.84810.00550.00950.00290.0062TS121443.73500.00900.01900.00290.0095TS122043.78350.00930.02110.00290.0098TS122143.63110.01740.04160.00290.0177TS122343.77540.01420.03350.00290.0145TS122443.72290.01510.03660.00290.0154TS122543.76250.00990.02290.00290.0103                                                                                                                | TS1194  | 43.7959 | 0.0120   | 0.0277 | 0.0029        | 0.0123 |
| TS121443.73500.00900.01900.00290.0095TS122043.78350.00930.02110.00290.0098TS122143.63110.01740.04160.00290.0177TS122343.77540.01420.03350.00290.0145TS122443.72290.01510.03660.00290.0154TS122543.76250.00990.02290.00290.0103                                                                                                                                                     | TS1195  | 43.7438 | 0.0154   | 0.0338 | 0.0029        | 0.0156 |
| TS122043.78350.00930.02110.00290.0098TS122143.63110.01740.04160.00290.0177TS122343.77540.01420.03350.00290.0145TS122443.72290.01510.03660.00290.0154TS122543.76250.00990.02290.00290.0103                                                                                                                                                                                          | TS1207  | 43.8481 | 0.0055   | 0.0095 | 0.0029        | 0.0062 |
| TS122143.63110.01740.04160.00290.0177TS122343.77540.01420.03350.00290.0145TS122443.72290.01510.03660.00290.0154TS122543.76250.00990.02290.00290.0103                                                                                                                                                                                                                               | TS1214  | 43.7350 | 0.0090   | 0.0190 | 0.0029        | 0.0095 |
| TS122343.77540.01420.03350.00290.0145TS122443.72290.01510.03660.00290.0154TS122543.76250.00990.02290.00290.0103                                                                                                                                                                                                                                                                    | TS1220  | 43.7835 | 0.0093   | 0.0211 | 0.0029        | 0.0098 |
| TS122443.72290.01510.03660.00290.0154TS122543.76250.00990.02290.00290.0103                                                                                                                                                                                                                                                                                                         | TS1221  | 43.6311 | 0.0174   | 0.0416 | 0.0029        | 0.0177 |
| TS1225 43.7625 0.0099 0.0229 0.0029 0.0103                                                                                                                                                                                                                                                                                                                                         | TS1223  | 43.7754 | 0.0142   | 0.0335 | 0.0029        | 0.0145 |
|                                                                                                                                                                                                                                                                                                                                                                                    | TS1224  | 43.7229 | 0.0151   | 0.0366 | 0.0029        | 0.0154 |
| TS1230 43.8001 0.0227 0.0553 0.0029 0.0229                                                                                                                                                                                                                                                                                                                                         | TS1225  | 43.7625 | 0.0099   | 0.0229 | 0.0029        | 0.0103 |
|                                                                                                                                                                                                                                                                                                                                                                                    | TS1230  | 43.8001 | 0.0227   | 0.0553 | 0.0029        | 0.0229 |

Table 30: Results of the meta analysis of the measurement data for methane. All data are given as amount fractions in  ${\rm cmol}\,{\rm mol}^{-1}$ 

Table 31: Results of the meta analysis of the measurement data for carbon dioxide. All data are given as amount fractions in  $\rm cmol\,mol^{-1}$ 

| Mixture | $\mu$   | $s(\mu)$ | τ      | $u_{\rm cal}$ | $u(\mu)$ |
|---------|---------|----------|--------|---------------|----------|
| TS1194  | 38.9923 | 0.0133   | 0.0306 | 0.0018        | 0.0134   |
| TS1195  | 39.1549 | 0.0186   | 0.0397 | 0.0018        | 0.0187   |
| TS1207  | 38.9948 | 0.0134   | 0.0275 | 0.0018        | 0.0135   |
| TS1214  | 38.9787 | 0.0177   | 0.0415 | 0.0018        | 0.0178   |
| TS1220  | 38.9842 | 0.0096   | 0.0207 | 0.0018        | 0.0098   |
| TS1221  | 39.4001 | 0.0059   | 0.0113 | 0.0018        | 0.0062   |
| TS1223  | 39.1795 | 0.0036   | 0.0064 | 0.0018        | 0.0040   |
| TS1224  | 39.2674 | 0.0088   | 0.0202 | 0.0018        | 0.0089   |
| TS1225  | 38.9979 | 0.0071   | 0.0169 | 0.0018        | 0.0073   |
| TS1230  | 38.9834 | 0.0055   | 0.0125 | 0.0018        | 0.0058   |

Table 32: Results of the meta analysis of the measurement data for nitrogen. All data are given as amount fractions in  $\rm cmol\,mol^{-1}$ 

| Mixture | $\mu$   | $s(\mu)$ | τ      | $u_{\rm cal}$ | <i>u</i> (μ) |
|---------|---------|----------|--------|---------------|--------------|
| TS1194  | 15.8196 | 0.0080   | 0.0188 | 0.0017        | 0.0081       |
| TS1195  | 15.7167 | 0.0069   | 0.0145 | 0.0017        | 0.0071       |
| TS1207  | 15.8203 | 0.0066   | 0.0153 | 0.0017        | 0.0068       |
| TS1214  | 15.8383 | 0.0048   | 0.0105 | 0.0017        | 0.0051       |
| TS1220  | 15.8224 | 0.0058   | 0.0131 | 0.0017        | 0.0060       |
| TS1221  | 15.6244 | 0.0040   | 0.0093 | 0.0017        | 0.0043       |
| TS1223  | 15.6371 | 0.0063   | 0.0150 | 0.0017        | 0.0065       |
| TS1224  | 15.6974 | 0.0062   | 0.0149 | 0.0017        | 0.0064       |
| TS1225  | 15.7962 | 0.0042   | 0.0101 | 0.0017        | 0.0046       |
| TS1230  | 15.7954 | 0.0050   | 0.0119 | 0.0017        | 0.0053       |

| .7912   | 0.0004                                    | 0.001                                                   | u <sub>cal</sub><br>0.0002<br>0.0002                                                 | <i>u</i> (μ) 0.0006                                                                                             |
|---------|-------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| .7912   | 0.0004                                    | 0.001                                                   | 0.000                                                                                | 0.0000                                                                                                          |
|         |                                           | 0.0008                                                  | 0.0002                                                                               | 0 000 4                                                                                                         |
| .7930   |                                           |                                                         | 0.0004                                                                               | 0.0004                                                                                                          |
|         | 0.0006                                    | 0.0014                                                  | 0.0002                                                                               | 0.0006                                                                                                          |
| .7967   | 0.0008                                    | 0.0019                                                  | 0.0002                                                                               | 0.0008                                                                                                          |
| .7956   | 0.0002                                    | 0.0003                                                  | 0.0002                                                                               | 0.0003                                                                                                          |
| .7914 ( | 0.0003                                    | 0.0007                                                  | 0.0002                                                                               | 0.0004                                                                                                          |
| .7914 ( | 0.0004                                    | 0.0010                                                  | 0.0002                                                                               | 0.0005                                                                                                          |
| .7914 ( | 0.0003                                    | 0.0006                                                  | 0.0002                                                                               | 0.0004                                                                                                          |
| .7948   | 0.0001                                    | 0.0003                                                  | 0.0002                                                                               | 0.0003                                                                                                          |
| .7935   | 0.0002                                    | 0.0006                                                  | 0.0002                                                                               | 0.0003                                                                                                          |
| •       | .7956<br>.7914<br>.7914<br>.7914<br>.7914 | .79560.0002.79140.0003.79140.0004.79140.0003.79480.0001 | 79560.00020.0003.79140.00030.0007.79140.00040.0010.79140.00030.0006.79480.00010.0003 | 779560.00020.00030.000279140.00030.00070.000279140.00040.00100.000279140.00030.00060.000279480.00010.00030.0002 |

Table 33: Results of the meta analysis of the measurement data for hydrogen. All data are given as amount fractions in  $\rm cmol\,mol^{-1}$ 

Table 34: Results of the meta analysis of the measurement data for oxygen. All data are given as amount fractions in  ${\rm cmol}\,{\rm mol}^{-1}$ 

| Mixture | $\mu$  | $s(\mu)$ | au     | $u_{\rm cal}$ | $u(\mu)$ |
|---------|--------|----------|--------|---------------|----------|
| TS1194  | 0.4736 | 0.0013   | 0.0025 | 0.0005        | 0.0014   |
| TS1195  | 0.4625 | 0.0013   | 0.0023 | 0.0005        | 0.0014   |
| TS1207  | 0.4215 | 0.0008   | 0.0014 | 0.0004        | 0.0009   |
| TS1214  | 0.5308 | 0.0012   | 0.0022 | 0.0007        | 0.0014   |
| TS1220  | 0.4976 | 0.0008   | 0.0013 | 0.0006        | 0.0010   |
| TS1221  | 0.4241 | 0.0008   | 0.0014 | 0.0004        | 0.0009   |
| TS1223  | 0.4870 | 0.0021   | 0.0046 | 0.0005        | 0.0022   |
| TS1224  | 0.4049 | 0.0010   | 0.0020 | 0.0004        | 0.0011   |
| TS1225  | 0.5149 | 0.0019   | 0.0043 | 0.0006        | 0.0020   |
| TS1230  | 0.5101 | 0.0010   | 0.0017 | 0.0006        | 0.0012   |
|         |        |          |        |               |          |

Table 35: Results of the meta analysis of the measurement data for ethane. All data are given as amount fractions in  $\mu mol\,mol^{-1}$ 

| Mixture | $\mu$   | s(μ)  | τ     | $u_{\rm cal}$ | <i>u</i> (μ) |
|---------|---------|-------|-------|---------------|--------------|
| TS1194  | 623.727 | 0.523 | 0     | 0.227         | 0.570        |
| TS1195  | 621.444 | 0.763 | 0     | 0.225         | 0.796        |
| TS1207  | 622.146 | 0.652 | 0     | 0.226         | 0.691        |
| TS1214  | 622.064 | 1.020 | 1.565 | 0.226         | 1.045        |
| TS1220  | 623.157 | 0.411 | 0     | 0.227         | 0.469        |
| TS1221  | 620.191 | 0.456 | 0     | 0.225         | 0.509        |
| TS1223  | 619.128 | 0.521 | 0     | 0.224         | 0.567        |
| TS1224  | 619.533 | 0.496 | 0     | 0.224         | 0.545        |
| TS1225  | 623.525 | 0.496 | 0     | 0.227         | 0.546        |
| TS1230  | 622.597 | 1.079 | 1.499 | 0.227         | 1.103        |

Table 36: Results of the meta analysis of the measurement data for propane. All data are given as amount fractions in  $\mu$ mol mol<sup>-1</sup>

| Mixture | $\mu$   | $s(\mu)$ | au    | $u_{\rm cal}$ | $u(\mu)$ |
|---------|---------|----------|-------|---------------|----------|
| TS1194  | 149.722 | 0.369    | 0.638 | 0.068         | 0.375    |
| TS1195  | 149.069 | 0.187    | 0     | 0.068         | 0.199    |
| TS1207  | 148.995 | 0.099    | 0     | 0.068         | 0.120    |
| TS1214  | 149.606 | 0.538    | 1.078 | 0.068         | 0.542    |
| TS1220  | 148.899 | 0.411    | 0.688 | 0.067         | 0.417    |
| TS1221  | 149.469 | 0.120    | 0     | 0.068         | 0.137    |
| TS1223  | 148.819 | 0.441    | 0.712 | 0.067         | 0.446    |
| TS1224  | 148.752 | 0.155    | 0     | 0.067         | 0.169    |
| TS1225  | 150.253 | 0.511    | 0.823 | 0.069         | 0.515    |
| TS1230  | 149.871 | 0.220    | 0     | 0.068         | 0.230    |

# **B** Measurement reports of the participating institutes

# Measurement report CEM

Cylinder number: 2031207 (029524)

## Measurement #1

| Component      | Date<br>(dd/mm/yy) | Result<br>(µmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|----------------------|------------------------------------|----------------------|
| Methane        | 07/08/15           | 437820               | 0.011                              | 6                    |
| Carbon dioxide | 24/07/15           | 390830               | 0.082                              | 6                    |
| Nitrogen       | 24/07/15           | 157590               | 0.22                               | 6                    |
| Hydrogen       |                    |                      |                                    |                      |
| Oxygen         | 07/08/15           | 4339                 | 0.30                               | 90                   |
| Ethane         | 07/08/15           | 621.3                | 0.018                              | 6                    |
| Propane        | 07/08/15           | 148.6                | 0.025                              | 6                    |

## Measurement #2

| Component      | Date<br>(dd/mm/yy) | Result<br>(µmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|----------------------|------------------------------------|----------------------|
| Methane        | 11/08/15           | 438400               | 0.018                              | 6                    |
| Carbon dioxide | 29/07/15           | 392130               | 0.13                               | 6                    |
| Nitrogen       | 29/07/15           | 158040               | 0.24                               | 6                    |
| Hydrogen       |                    |                      |                                    |                      |
| Oxygen         | 10/08/15           | 4356                 | 0.30                               | 90                   |
| Ethane         | 11/08/15           | 622.1                | 0.032                              | 6                    |
| Propane        | 11/08/15           | 148.37               | 0.014                              | 6                    |

## Measurement #3<sup>1</sup>

| Component      | Date<br>(dd/mm/yy) | Result<br>(µmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|----------------------|------------------------------------|----------------------|
| Methane        | 12/08/15           | 437990               | 0.021                              | 6                    |
| Carbon dioxide | 30/07/15           | 391570               | 0.055                              | 6                    |
| Nitrogen       | 30/07/15           | 156850               | 0.10                               | 6                    |
| Hydrogen       |                    |                      |                                    |                      |
| Oxygen         | 11/08/15           | 4355                 | 0.25                               | 90                   |
| Ethane         | 12/08/15           | 621.28               | 0.024                              | 6                    |
| Propane        | 10/08/15           | 148.78               | 0.26                               | 6                    |

<sup>&</sup>lt;sup>1</sup> If more than three measurements are taken, please copy and insert a table of the appropriate format as necessary Final Report CCQM-K112 Biogas Pag

## Results

| Component      | Date<br>(dd/mm/yy) | Result<br>(µmol/mol) | Expanded uncertainty<br>(µmol/mol) | Coverage factor |
|----------------|--------------------|----------------------|------------------------------------|-----------------|
| Methane        |                    | 438070               | 535                                | 2               |
| Carbon dioxide |                    | 391510               | 1706                               | 2               |
| Nitrogen       |                    | 156850               | 1565                               | 2               |
| Hydrogen*      |                    | 7807                 | 2376                               | 2               |
| Oxygen         |                    | 4350                 | 19                                 | 2               |
| Ethane         |                    | 621.6                | 1.1                                | 2               |
| Propane        |                    | 148.6                | 1.0                                | 2               |

\*Hydrogen obtained by difference

## **Calibration standards**

Method of preparation: A set of primary standard gas mixtures (PSMs) were prepared according the gravimetric method described in ISO 6142. All PSMs are multicomponent mixtures for the comparison (excepting hydrogen) in methane balance and the three calibration standards were prepared both in several stage dilution process and by direct weighing depending on the component.

| PSM 1          | $x_i$ assigned value | Relative $U_i$ |
|----------------|----------------------|----------------|
| MRP492362      | (µmol/mol)           | (%)            |
| Methane        | 503272               | 0.1            |
| Carbon dioxide | 374233               | 0.3            |
| Nitrogen       | 119333               | 0.9            |
| Oxygen         | 2912                 | 0.5            |
| Ethane         | 199                  | 0.4            |
| Propane        | 50                   | 0.5            |

| PSM 2          | $x_i$ assigned value | Relative $U_i$ |
|----------------|----------------------|----------------|
| MRP292363      | (µmol/mol)           | (%)            |
| Methane        | 434156               | 0.1            |
| Carbon dioxide | 398110               | 0.3            |
| Nitrogen       | 162733               | 0.6            |
| Oxygen         | 4379.2               | 0.3            |
| Ethane         | 502.7                | 0.1            |
| Propane        | 118.5                | 0.2            |

| PSM 3          | $x_i$ assigned value | Relative $U_i$ |
|----------------|----------------------|----------------|
| MRP292364      | (µmol/mol)           | (%)            |
| Methane        | 390937               | 0.1            |
| Carbon dioxide | 422486               | 0.3            |
| Nitrogen       | 179663               | 0.6            |
| Oxygen         | 5901.8               | 0.2            |
| Ethane         | 809.7                | 0.1            |
| Propane        | 201.6                | 0.2            |

Weighing data: In the case of PSM 2 MRP292363, the mixture was prepared, in the following sequence, weighing 402.09 g from pure carbon dioxide, 20.84 g from a 9 000 µmol/mol ethane in methane pre-mixture, 69.16 g from a 1 100 µmol/mol propane in nitrogen pre-mixture, 19.17 g from a 0.15 mol/mol oxygen in nitrogen pre-mixture, 19.63 g from pure nitrogen and 139.35 g from pure methane.

| - | Purity tables | (composition) of | the parent gases: |
|---|---------------|------------------|-------------------|
|---|---------------|------------------|-------------------|

|                | Methane (5.5) - Air Liquide |                  | Carbon dioxide (4.8) - Air Liqu |                  |
|----------------|-----------------------------|------------------|---------------------------------|------------------|
| COMPONENT      | $x_i$ (µmol/mol)            | $u_i$ (µmol/mol) | $x_i$ (µmol/mol)                | $u_i$ (µmol/mol) |
| Carbon dioxide | 0.05                        | 0.029            | 999 996.3                       | 1.2              |
| Hydrogen       |                             |                  | 0.25                            | 0.14             |
| Oxygen         | 0.25                        | 0.14             | 1                               | 0.58             |
| Nitrogen       | 1                           | 0.58             |                                 |                  |
| Water          | 1                           | 0.58             | 1.5                             | 0.87             |
| Ethane         | 0.05                        | 0.029            |                                 |                  |
| Hydrocarbons   | 0.025                       | 0.014            | 1                               | 0.58             |
| Methane        | 999 997.58                  | 83               |                                 |                  |

|                 | Nitrogen (BIP) - Air Products |                  | Oxygen (4.5)     | - Air Products   |
|-----------------|-------------------------------|------------------|------------------|------------------|
| COMPONENT       | $x_i$ (µmol/mol)              | $u_i$ (µmol/mol) | $x_i$ (µmol/mol) | $u_i$ (µmol/mol) |
| Carbon monoxide | 0.25                          | 0.14             | 0.5              | 0.29             |
| Carbon dioxide  | 0.25                          | 0.14             | 0.5              | 0.29             |
| Hydrogen        | 0.5                           | 0.29             | 0.5              | 0.29             |
| Oxygen          | 0.005                         | 0.002 9          | 999 991.5        | 3.1              |
| Nitrogen        | 999 998.94                    | 0.35             | 5                | 2.9              |
| Water           | 0.01                          | 0.005 6          | 1.5              | 0.87             |
| Hydrocarbons    | 0.05                          | 0.029            |                  |                  |
| Methane         |                               |                  | 0.5              | 0.29             |
|                 |                               |                  | 1                |                  |

|                | Propane (3.5) - Air Liquide |                  | Ethane (4.5)     | - Air Liquide    |
|----------------|-----------------------------|------------------|------------------|------------------|
| COMPONENT      | $x_i$ (µmol/mol)            | $u_i$ (µmol/mol) | $x_i$ (µmol/mol) | $u_i$ (µmol/mol) |
| Carbon dioxide | 2.5                         | 1.4              | 0.5              | 0.29             |
| Hydrogen       | 20                          | 12               | 1.5              | 0.87             |
| Oxygen         | 5.0                         | 2.9              | 2.5              | 1.4              |
| Nitrogen       | 20                          | 12               | 10               | 5.8              |
| Water          | 2.5                         | 1.4              | 1.5              | 0.87             |
| Propene        | 100                         | 58               |                  |                  |
| Propane        | 999 750                     | 83               |                  |                  |
| Ethene         |                             |                  | 2.5              | 1.4              |
| Ethane         |                             |                  | 999 974          | 7.6              |
| Hydrocarbons   | 100                         | 58               | 7.5              | 4.3              |

 Verification measures: The PSMs gravimetric values were verified by the same analytical method than the method used for the comparison and their analytical uncertainties are considered for the PSMs assigned values.

## Instrumentation

A 6890N Agilent GC for natural gas is used. The GC is equipped with a FID for methane, ethane and propane performance and a TCD for carbon dioxide and nitrogen performance, packed columns and helium gas is used as carrier. After rolling the cylinders, the sample and the PSMs are connected to pressure regulators and to a sample box and the sampling loop is flushed for three minutes before injection at the atmospheric pressure.

A paramagnetic SERVOMEX Xentra 4100 is used for oxygen performance. The sample and the PSMs are connected to pressure regulators and to a sample box and the gas is flushed for three minutes before measurement.

## Calibration method and value assignment

Mixtures are analyzed under repeatability conditions during at least three days. Three results are selected for each component. The calibration method according ISO 6143 for a linear function is used in all cases. The assigned values for components concentration is the average of the three individual values obtained.

## Uncertainty evaluation

The expression for combined standard uncertainty, as follows, includes the quadratic sum of individual standard uncertainties as obtained according ISO 6143 and the standard deviation of the mean of individual values for propane concentration:

$$u_c = \sqrt{\frac{1}{3} \cdot (u_1^2 + u_2^2 + u_3^2) + (\frac{s}{\sqrt{3}})^2}$$

The expanded uncertainty is obtained by multiplying the combined uncertainty with a k = 2 factor for a confidence level of 95 %.

# **Measurement report CMI**

Cylinder number: 2031230

### Measurement #1

| Component      | Date<br>(dd/mm/yy) | Result<br>(cmol/mol) | Standard deviation<br>(% relative) | number of<br>replicates |
|----------------|--------------------|----------------------|------------------------------------|-------------------------|
| Methane        | 27.8.2015          | 43,593               | 0,076                              | 10                      |
| Carbon dioxide | 27.8.2015          | 39,021               | 0,045                              | 10                      |
| Nitrogen       | 27.8.2015          | 16,020               | 0,096                              | 10                      |
| Hydrogen       | 27.8.2015          | 0,789                | 1,477                              | 10                      |
| Oxygen         | 27.8.2015          | 0,501                | 0,190                              | 10                      |
| Ethane         | 27.8.2015          | 0,061                | 0,664                              | 10                      |
| Propane        | 27.8.2015          | 0,015                | 0,309                              | 10                      |

## Measurement #2

| Component      | Date<br>(dd/mm/yy<br>) | Result<br>(cmol/mol) | Standard<br>deviation<br>(% relative) | number of<br>replicates |
|----------------|------------------------|----------------------|---------------------------------------|-------------------------|
| Methane        | 12.10.2015             | 43,588               | 0,105                                 | 10                      |
| Carbon dioxide | 12.10.2015             | 39,025               | 0,068                                 | 10                      |
| Nitrogen       | 12.10.2015             | 16,018               | 0,116                                 | 10                      |
| Hydrogen       | 12.10.2015             | 0,791                | 1,809                                 | 10                      |
| Oxygen         | 12.10.2015             | 0,502                | 0,158                                 | 10                      |
| Ethane         | 12.10.2015             | 0,062                | 0,770                                 | 10                      |
| Propane        | 12.10.2015             | 0,015                | 0,209                                 | 10                      |

## Measurement #3<sup>1</sup>

| Component      | Date<br>(dd/mm/yy<br>) | Result<br>(cmol/mol) | Standard<br>deviation<br>(% relative) | number of<br>replicates |
|----------------|------------------------|----------------------|---------------------------------------|-------------------------|
| Methane        | 14.10.2015             | 43,595               | 0,046                                 | 10                      |
| Carbon dioxide | 14.10.2015             | 39,020               | 0,027                                 | 10                      |
| Nitrogen       | 14.10.2015             | 16,022               | 0,050                                 | 10                      |
| Hydrogen       | 14.10.2015             | 0,788                | 2,614                                 | 10                      |
| Oxygen         | 14.10.2015             | 0,499                | 0,288                                 | 10                      |
| Ethane         | 14.10.2015             | 0,061                | 0,674                                 | 10                      |

<sup>&</sup>lt;sup>1</sup> If more than three measurements are taken, please copy and insert a table of the appropriate format as necessary Final Report CCQM-K112 Biogas Page

| Propane | 14.10.2015 | 0,015 | 0,269 | 10 |
|---------|------------|-------|-------|----|
|---------|------------|-------|-------|----|

## Results

| Component      | Date<br>(dd/mm/yy<br>) | Result<br>(cmol/mol) | Expanded<br>uncertainty<br>(cmol/mol) | Coverage factor |
|----------------|------------------------|----------------------|---------------------------------------|-----------------|
| Methane        | -                      | 43,592               | 0,029                                 | 2               |
| Carbon dioxide | -                      | 39,022               | 0,025                                 | 2               |
| Nitrogen       | -                      | 16,020               | 0,011                                 | 2               |
| Hydrogen       | -                      | 0,789                | 0,063                                 | 2               |
| Oxygen         | -                      | 0,501                | 0,012                                 | 2               |
| Ethane         | -                      | 0,061                | 0,006                                 | 2               |
| Propane        | -                      | 0,015                | 0,003                                 | 2               |

## **Calibration standards**

All standards were prepared individually according to ISO 6142 "Gas analysis - Preparation of calibration gases - Gravimetric Method". Depending on the concentration of the components, standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases.

|                | CS 1       |                                       |  |  |  |  |
|----------------|------------|---------------------------------------|--|--|--|--|
| Component:     | (cmol/mol) | Expanded<br>uncertainty<br>(cmol/mol) |  |  |  |  |
| Methane        | 44.955     | 0.018                                 |  |  |  |  |
| Carbon dioxide | 39.515     | 0.016                                 |  |  |  |  |
| Nitrogen       | 14.136     | 0.006                                 |  |  |  |  |
| Hydrogen       | 0.878      | 0.038                                 |  |  |  |  |
| Oxygen         | 0.473      | 0.007                                 |  |  |  |  |
| Ethane         | 0.032      | 0.018                                 |  |  |  |  |
| Propane        | 0.011      | 0.002                                 |  |  |  |  |

|                | CS 2       |                                       |  |  |  |  |
|----------------|------------|---------------------------------------|--|--|--|--|
| Component:     | (cmol/mol) | Expanded<br>uncertainty<br>(cmol/mol) |  |  |  |  |
| Methane        | 43.658     | 0.017                                 |  |  |  |  |
| Carbon dioxide | 38.942     | 0.015                                 |  |  |  |  |
| Nitrogen       | 16.124     | 0.007                                 |  |  |  |  |
| Hydrogen       | 0.721      | 0.037                                 |  |  |  |  |
| Oxygen         | 0.445      | 0.007                                 |  |  |  |  |
| Ethane         | 0.087      | 0.017                                 |  |  |  |  |
| Propane        | 0.023      | 0.002                                 |  |  |  |  |

|                | CS 3       |                                       |  |  |  |  |
|----------------|------------|---------------------------------------|--|--|--|--|
| Component:     | (cmol/mol) | Expanded<br>uncertainty<br>(cmol/mol) |  |  |  |  |
| Methane        | 43.751     | 0.015                                 |  |  |  |  |
| Carbon dioxide | 37.122     | 0.013                                 |  |  |  |  |
| Nitrogen       | 17.779     | 0.006                                 |  |  |  |  |
| Hydrogen       | 0.792      | 0.033                                 |  |  |  |  |
| Oxygen         | 0.481      | 0.006                                 |  |  |  |  |
| Ethane         | 0.062      | 0.015                                 |  |  |  |  |
| Propane        | 0.013      | 0.002                                 |  |  |  |  |

### Instrumentation

Measured on Gas Chromatograph Agilent, with using columns (19095P –  $CO_2$  carbonplot, 19095P-MS0, 19095P-S25), TCD and FID detectors, oven temperature 40 - 120 °C, carrier gas Helium. All measurements were done in automatic way.

### Calibration method and value assignment

Three independent measurements were carried out under repeatability conditions. Each measurement included ten sub-measurements.

| Calibration and measurement methods |                           |  |  |  |
|-------------------------------------|---------------------------|--|--|--|
| Measurement method                  | Type of calibration curve |  |  |  |
| GC/TCD-FID                          | 3 points, line            |  |  |  |

## **Uncertainty evaluation**

Uncertainty estimation is given below:

$$\overline{U = k. u(x_i)}$$
[1]

u<sub>c</sub> - combined uncertainty k - coverage factor (k=2)

Standard deviation (2) is combination of standard deviation (type A) (3) and standard deviation (type B) (4).

$$\mathbf{u}(\overline{\mathbf{x}}_i) = \sqrt{u_a(\overline{\mathbf{x}}_i)^2 + u_B(\overline{\mathbf{x}}_i)^2}$$
[2]

$$u_{a}(\overline{x}_{i}) = \sqrt{\frac{\sum_{j=1}^{n} (x_{j} - \overline{x}_{i})^{2}}{n.(n-1)}}$$

$$u_{B}(\overline{x}_{i}) = \sqrt{\frac{\sum_{j=1}^{n} u(x_{j})^{2}}{n^{2}}}$$
[3]

# Measurement report INMETRO

Cylinder number: 2031225

## Measurement #1

| Component      | Date<br>(dd/mm/yy) | Result<br>(cmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|----------------------|------------------------------------|----------------------|
| Methane        | 13/05/15           | 43.88577             | 0.23                               | 6                    |
| Carbon dioxide | 13/05/15           | 38.81713             | 0.10                               | 6                    |
| Nitrogen       | 13/05/15           | 15.9499              | 0.22                               | 6                    |
| Hydrogen       |                    |                      |                                    |                      |
| Oxygen         | 13/05/15           | 0.5039               | 0.22                               | 6                    |
| Ethane         | 13/05/15           | 0.062252             | 0.11                               | 6                    |
| Propane        | 13/05/15           | 0.014944             | 0.28                               | 6                    |

## Measurement #2

| Component      | Date<br>(dd/mm/yy) | Result<br>(cmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|----------------------|------------------------------------|----------------------|
| Methane        | 19/05/15           | 43.74296             | 0.08                               | 6                    |
| Carbon dioxide | 19/05/15           | 38.88702             | 0.31                               | 6                    |
| Nitrogen       | 19/05/15           | 15.88262             | 0.12                               | 6                    |
| Hydrogen       | 17/06/15           | 0.778178             | 0.22                               | 6                    |
| Oxygen         | 19/05/15           | 0.50528              | 0.22                               | 6                    |
| Ethane         | 19/05/15           | 0.062391             | 0.09                               | 6                    |
| Propane        | 19/05/15           | 0.015016             | 0.51                               | 6                    |

## Measurement #3

| Component      | Date<br>(dd/mm/yy) | Result<br>(cmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|----------------------|------------------------------------|----------------------|
| Methane        | 09/06/15           | 43.83876             | 0.24                               | 6                    |
| Carbon dioxide | 09/06/15           | 38.85532             | 0.30                               | 6                    |
| Nitrogen       | 09/06/15           | 15.9377              | 0.21                               | 6                    |
| Hydrogen       | 23/06/15           | 0.778775             | 0.33                               | 6                    |
| Oxygen         | 09/06/15           | 0.505886             | 0.23                               | 6                    |
| Ethane         | 09/06/15           | 0.062228             | 0.11                               | 6                    |
| Propane        | 09/06/15           | 0.014982             | 0.37                               | 6                    |

## Measurement #4

| Component      | Date<br>(dd/mm/yy) | Result<br>(cmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|----------------------|------------------------------------|----------------------|
| Methane        | 16/06/15           | 43.77658             | 0.13                               | 6                    |
| Carbon dioxide | 16/06/15           | 38.96547             | 0.97                               | 6                    |
| Nitrogen       | 16/06/15           | 15.91526             | 0.14                               | 6                    |
| Hydrogen       | 24/06/15           | 0.785393             | 0.16                               | 6                    |
| Oxygen         | 16/06/15           | 0.504635             | 0.41                               | 6                    |
| Ethane         | 16/06/15           | 0.062411             | 0.13                               | 6                    |
| Propane        | 16/06/15           | 0.015099             | 0.20                               | 6                    |

## Measurement #5

| Component      | Date<br>(dd/mm/yy) | Result<br>(cmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|----------------------|------------------------------------|----------------------|
| Methane        | 24/06/15           | 43.78849             | 0.17                               | 6                    |
| Carbon dioxide | 24/06/15           | 39.00193             | 0.08                               | 6                    |
| Nitrogen       | 24/06/15           | 15.79706             | 0.10                               | 6                    |
| Hydrogen       | 25/06/15           | 0.780848             | 0.47                               | 6                    |
| Oxygen         | 24/06/15           | 0.503706             | 0.13                               | 6                    |
| Ethane         | 24/06/15           | 0.062196             | 0.13                               | 6                    |
| Propane        | 24/06/15           | 0.015022             | 0.16                               | 6                    |

## Results

| Component      | Result<br>(cmol/mol) | Expanded<br>uncertainty<br>(cmol/mol) | Coverage factor |
|----------------|----------------------|---------------------------------------|-----------------|
| Methane        | 43.81                | 0.14                                  | 2               |
| Carbon dioxide | 38.88                | 0.21                                  | 2               |
| Nitrogen       | 15.92                | 0.13                                  | 2               |
| Hydrogen       | 0.7808               | 0.0089                                | 2               |
| Oxygen         | 0.5049               | 0.0028                                | 2               |
| Ethane         | 0.06232              | 0.00024                               | 2               |
| Propane        | 0.01501              | 0.00012                               | 2               |

## **Calibration standards**

Inmetro used maximum 6 own prepared mixtures (table 1.) and maximum 3 mixtures obtained from NPL (table 2.) were used for the calibration curve. All standards were prepared individually according to ISO 6142 "Gas analysis - Preparation of calibration gases - Gravimetric Method".

| Cylinder<br>number | PSM103819                      |                                               | PSM128541                      |                                               | PSM203638                      |                                               |
|--------------------|--------------------------------|-----------------------------------------------|--------------------------------|-----------------------------------------------|--------------------------------|-----------------------------------------------|
| Component          | Assigned value<br>(x) cmol/mol | Gravimetric<br>uncertainty<br>(u(x)) cmol/mol | Assigned value<br>(x) cmol/mol | Gravimetric<br>uncertainty<br>(u(x)) cmol/mol | Assigned value<br>(x) cmol/mol | Gravimetric<br>uncertainty<br>(u(x)) cmol/mol |
| Methane            | 56.1401                        | 0.0026                                        | 53.1129                        | 0.0027                                        | 50.7743                        | 0.0028                                        |
| Carbon dioxide     | 32.7186                        | 0.0020                                        | 34.8568                        | 0.0021                                        | 35.8344                        | 0.0021                                        |
| Nitrogen           | 10.0055                        | 0.0010                                        | 11.0648                        | 0.0010                                        | 12.0600                        | 0.0011                                        |
| Hydrogen           | 0.81452                        | 0.00024                                       | 0.70043                        | 0.00020                                       | 0.91376                        | 0.00025                                       |
| Oxygen             | 0.3020                         | 0.0012                                        | 0.2558                         | 0.0022                                        | 0.3808                         | 0.0013                                        |
| Ethane             | 0.0200495                      | 0.0000074                                     | 0.0150238                      | 0.0000067                                     | 0.0350783                      | 0.0000095                                     |
| Propane            | 0.0051453                      | 0.0000032                                     | 0.0038654                      | 0.0000044                                     | 0.0089284                      | 0.0000033                                     |
| Cylinder<br>number | PSM203776                      |                                               | PSM203807                      |                                               | PSM203818                      |                                               |
| Component          | Assigned value<br>(x) cmol/mol | Gravimetric<br>uncertainty<br>(u(x)) cmol/mol | Assigned value<br>(x) cmol/mol | Gravimetric<br>uncertainty<br>(u(x)) cmol/mol | Assigned value<br>(x) cmol/mol | Gravimetric<br>uncertainty<br>(u(x)) cmol/mol |
| Methane            | 39.7733                        | 0.0054                                        | 43.1831                        | 0.0044                                        | 45.4586                        | 0.0038                                        |
| Carbon dioxide     | 42.2992                        | 0.0040                                        | 40.0814                        | 0.0033                                        | 38.8167                        | 0.0028                                        |
| Nitrogen           | 16.0232                        | 0.0020                                        | 15.0335                        | 0.0016                                        | 14.2183                        | 0.0014                                        |
| Hydrogen           | 1.20135                        | 0.00037                                       | 1.10038                        | 0.00033                                       | 0.99374                        | 0.00029                                       |
| Oxygen             | 0.6120                         | 0.0022                                        | 0.5283                         | 0.0019                                        | 0.4575                         | 0.0017                                        |
| Ethane             | 0.080265                       | 0.000020                                      | 0.065743                       | 0.000016                                      | 0.050856                       | 0.000013                                      |
| Propane            | 0.0203109                      | 0.0000057                                     | 0.0166527                      | 0.0000048                                     | 0.0129006                      | 0.0000040                                     |

Table 1. Calibration standards prepared by Inmetro

### Table 2. Calibration standards

| Cylinder<br>number | NG537                          |                                            | NG543                          |                                            | NG544                          |                                            |
|--------------------|--------------------------------|--------------------------------------------|--------------------------------|--------------------------------------------|--------------------------------|--------------------------------------------|
| Component          | Assigned value<br>(x) cmol/mol | Standard<br>uncertainty<br>(u(x)) cmol/mol | Assigned value<br>(x) cmol/mol | Standard<br>uncertainty<br>(u(x)) cmol/mol | Assigned value<br>(x) cmol/mol | Standard<br>uncertainty<br>(u(x)) cmol/mol |
| Methane            | 59.96                          | 0.1                                        | 30.42                          | 0.055                                      | 44.99                          | 0.075                                      |
| Carbon dioxide     | 30                             | 0.075                                      | 48.34                          | 0.115                                      | 39.6                           | 0.095                                      |
| Nitrogen           | 9.945                          | 0.016                                      | 20.23                          | 0.035                                      | 14.909                         | 0.0235                                     |
| Oxygen             | 0.0997                         | 0.0005                                     | 1.009                          | 0.0045                                     | 0.5011                         | 0.00225                                    |

### Instrumentation

For the measurement of the Biogas mixture 2 equipment's where used:

1) Micro GC (Varian)

Model: 490

Channel 1: Biogas 2015-04-13.met-Channel 1. 10m MS5A Heated Injector, Backflush

Channel 2: 10m PPU Heated Injector, Backflush

Channel 3: 10m AL2O3-KCL Heated Injector, Backflush

Carrier: Helium or Nitrogen

2) GC CP-3800 (Varian)

The GC-NGA is equipped with a 12 ports Multi Position Valve (MPV). The system is divided in 2 channels: the Flame Ionization Detector (FID) channel and the Thermal Conductivity Detector (TCD) channel. Injections on both channels are done via a Gas Sampling Valve (GSV). The carrier is Helium TCD Channel:

10 port switching valve, 6 Port switching valve, Hayesep T column. Mesh 80-100, 1: 0.5m, id: 2 mm; Hayesep Q column. Mesh 80-100, 1: 0.5m, id: 2mm; Molsieve 13x column, Mesh 80-10001: 1.5m, id: 2mm;

FID Channel:

CP-1177 Split/split less injector, CP-Sil 5CB column, WCOT silica, l: 60 m, id: 0.25 mm.

### Calibration method and value assignment

The sample and calibration standards were connected to a reducer and after flushing connected to the multi position valve. Every line was flushed separately and the flow for each mixture was set equally. For all the measurements the reducers were disconnected and connected to a different cylinder. Also a different position on the multiposition valve was used to connect the cylinder. The flushing and setting of the flow was done equal to the first measurement. Every mixture was injected 7 times were the first injection was dictated.

The calibration of the instrument was done according to ISO 6143. The calibration curve was made using the software XLgenline. The goodness of fit for all measurements was lower than 2.

## **Uncertainty evaluation**

The uncertainty was calculated according to ISO 6143 using the software XLgenline. The combined uncertainty was multiplied by a coverage factor of 2 with a confidence interval of 95%. Three sources of uncertainty were considered:

- Uncertainty of the standards (certificate type B)
- Uncertainty of the area (analysis type A)

Uncertainty of the reproducibility (analysis – type A)

Measurement report MKEH Cylinder number: 2031220

#### Measurement #1

| Component      | Date<br>(dd/mm/yy) | Result<br>(mmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|----------------------|------------------------------------|----------------------|
| Methane        | 29/07/2015         | 441.33               | 0.04                               | 3                    |
| Carbon-dioxide |                    | 393.62               | 0.01                               | 3                    |
| Nitrogen       |                    | 151.79               | 0.04                               | 3                    |
| Hydrogen       |                    | 7.68                 | 0.04                               | 3                    |
| Oxygen         |                    | 4.81                 | 0.04                               | 3                    |
| Ethane         |                    | 0.621                | 0.40                               | 3                    |
| Propane        |                    | 0.150                | 0.81                               | 3                    |

#### Measurement #2

| Component      | Date<br>(dd/mm/yy) | Result<br>(mmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|----------------------|------------------------------------|----------------------|
| Methane        | 30/07/2015         | 441.24               | 0.06                               | 3                    |
| Carbon-dioxide |                    | 393.58               | 0.05                               | 3                    |
| Nitrogen       |                    | 152.19               | 0.08                               | 3                    |
| Hydrogen       |                    | 7.65                 | 0.08                               | 3                    |
| Oxygen         |                    | 4.56                 | 0.08                               | 3                    |
| Ethane         |                    | 0.627                | 0.30                               | 3                    |
| Propane        |                    | 0.152                | 0.56                               | 3                    |

## Measurement #3<sup>1</sup>

| Component      | Date<br>(dd/mm/yy) | Result<br>(mmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|----------------------|------------------------------------|----------------------|
| Methane        | 31/07/2015         | 441.19               | 0.03                               | 3                    |
| Carbon-dioxide |                    | 393.72               | 0.03                               | 3                    |
| Nitrogen       |                    | 152.00               | 0.04                               | 3                    |
| Hydrogen       |                    | 7.63                 | 0.04                               | 3                    |
| Oxygen         |                    | 4.68                 | 0.04                               | 3                    |
| Ethane         |                    | 0.625                | 0.36                               | 3                    |
| Propane        |                    | 0.151                | 0.88                               | 3                    |

## Results

| Component | Date<br>(dd/mm/yy) | Result<br>(mmol/mol) | Expanded uncertainty<br>(mmol/mol) | Coverage factor |
|-----------|--------------------|----------------------|------------------------------------|-----------------|
|-----------|--------------------|----------------------|------------------------------------|-----------------|

| Methane        | 31/07/2015 | 441.25 | 0.68  | 2 |
|----------------|------------|--------|-------|---|
| Carbon-dioxide |            | 393.64 | 0.44  | 2 |
| Nitrogen       |            | 151.99 | 0.29  | 2 |
| Hydrogen       |            | 7.65   | 0.12  | 2 |
| Oxygen         |            | 4.68   | 0.01  | 2 |
| Ethane         |            | 0.624  | 0.008 | 2 |
| Propane        |            | 0.151  | 0.004 | 2 |

## **Calibration standards**

## Nº OMH63

| Component      | Date<br>(dd/mm/yy) | Result<br>(mmol/mol) | Expanded uncertainty<br>(mmol/mol) | Coverage factor |
|----------------|--------------------|----------------------|------------------------------------|-----------------|
| Methane        | 23/06/2015         | 440.43               | 0.28                               | 2               |
| Carbon-dioxide |                    | 380.30               | 0.07                               | 2               |
| Nitrogen       |                    | 165.90               | 0.10                               | 2               |
| Hydrogen       |                    | 4.849                | 0.028                              | 2               |
| Oxygen         |                    | 7.736                | 0.026                              | 2               |
| Ethane         |                    | 0.6217               | 0.0014                             | 2               |
| Propane        |                    | 0.1560               | 0.0006                             | 2               |

in 10 L aluminium cylinder (Luxfer) with stainless steel valve,

high purity Methane (Messer, Hungary, controlled by GC-FID-TCD for purity) high purity Ethane (Air Liquide, controlled by GC-FID-TCD for purity) high purity Propane (unknown source of the origin, controlled by GC-FID-TCD for purity) high purity Carbon-dioxide (Siad, Hungary, controlled by GC-FID-TCD for purity) high purity Hydrogen (Messer, Hungary, controlled by GC-FID-TCD for purity) high purity Oxigen (Messer, Hungary, controlled by GC-FID-TCD for purity) and Nitrogen (Messer, Hungary, controlled by GC-FID-TCD for purity) and Nitrogen (Messer, Hungary, controlled by GC-FID-TCD and electrochemical sensor and mirror dew point meter for purity) gases were used for the preparation of the primary standard gas.

The mass measurements of the gases were carried out by balances:

Mettler Toledo AE 240-S with repeatability of 0.25 mg and capacity of 200 g, and Mettler Toledo XP 26003 L with repeatability of 0.0015 g and capacity of 15000 g.

Purity table of Parent Gases

| Gas            | Concentration<br>%(mol/mol) | Uncertainty<br>%(mol/mol) |
|----------------|-----------------------------|---------------------------|
| Methane        | 99.995                      | ± 0.006                   |
| Ethane         | 99.95                       | $\pm 0.06$                |
| Propane        | 99.98                       | $\pm 0.06$                |
| Nitrogen       | 99.995                      | $\pm 0.006$               |
| Hydrogen       | 99.999                      | $\pm 0.001$               |
| Oxygen         | 99.995                      | $\pm 0.006$               |
| Carbon dioxide | 99.998                      | $\pm 0.003$               |
|                |                             |                           |

#### Instrument Calibration:

MKEH primary standard No: OMH 63/2015.06.23.

The measurements were done with a MKEH primary standard. The standard gas and the sample gas were changed in every 6 minutes. The temperature and pressure correction were not done.

#### Sample Handling:

We used stainless steel valves for the cylinders and 25 mbar was set up on flow measurement, and the flow was stable.

#### Instrumentation

Gas chromatography (HP6890 GC-FID) was used to analyze biogas. The flow rate of the gases was controlled by EPC.

Column: Porapack PS 4.4m, 0.75mm ID, Sulfinert; oven temp.: 120°C; Carrier gas: 4.5 bar He to FID. Column: Hayesep A 8.8m, 0.075mm ID, Sulfinert; oven temp.: 120°C; Carrier gas: 4.5 bar He to TCD.

Column: Hayesep Q 100/200, 1m, 1.00mm ID, Sulfinert and 5A Mole Sieve 80/100, 2m, 1.00mmmID, Sulfinert; oven temp.: 38°C; Carrier gas: 4.5 bar Ar to TCD.

#### Calibration method and value assignment

Reference Method:

The measurement method was direct comparison with a standard which has almost the same nominal concentration as the sample. Gas chromatography (HP6890 GC-FID-TCD) was used to analyze Biogas at 38 and 120 °C. The bridge component was Methane during the calculations. After the calculation all the components were normalized to sum 1.000 mol/mol values.

### **Uncertainty evaluation**

The potential sources of the uncertainty:

- Uncertainty of the primary reference material.
- Uncertainty of calibration measurement series.
- Standard deviation of measurement series.

Uncertainty table 1: Methane

| Uncertainty source<br>X <sub>i</sub>                           | Estimate              | Assumed distribution | Standard<br>uncertainty<br>$u(x_i)$ | Sensitivity<br>coefficient<br>c <sub>i</sub> | Contribution<br>to standard<br>uncertainty<br>$u_i(y)$ |
|----------------------------------------------------------------|-----------------------|----------------------|-------------------------------------|----------------------------------------------|--------------------------------------------------------|
| Standard reference material                                    | 440.43<br>(mmol/mol)  | Normal               | 0.14<br>(mmol/mol)                  | 1                                            | 0.03                                                   |
| Standard deviation<br>of the calibration<br>measurement series | 10837 area            | Normal               | 0.61 area                           | 1                                            | 0.01                                                   |
| Standard deviation<br>of the measurement<br>series             | 10783 area            | Normal               | 1.16 area                           | 1                                            | 0.01                                                   |
| Variancia                                                      | 438.227<br>(mmol/mol) |                      | 0.15<br>(mmol/mol)                  |                                              | 0.034                                                  |

Uncertainty table 2: Carbon dioxide

| Uncertainty source<br>X <sub>i</sub>                           | Estimate              | Assumed distribution | Standard<br>uncertainty<br>$u(x_i)$ | Sensitivity<br>coefficient<br>c <sub>i</sub> | Contribution<br>to standard<br>uncertainty<br>$u_i(y)$ |
|----------------------------------------------------------------|-----------------------|----------------------|-------------------------------------|----------------------------------------------|--------------------------------------------------------|
| Standard reference material                                    | 380.301<br>(mmol/mol) | Normal               | 0.036<br>(mmol/mol)                 | 1                                            | 0.01                                                   |
| Standard deviation<br>of the calibration<br>measurement series | 14036 area            | Normal               | 2.71 area                           | 1                                            | 0.02                                                   |
| Standard deviation<br>of the measurement<br>series             | 14433 area            | Normal               | 3.26 area                           | 1                                            | 0.02                                                   |
| Variancia                                                      | 391.070<br>(mmol/mol) |                      | 0.122<br>(mmol/mol)                 |                                              | 0.031                                                  |

## Uncertainty table 3: Nitrogen

| Uncertainty source<br>X <sub>i</sub>                           | Estimate             | Assumed distribution | Standard<br>uncertainty<br>$u(x_i)$ | Sensitivity<br>coefficient<br>c <sub>i</sub> | Contribution<br>to standard<br>uncertainty<br>$u_i(y)$ |
|----------------------------------------------------------------|----------------------|----------------------|-------------------------------------|----------------------------------------------|--------------------------------------------------------|
| Standard reference material                                    | 165.90<br>(mmol/mol) | Normal               | 0.05<br>(mmol/mol)                  | 1                                            | 0.03                                                   |
| Standard deviation<br>of the calibration<br>measurement series | 5550 area            | Normal               | 0.83 area                           | 1                                            | 0.01                                                   |
| Standard deviation<br>of the measurement<br>series             | 5206 area            | Normal               | 0.59 area                           | 1                                            | 0.01                                                   |
| Variancia                                                      | 155.63<br>(mmol/mol) |                      | 0.06<br>(mmol/mol)                  |                                              | 0.036                                                  |

Uncertainty table 4: Ethane

| Uncertainty source<br>X <sub>i</sub>                           | Estimate             | Assumed distribution | Standard<br>uncertainty<br>$u(x_i)$ | Sensitivity<br>coefficient<br>c <sub>i</sub> | Contribution<br>to standard<br>uncertainty<br>$u_i(y)$ |
|----------------------------------------------------------------|----------------------|----------------------|-------------------------------------|----------------------------------------------|--------------------------------------------------------|
| Standard reference material                                    | 0.6217<br>(mmol/mol) | Normal               | 0.0014<br>(mmol/mol)                | 1                                            | 0.225                                                  |
| Standard deviation<br>of the calibration<br>measurement series | 215.77 area          | Normal               | 0.58 area                           | 1                                            | 0.27                                                   |
| Standard deviation<br>of the measurement<br>series             | 215.13 area          | Normal               | 0.14 area                           | 1                                            | 0.06                                                   |
| Variancia                                                      | 0.620<br>(mmol/mol)  |                      | 0.002<br>(mmol/mol)                 |                                              | 0.355                                                  |

Uncertainty table 5: Propane

| Uncertainty source<br>X <sub>i</sub>                           | Estimate              | Assumed distribution | Standard<br>uncertainty<br>$u(x_i)$ | Sensitivity<br>coefficient<br>c <sub>i</sub> | Contribution<br>to standard<br>uncertainty<br>$u_i(y)$ |
|----------------------------------------------------------------|-----------------------|----------------------|-------------------------------------|----------------------------------------------|--------------------------------------------------------|
| Standard reference material                                    | 0.15604<br>(mmol/mol) | Normal               | 0.00058<br>(mmol/mol)               | 1                                            | 0.372                                                  |
| Standard deviation<br>of the calibration<br>measurement series | 81.56 area            | Normal               | 0.65 area                           | 1                                            | 0.79                                                   |
| Standard deviation<br>of the measurement<br>series             | 78.54 area            | Normal               | 0.06 area                           | 1                                            | 0.08                                                   |
| Variancia                                                      | 0.150<br>(mmol/mol)   |                      | 0.001<br>(mmol/mol)                 |                                              | 0.878                                                  |

Uncertainty table 6: Hydrogen

| Uncertainty source<br>X <sub>i</sub>                           | Estimate            | Assumed distribution | Standard<br>uncertainty<br>$u(x_i)$ | Sensitivity<br>coefficient<br>c <sub>i</sub> | Contribution<br>to standard<br>uncertainty<br>$u_i(y)$ |
|----------------------------------------------------------------|---------------------|----------------------|-------------------------------------|----------------------------------------------|--------------------------------------------------------|
| Standard reference material                                    | 4.849<br>(mmol/mol) | Normal               | 0.014<br>(mmol/mol)                 | 1                                            | 0.29                                                   |
| Standard deviation<br>of the calibration<br>measurement series | 105.31 area         | Normal               | 0.21 area                           | 1                                            | 0.20                                                   |
| Standard deviation<br>of the measurement<br>series             | 172.31 area         | Normal               | 0.32 area                           | 1                                            | 0.18                                                   |
| Variancia                                                      | 7.93                |                      | 0.03                                |                                              | 0.39                                                   |

Page 62 of 92

| (mmol/mol) | (mmol/mol) |  |  |
|------------|------------|--|--|
|------------|------------|--|--|

Uncertainty table 7: Oxygen

| Uncertainty source                                             | Estimate            | Assumed distribution | Standard<br>uncertainty<br>$u(x_i)$ | Sensitivity<br>coefficient<br>c <sub>i</sub> | Contribution<br>to standard<br>uncertainty<br>$u_i(y)$ |
|----------------------------------------------------------------|---------------------|----------------------|-------------------------------------|----------------------------------------------|--------------------------------------------------------|
| Standard reference material                                    | 7.736<br>(mmol/mol) | Normal               | 0.013<br>(mmol/mol)                 | 1                                            | 0.17                                                   |
| Standard deviation<br>of the calibration<br>measurement series | 19.91 area          | Normal               | 0.07 area                           | 1                                            | 0.34                                                   |
| Standard deviation<br>of the measurement<br>series             | 12.51 area          | Normal               | 0.03 area                           | 1                                            | 0.23                                                   |
| Variancia                                                      | 4.860<br>(mmol/mol) |                      | 0.022<br>(mmol/mol)                 |                                              | 0.44                                                   |

## References

- 1.1 Alink A., Deák É at all, **The first key comparison on Primary Standard gas Mixtures**, Metrologia **37** (2000), pp. 35-49
- 1.2 Adriaan M H van der Veen, Zsófia Nagyné Szilágyi *et al*, **Final Report on International comparison CCQM K23ac: Natural gas types I and III** 2007 *Metrologia* **44** 08001
- Adriaan M H van der Veen, Zsófia Nagyné Szilágyi *et al*, Final Report on International comparison CCQM K23b: Natural gas types II, Metrologia 05/2010; 47(1A) 08013

# **Measurement report NPL**

Cylinder Number: 2031223

| Component                                    | Date (dd/mm/yy) | Result (cmol/mol) | standard uncertainty<br>(cmol/mol) | No. of<br>replicates |
|----------------------------------------------|-----------------|-------------------|------------------------------------|----------------------|
| H <sub>2</sub> <sup>(b)</sup>                | 22/07/2015      | 0.7981            | 0.0021                             | 16                   |
| CH4 <sup>(a)</sup>                           | 22/07/2015      | 43.74             | 0.08                               | 17                   |
| $C_2H_6^{(a)}$                               | 22/07/2015      | 0.06173           | 0.00012                            | 16                   |
| C <sub>3</sub> H <sub>8</sub> <sup>(a)</sup> | 22/07/2015      | -                 | -                                  | -                    |
| $CO_2^{(b)}$                                 | 22/07/2015      | 39.214            | 0.014                              | 18                   |
| $O_2^{(b)}$                                  | 22/07/2015      | 0.48077           | 0.00063                            | 18                   |
| N2 <sup>(b)</sup>                            | 22/07/2015      | 15.639            | 0.033                              | 18                   |

## Measurement #1: GC FID<sup>(a)</sup> and TCD<sup>(b)</sup>

### Measurement #2: GC FID<sup>(a)</sup> and TCD<sup>(b)</sup>

| Component          | Date (dd/mm/yy) | Result (cmol/mol) | standard uncertainty<br>(cmol/mol) | No. of<br>replicates |
|--------------------|-----------------|-------------------|------------------------------------|----------------------|
| $H_2^{(b)}$        | 23/07/2015      | -                 | -                                  | -                    |
| CH4 <sup>(a)</sup> | 23/07/2015      | 43.80             | 0.08                               | 18                   |
| $C_2H_6^{(a)}$     | 23/07/2015      | 0.06174           | 0.00022                            | 18                   |
| $C_{3}H_{8}^{(a)}$ | 23/07/2015      | -                 | -                                  | 18                   |
| $CO_2^{(b)}$       | 23/07/2015      | 39.204748         | 0.000034                           | 18                   |
| $O_2^{(b)}$        | 23/07/2015      | -                 | -                                  | -                    |
| N2 <sup>(b)</sup>  | 23/07/2015      | 15.681            | 0.0037                             | 18                   |

## Measurement #3: GC FID<sup>(a)</sup> and TCD<sup>(b)</sup>

| Component                                    | Date (dd/mm/yy) | Result (cmol/mol) | standard uncertainty<br>(cmol/mol) | No. of<br>replicates |
|----------------------------------------------|-----------------|-------------------|------------------------------------|----------------------|
| $H_2^{(b)}$                                  | 03/08/2015      | 0.7910            | 0.0015                             | 14                   |
| CH4 <sup>(a)</sup>                           | 03/08/2015      | 43.8449           | 0.006                              | 18                   |
| $C_2H_6^{(a)}$                               | 03/08/2015      | 0.062022          | 0.000034                           | 16                   |
| C <sub>3</sub> H <sub>8</sub> <sup>(a)</sup> | 03/08/2015      | 0.014825          | 0.000041                           | 14                   |
| CO <sub>2</sub> <sup>(b)</sup>               | 03/08/2015      | 39.2122           | 0.014                              | 16                   |
| $O_2^{(b)}$                                  | 03/08/2015      | 0.48109           | 0.00058                            | 17                   |
| N2 <sup>(b)</sup>                            | 03/08/2015      | 15.656            | 0.026                              | 18                   |

## Measurement #4: GC FID<sup>(a)</sup> and TCD<sup>(b)</sup>

| Component                                    | Date (dd/mm/yy) | Result (cmol/mol) | standard uncertainty<br>(cmol/mol) | No. of<br>replicates |
|----------------------------------------------|-----------------|-------------------|------------------------------------|----------------------|
| H <sub>2</sub> <sup>(b)</sup>                | 04/08/2015      | -                 | -                                  | -                    |
| CH4 <sup>(a)</sup>                           | 04/08/2015      | 43.8147           | 0.021                              | 17                   |
| $C_2H_6^{(a)}$                               | 04/08/2015      | 0.061802          | 0.000049                           | 18                   |
| C <sub>3</sub> H <sub>8</sub> <sup>(a)</sup> | 04/08/2015      | 0.014876          | 0.000020                           | 18                   |
| CO <sub>2</sub> <sup>(b)</sup>               | 04/08/2015      | 39.222            | 0.021                              | 18                   |

| $O_2^{(b)}$       | 04/08/2015 | -      | -     | -  |
|-------------------|------------|--------|-------|----|
| N2 <sup>(b)</sup> | 04/08/2015 | 15.680 | 0.010 | 18 |

| Measurement #5: GC FID <sup>(a)</sup> and TCD <sup>(b)</sup> |
|--------------------------------------------------------------|
|--------------------------------------------------------------|

| Component          | Date (dd/mm/yy) | Result (cmol/mol) | Standard uncertainty<br>(cmol/mol) | No. of<br>replicates |
|--------------------|-----------------|-------------------|------------------------------------|----------------------|
| $H_2^{(b)}$        | 05/08/2015      | -                 | -                                  | -                    |
| CH4 <sup>(a)</sup> | 05/08/2015      | 43.8456           | 0.0047                             | 17                   |
| $C_2H_6^{(a)}$     | 05/08/2015      | 0.061807          | 0.000027                           | 17                   |
| $C_3H_8^{(a)}$     | 05/08/2015      | 0.014861          | 0.000020                           | 18                   |
| $CO_2^{(b)}$       | 05/08/2015      | 39.200            | 0.005                              | 18                   |
| $O_2^{(b)}$        | 05/08/2015      | -                 | -                                  | -                    |
| $N_2^{(b)}$        | 05/08/2015      | 15.683            | 0.0038                             | 17                   |

#### **Final Result:**

| Component       | Date (dd/mm/yy) | Result (cmol/mol) | expanded uncertainty<br>(cmol/mol) | coverage factor |
|-----------------|-----------------|-------------------|------------------------------------|-----------------|
| $H_2$           | 20/10/2015      | 0.7946            | 0.0032                             | 2               |
| CH <sub>4</sub> | 20/10/2015      | 43.815            | 0.044                              | 2               |
| $C_2H_6$        | 20/10/2015      | 0.06182           | 0.00025                            | 2               |
| $C_3H_8$        | 20/10/2015      | 0.014854          | 0.000059                           | 2               |
| CO <sub>2</sub> | 20/10/2015      | 39.210            | 0.039                              | 2               |
| $O_2$           | 20/10/2015      | 0.4809            | 0.0014                             | 2               |
| N <sub>2</sub>  | 20/10/2015      | 15.667            | 0.047                              | 2               |

\*The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor k = 2, providing a coverage probability of 95 %.

#### Details of the measurement method used Reference method

The amount fraction of the seven components in the comparison mixture was measured using two gas chromatographs:

- Analytical Controls "Hi-speed RGA" gas chromatograph (AC Analytical Controls, Netherlands) with six columns (3 m x 0.32 mm x 4  $\mu$ m SPB-1, 25 m x 0.32 mm x 8  $\mu$ m Al<sub>2</sub>O<sub>3</sub> Plot 'S', 25 m x 0.32 mm x 8  $\mu$ m Al<sub>2</sub>O<sub>3</sub> Plot 'S', 0.25 m x <sup>1</sup>/<sub>16</sub>" (ID 1 mm) Silcosteel HayeSep Q (80/100), 1 m x <sup>1</sup>/<sub>16</sub>" (ID 1 mm) Silcosteel HayeSep N (80/100), 1 m x <sup>1</sup>/<sub>16</sub>" (ID 1 mm) Silcosteel HayeSep Q (80/100) + 2 m x <sup>1</sup>/<sub>16</sub>" (ID 1 mm) Silcosteel molecular sieve 5A (80/100) and 2 m x <sup>1</sup>/<sub>16</sub>" (ID 1 mm) Silcosteel molecular sieve 13X (80/100)), six valves and three detectors one flame ionisation detector (FID) and two thermal conductivity detectors (TCDs). The instrument was modified at NPL to implement splitless injection to improve the repeatability of the analysis.
- Agilent 7890A gas chromatograph with an FID and a TCD. The instrument has two columns (8.8m Porapak-R 100/120 mesh 1/16'' OD, 0.75mm ID connected to TCD and a 4.4 m Porasil-P

followed by 4.4 m Porapak-PS connected to FID).

#### **Calibration standards**

A Primary Reference Gas Mixture (PRGM) of nominally 0.75 cmol/mol hydrogen, 0.05 cmol/mol ethane, 0.015 cmol/mol propane, 39 cmol/mol carbon dioxide 0.45 cmol/mol oxygen and 16.5 cmol/mol nitrogen in methane was prepared in accordance with ISO 6142 and in a BOC 10 litre cylinder with Spectraseal passivation. The mixture was validated against NPL's suite of Primary Standard Mixtures (PSMs).

The mixture was prepared by first adding ethane from a pure source to an evacuated cylinder via a transfer vessel. Methane and carbon dioxide were then added sequentially from pure sources in the gas phase directly to the cylinder via 1/16" tubing. Propane, oxygen, nitrogen and hydrogen were also added from three pre-mixtures (a nominal 1000 µmol/mol propane in nitrogen, a nominal 25 cmol/mol hydrogen in nitrogen and a nominal 3 cmol/mol oxygen in carbon dioxide). After the mixture had been prepared it was homogenised by heating the cylinder in an inverted position at 60°C for 2 hours, immediately followed by horizontally rolling about the vertical axis.

The mixture was used in determining the amount fraction of the comparison mixture. The amount fraction of the PRGM (NPL A499) was  $0.7663 \pm 0.0014$  cmol/mol hydrogen,  $0.06156 \pm 0.00005$  cmol/mol ethane,  $0.014053 \pm 0.00005$  cmol/mol propane,  $38.7872 \pm 0.0044$  cmol/mol carbon dioxide,  $0.45970 \pm 0.00061$  cmol/mol oxygen,  $16.5192 \pm 0.0040$  cmol/mol nitrogen and  $43.3920 \pm 0.0054$  cmol/mol methane. (Uncertainties are stated as expanded (k = 2) uncertainties.) The purity of all source gases was analysed and found to be >99.999 % in each case.

#### Instrument calibration, data analysis and quantification

As the PRGM described above was prepared with a composition that differed by 5 % (relative) or less from the composition of the comparison mixture for all components, this ensured that the uncertainty contribution from any deviation from the linearity of the analyser response was negligible.

The comparison mixture and the NPL PRGM were connected to the GC (via an automated switching valve) using purpose-built minimised dead volume connectors and Silcosteel-passivated 1/16'' internal diameter stainless steel tubing.

via a minimised dead-volume connector (using the internal screw thread of the cylinder valve) and a 1/16" Silcosteel sample line, which were purged thoroughly before use. NPL-designed flow restrictors were used to allow a stable sample flow of 15 ml min<sup>-1</sup> to be maintained throughout the analysis. At least six repeat measurements were performed by alternating between the two mixtures. The responses were recorded as peak area and the average peak area of the repeated measurement was calculated.

#### **Uncertainty evaluation**

The ratio of the GC-FID response from the comparison mixture and the NPL PRGM was calculated using:

$$r = \frac{2A_{u,m}}{(A_{s,m} + A_{s,m+1})}$$

Where  $A_{u,m}$  is the peak area from repeat *m* of the comparison mixture, and  $A_{s,m}$  is the peak area from repeat *m* of the NPL PRGM.

And the average ratio  $(\bar{r})$  is calculated by:

$$\bar{r} = \frac{\sum r}{n}$$

Where *n* is the number of ratios. The amount fraction of each component in the comparison mixture,  $x_u$ , is then calculated by:

$$x_u = x_s \bar{r}$$

Where  $x_s$  is the amount fraction of each component in the standard. The standard uncertainty of the measurand,  $u(x_u)$ , is calculated by:

$$\frac{u(x_u)}{x_u} = \sqrt{\frac{u(x_s)^2}{x_s^2} + \frac{u(\bar{r})^2}{\bar{r}^2}}$$

The table which follows details the uncertainty analysis for an example measurement of methane.

| quantity | unit     | example<br>value | standard<br>uncertainty | sensitivity coefficient | uncertainty contribution | uncertainty<br>type | distribution |
|----------|----------|------------------|-------------------------|-------------------------|--------------------------|---------------------|--------------|
|          |          |                  |                         |                         |                          |                     |              |
| $x_s$    | cmol/mol | 43.3920          | 0.0026                  | 1.0105                  | 0.0026                   | А                   | normal       |
| ŗ        | -        | 1.0105           | 0.00009                 | 43.39200                | 0.00394                  | А                   | normal       |
| $x_{u}$  | cmol/mol | 43.8456          |                         |                         |                          |                     |              |
| $u(x_u)$ | cmol/mol | 0.0047           |                         |                         |                          |                     |              |
| $U(x_u)$ | cmol/mol | 0.0095           |                         |                         |                          |                     |              |

To obtain the final result for methane, an average was taken for the five measurements. The following table shows the calculation of the final results and its uncertainty.

| quantity              | unit     | value   | standard<br>uncertainty | sensitivity coefficient | uncertainty contribution | uncertainty<br>type | distribution |
|-----------------------|----------|---------|-------------------------|-------------------------|--------------------------|---------------------|--------------|
|                       |          |         |                         |                         |                          |                     |              |
| $x_{1}$               | cmol/mol | 43.7445 | 0.0774                  | 0.20                    | 0.0155                   | А                   | normal       |
| <i>x</i> <sub>2</sub> | cmol/mol | 43.8449 | 0.0766                  | 0.20                    | 0.0153                   | А                   | normal       |
| <i>X</i> 3            | cmol/mol | 43.7985 | 0.0055                  | 0.20                    | 0.0011                   | А                   | normal       |
| <i>x</i> <sub>4</sub> | cmol/mol | 43.8416 | 0.0211                  | 0.20                    | 0.0042                   | А                   | normal       |
| <i>x</i> 5            | cmol/mol | 43.8456 | 0.0047                  | 0.20                    | 0.0009                   | А                   | normal       |
| $x_{f}$               | cmol/mol | 43.8150 |                         |                         |                          |                     |              |
| $u(x_f)$              | cmol/mol | 0.0222  |                         |                         |                          |                     |              |
| $U(x_f)$              | cmol/mol | 0.0444  |                         |                         |                          |                     |              |

Where  $x_1$ - $x_5$  is the measurement number and  $x_f$  is the final value of the amount fraction of methane in the comparison mixture.

Measurement report SP Cylinder number: 103000332854

## Measurement #1

| Component      | Date<br>(dd/mm/yy) | Result<br>(mmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|----------------------|------------------------------------|----------------------|
| Methane        | 05/03/15           | 437.5                | 0.1                                | 2                    |
| Carbon dioxide | 05/03/15           | 389.1                | 0.2                                | 2                    |
| Nitrogen       | 05/03/15           | 159.8                | 0.4                                | 2                    |
| Hydrogen       | 05/03/15           | 8.1                  | 2.0                                | 2                    |
| Oxygen         | 05/03/15           | 4.9                  | 2.1                                | 2                    |
| Ethane         | 05/03/15           | 0.675                | 1.3                                | 2                    |
| Propane        | 05/03/15           | 0.156                | 1.7                                | 2                    |

## Measurement #2

| Component      | Date<br>(dd/mm/yy) | Result<br>(mmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|----------------------|------------------------------------|----------------------|
| Methane        | 11/03/15           | 439.1                | 0.1                                | 2                    |
| Carbon dioxide | 11/03/15           | 389.3                | 0.2                                | 2                    |
| Nitrogen       | 11/03/15           | 158.4                | 0.4                                | 2                    |
| Hydrogen       | 11/03/15           | 8.1                  | 2.1                                | 2                    |
| Oxygen         | 11/03/15           | 5.3                  | 1.8                                | 2                    |
| Ethane         | 11/03/15           | 0.675                | 1.5                                | 2                    |
| Propane        | 11/03/15           | 0.153                | 1.9                                | 2                    |

## Measurement #3<sup>1</sup>

| Component      | Date<br>(dd/mm/yy) | Result<br>(mmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|----------------------|------------------------------------|----------------------|
| Methane        | 12/03/15           | 437.9                | 0.1                                | 2                    |
| Carbon dioxide | 12/03/15           | 390.4                | 0.2                                | 2                    |
| Nitrogen       | 12/03/15           | 158.5                | 0.4                                | 2                    |
| Hydrogen       | 12/03/15           | 8.1                  | 2.2                                | 2                    |
| Oxygen         | 12/03/15           | 5.1                  | 1.8                                | 2                    |
| Ethane         | 12/03/15           | 0.662                | 1.7                                | 2                    |
| Propane        | 12/03/15           | 0.157                | 1.7                                | 2                    |

<sup>&</sup>lt;sup>1</sup> If more than three measurements are taken, please copy and insert a table of the appropriate format as necessary Final Report CCQM-K112 Biogas Page

## Results

| Component      | Date<br>(dd/mm/yy) | Result<br>(mmol/mol) | Expanded uncertainty<br>(mmol/mol) | Coverage factor |
|----------------|--------------------|----------------------|------------------------------------|-----------------|
| Methane        | 19/03/15           | 438.2                | 2.9                                | 2               |
| Carbon dioxide | 19/03/15           | 389.6                | 2.6                                | 2               |
| Nitrogen       | 19/03/15           | 158.9                | 1.7                                | 2               |
| Hydrogen       | 19/03/15           | 8.1                  | 0.18                               | 2               |
| Oxygen         | 19/03/15           | 5.1                  | 0.12                               | 2               |
| Ethane         | 19/03/15           | 0.670                | 0.035                              | 2               |
| Propane        | 19/03/15           | 0.1555               | 0.022                              | 2               |

#### Obs: all the results are expressed in mmol/mol.

## **Calibration standards**

Two Calibration standards containing all the compounds except  $O_2$  delivered by NPL, Cylinder NG479 and NG480.

- Method of preparation: gravimetry. Purity analysis with gas chromatography (FID, TCD, MS)
- The standards were prepared by NPL. Our results are traceable to the values given by NPL on these standards.

## Instrumentation

The analyses were performed on a Varian 450-GC GC/TCD/FID (gas chromatograph/thermal conductivity detector/flame ionisation detector) equipped with three columns:

A molecular Sieve 5A, 60-80 Mesh, 1 m x 1/8<sup>---</sup> x 2.0 mm connected to the TCD

A Hayesep Q, 80-100 Mesh, 1.8 m x 1/8<sup>---</sup> x 2.0 mm connected to the TCD

A PoraBOND Q, 25 m x 0.53 mm x 10 µm connected to the FID

## Calibration method and value assignment

A two-points calibration was carried out for each compound by using calibration standards (cylinders) with a specified known concentration. The response versus concentration function was then used to estimate concentration of analyte in a separately analysed sample

## Uncertainty evaluation

See appendix 1 where the uncertainty evaluation is detailed. The expanded uncertainties have been calculated using the software GUM workbench. A mean value (n=2) for each measurement was reported.

# Measurement report SMU

Cylinder number: 2031195

## Measurement #1

| Component      | Date<br>(dd/mm/yy) | Result<br>(mol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|---------------------|------------------------------------|----------------------|
| Methane        | 4.3.2015           | 0.43738             | 0.06                               | 6                    |
| Carbon dioxide | 4.3.2015           | 0.39192             | 0.07                               | 6                    |
| Nitrogen       | 4.3.2015           | 0.15709             | 0.08                               | 6                    |
| Hydrogen       | 2.4.2015           | 0.00806             | 0.89                               | 4                    |
| Oxygen         | 4.3.2015           | 0.0045106           | 0.11                               | 6                    |
| Ethane         | 23.3.2015          | 0.0006207           | 0.56                               | 6                    |
| Propane        | 23.3.2015          | 0.00015011          | 0.49                               | 6                    |

## Measurement #2

| Component      | Date<br>(dd/mm/yy) | Result<br>(mol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|---------------------|------------------------------------|----------------------|
| Methane        | 11.3.2015          | 0.43780             | 0.05                               | 6                    |
| Carbon dioxide | 11.3.2015          | 0.39267             | 0.14                               | 6                    |
| Nitrogen       | 11.3.2015          | 0.15712             | 0.04                               | 6                    |
| Hydrogen       | 9.4.2015           | 0.00799             | 0.64                               | 5                    |
| Oxygen         | 11.3.2015          | 0.004527            | 0.10                               | 6                    |
| Ethane         | 24.3.2015          | 0.0006200           | 0.31                               | 6                    |
| Propane        | 24.3.2015          | 0.00014998          | 0.22                               | 6                    |

## Measurement #3

| Component      | Date<br>(dd/mm/yy) | Result<br>(mol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|---------------------|------------------------------------|----------------------|
| Methane        | 18.3.2015          | 0.43776             | 0.06                               | 6                    |
| Carbon dioxide | 18.3.2015          | 0.39269             | 0.15                               | 6                    |
| Nitrogen       | 18.3.2015          | 0.15718             | 0.07                               | 6                    |
| Hydrogen       | 10.4.2015          | 0.008022            | 0.52                               | 5                    |
| Oxygen         | 18.3.2015          | 0.0045440           | 0.13                               | 6                    |
| Ethane         | 25.3.2015          | 0.00062020          | 0.29                               | 6                    |
| Propane        | 25.3.2015          | 0.00015066          | 0.28                               | 6                    |

### Results

| Component      | Result<br>(mol/mol) | Expanded uncertainty<br>(mol/mol) | Coverage factor |
|----------------|---------------------|-----------------------------------|-----------------|
| Methane        | 0.43765             | 0.00066                           | 2               |
| Carbon dioxide | 0.3924              | 0.0013                            | 2               |
| Nitrogen       | 0.15713             | 0.00026                           | 2               |
| Hydrogen       | 0.00802             | 0.00013                           | 2               |
| Oxygen         | 0.004527            | 0.000040                          | 2               |
| Ethane         | 0.0006203           | 0.0000051                         | 2               |
| Propane        | 0.0001503           | 0.0000012                         | 2               |

## **Calibration standards**

All calibration standards were made gravimetrically according ISO 6142 and verified against SMU Primary standard gas mixtures in accordance to ISO 614. Impurities in parent gases - Hydrogen, Nitrogen, Methane,  $CO_2$ ,  $C_2H_6$ ,  $C_3H_8$  and Oxygen were analysed on GC and FTIR.

Weighing: SMU used automatic weighting on automatic balance, the filled cylinder mass was not determined absolutely, but as a difference between filled cylinder mass and reference cylinder mass. The result was an arithmetic mean of determined differences. Its standard uncertainty consists of standard deviation of arithmetic mean and of uncertainties of those loaded weights, which are loaded only for one of the cylinder - either filled cylinder or reference cylinder and of uncertainty of display resolution of automatic comparator balance. Minimum number of determined single differences was 6.

SMU gravimetric preparation of gas mixture consists of following basic steps:

- 1. Calculation of purity tables of parent gases. If the parent gas was produced by the SMU as a premixture, it has a purity table yet. In the case of pure gas, additional measurements of impurities were accomplished. In the case that measurements of some components were not accomplished, data were taken from manufacturers. The value of mole fraction of the main component was calculated (as a difference from 1).
- 2. The schedule of the consecutive filling of parent gases + calculations of needed masses and their corresponding pressures.
- 3. Set up of the cylinder.
- 4. Evacuation of the cylinder.
- 5. Weighting of the evacuated cylinder on automatic balance.
- 6. Filling of the cylinder by the counted amount of the first parent gas.
- 7. Weighting of the cylinder with the first added gas.
- 8. Completing of gas mixture preparation consecutive fillings and weightings of the cylinder (steps 6 and 7).
- 9. Homogenisation of the gas mixture.
- 10. Calculation of the mole fractions of components in the prepared gas mixture.
- 11. Analytical validation of mole fractions.
- 12. Assigning of the certified values.

Various types of calibration standards were used in this comparison, please find them in following table.

| Cylinder  | Methane   | CO <sub>2</sub> | N2        | $H_2$     | <b>O</b> <sub>2</sub> | Ethane    | Propane   |
|-----------|-----------|-----------------|-----------|-----------|-----------------------|-----------|-----------|
| number    | (mol/mol) | (mol/mol)       | (mol/mol) | (mol/mol) | (mol/mol)             | (mol/mol) | (mol/mol) |
| 0077F_6*  | 0.1023    | -               | 0.7950    | 0.00741   | -                     | 0.0006919 | 0.0001577 |
| 0030F_3*  | 0.07386   | -               | 0.8133    | 0.00818   | -                     | 0.0004480 | 0.0001021 |
| 0095F_5*  | 0.06268   | -               | 0.7896    | 0.01071   | -                     | 0.0002946 | 0.0002512 |
| MY9727_3* | 0.1394    | -               | 0.01632   | 0.06156   | -                     | -         | -         |
| MY9728_3* | 0.1272    | -               | 0.02655   | 0.07148   | -                     | -         | -         |
| 9304E_4   | 0.9744    | 0.01340         | 0.01014   | -         | 0.00204               | -         | -         |
| 9328E_3   | 0.9623    | 0.01975         | 0.01492   | -         | 0.00301               | -         | -         |
| 0041F_4   | 0.4102    | 0.4118          | 0.1718    | -         | 0.00615               | -         | -         |
| 0048F_3   | 0.6933    | 0.1546          | 0.1505    | -         | -                     | 0.000783  | 0.0004664 |
| 0049F_3   | 0.6553    | 0.1681          | 0.1749    | -         | -                     | 0.001244  | 0.0003225 |

#### SMU calibration standards for Biogas analysis

\*this standard contains Helium as not certified component

### Instrumentation

#### GC method (Varian Chromatograph)

For this key comparison, following equipment of Slovak national standard of mole fraction in gaseous phase was used for the verification of calibration standards and for analytical measurement of unknown sample:

| Equipment                                 | Specifications                                               |  |  |  |
|-------------------------------------------|--------------------------------------------------------------|--|--|--|
| GC Varian                                 |                                                              |  |  |  |
| Columns set                               | molsieve 13 X packed 5 ft x1/8" S.S., short DC 200/500       |  |  |  |
|                                           | packed 30%, 2 ft x 1/8" S.S.,                                |  |  |  |
|                                           | long DC 200/500 packed 30%, 30 ft x 1/8" S.S., buffer        |  |  |  |
|                                           | packed 1.5% OV 101 CGHP 100/120, 2 ft x 1/8" S.S.            |  |  |  |
| Detectors                                 | TCD. FID                                                     |  |  |  |
| electric or pneumatic valves              | for dosing, backward flushing, shut-off for measured gas     |  |  |  |
|                                           | mixture                                                      |  |  |  |
| PC                                        | control software for measurement on GC which records         |  |  |  |
|                                           | chromatograms to the PC                                      |  |  |  |
| valve for gas mixture selection           | 1 output and min. 16 inputs, controlled from PC              |  |  |  |
| mass flow regulator Brooks                | (0-1) L N <sub>2</sub> / min; controlling unit with display  |  |  |  |
| pressure sensor with display unit         | (80-120) kPa; connection - thread 1/4' (1/8') Swagelok or    |  |  |  |
|                                           | NPT                                                          |  |  |  |
| distribution of gas (pipes, connections)  | stainless steel, dimensions and threads 1/4',1/8' Swagelok   |  |  |  |
| regulations of outlet pressure (of PSM)   | outlet pressure $(1.5-5)x10^2$ kPa, stainless steel membrane |  |  |  |
|                                           | input DIN-1, output 1/8' Swagelok                            |  |  |  |
| lines of pipes                            | stainless steel or FEP                                       |  |  |  |
| measuring system of temperature,          | resolution of: temperature: less than 0.05°C,                |  |  |  |
| pressure and relative humidity of ambient | pressure: less than 0.1 kPa, humidity: less than 0.2%        |  |  |  |
| air during measurement                    |                                                              |  |  |  |

#### Analytical method

| Component      | Detector | Analytical curve |
|----------------|----------|------------------|
| Methane        | TCD      | quadratic        |
| Carbon dioxide | TCD      | quadratic        |
| Nitrogen       | TCD      | quadratic        |
| Hydrogen       | TCD      | quadratic        |
| Oxygen         | TCD      | linear           |
| Ethane         | FID      | quadratic        |
| Propane        | FID      | quadratic        |

### Calibration method and value assignment

Measurement method with several automated runs was used. All runs in first, third, fifth measurement sequence had rising molar fraction. Second, fourth. processed in reverse order. From each run was made one calibration curve with sample signals. Data were subjected to the b\_least program (weighted least square regression). The result of the measurement sequence was the average of molar fractions.

At b\_least linear and quadratic models of analytical curves were used.

No corrections were used.

Uncertainty of instrument response consisted from figure characterized roughly immediate repeatability and from signal drift estimated. From each run was made one calibration curve with sample signals. These figures together with molar fraction data were subjected to b\_least program (weighted least square regression). Each run produced sample molar fraction with its standard uncertainty. From all runs results = average of molar fractions in one sequence were standard deviation found (uncertainty of type A) and from runs results uncertainties the mean (through squares) was found (uncertainty of type B). These 2 figures were combined to give result uncertainty.

For each  $i^{\text{-th}}$  day the average  $x_i$  was calculated (1). Standard uncertainty assigned *to* each  $i^{\text{-th}}$  day result (4) is from standard deviation of the average (2) and average from all b\_least uncertainties that day (3).

$$\overline{x}_{i} = \frac{\sum_{j=1}^{n} x_{j}}{n}$$
(1)  
$$u_{1}(\overline{x}_{i}) = \sqrt{\frac{\sum_{j=1}^{n} (x_{j} - \overline{x}_{i})^{2}}{n^{*}(n-1)}}$$
(2)  
$$u_{2}(\overline{x}_{i}) = \sqrt{\frac{\sum_{j=1}^{n} u(x_{j})^{2}}{n^{2}}}$$
(3)  
$$u(\overline{x}_{i}) = \sqrt{u_{1}(\overline{x}_{i})^{2} + u_{2}(\overline{x}_{i})^{2}}$$
(4)

To estimate result uncertainty from 3 days results we have kept "Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method" (Annual Book of ASTM Standards E 691-87) with some approximations.

Final Report CCQM-K112 Biogas

### **Uncertainty evaluation**

To estimate result uncertainty from 3 days results we have kept "Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method" (Annual Book of ASTM Standards E 691-87) with some approximations.

$$s_{R} = \sqrt{s_{\bar{x}}^{2} + s_{r} \frac{n-1}{n}}$$
(5)  

$$s_{r} = \sqrt{\sum_{i=1}^{p} u(\bar{x}_{i})^{2}} / p$$
(6)  

$$s_{\bar{x}} = \frac{\max(\Delta x)}{\sqrt{3}}$$
(7)  

$$\Delta x = \bar{x}_{1} - \bar{x}_{2}$$
(8)  

$$p - \text{number of days (3)}$$
(7)  

$$n - \text{number of measurements in 1 day}$$
index *i* represents particular day index *j* represents particular result (evaluated) from one calibration curve

$$\overline{x} = \frac{\sum_{i=1}^{p} \overline{x}_{i}}{p}$$
(9)

Final result is average from 3 day results

As final standard uncertainty we assigned to the result (9) max(s<sub>R</sub> or s<sub>r</sub>)

$$u(\bar{x}) = \max(s_r; s_R) \qquad (10)$$

Expanded uncertainty (k=2) of final result  $U(\bar{x}) = 2 \cdot u(\bar{x})$ 

### References

| ISO 6142:2001  | Gas analysis – Preparation of calibration gas mixtures – Gravimetric method. |  |  |  |  |  |
|----------------|------------------------------------------------------------------------------|--|--|--|--|--|
| ISO 6143:2001  | Gas analysis - Comparison methods for determining and checking the           |  |  |  |  |  |
|                | composition of calibration gas mixtures.                                     |  |  |  |  |  |
| ISO 14912:2003 | Gas analysis – Conversion of gas mixture composition data                    |  |  |  |  |  |

# Measurement report TÜBİTAK UME

Cylinder number: VSL2031194

# Measurement #1

| Component      | Date<br>(dd/mm/yy) | Result<br>(µmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|----------------------|------------------------------------|----------------------|
| Methane        |                    | 437255               | 0.20                               | 10                   |
| Carbon dioxide |                    | 390575               | 0.04                               | 10                   |
| Nitrogen       |                    | 158455               | 0.05                               | 10                   |
| Hydrogen       | 27/05/2015         | 7977.6               | 0.07                               | 10                   |
| Oxygen         |                    | 4480.7               | 0.06                               | 10                   |
| Ethane         |                    | 622.5                | 0.67                               | 10                   |
| Propane        |                    | 148.3                | 0.38                               | 10                   |

# Measurement #2

| Component      | Date<br>(dd/mm/yy) | Result<br>(µmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|----------------------|------------------------------------|----------------------|
| Methane        |                    | 438012               | 0.17                               | 10                   |
| Carbon dioxide |                    | 390290               | 0.10                               | 10                   |
| Nitrogen       |                    | 158322               | 0.10                               | 10                   |
| Hydrogen       | 02/06/2015         | 7943.4               | 0.12                               | 10                   |
| Oxygen         |                    | 4465.3               | 0.12                               | 10                   |
| Ethane         |                    | 622.0                | 0.72                               | 10                   |
| Propane        |                    | 147.7                | 0.76                               | 10                   |

# Measurement #3

| Component      | Date<br>(dd/mm/yy) | Result<br>(µmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|----------------------|------------------------------------|----------------------|
| Methane        |                    | 438685               | 0.26                               | 10                   |
| Carbon dioxide |                    | 389588               | 0.07                               | 10                   |
| Nitrogen       |                    | 158017               | 0.09                               | 10                   |
| Hydrogen       | 03/06/2015         | 7941.4               | 0.09                               | 10                   |
| Oxygen         |                    | 4457.1               | 0.07                               | 10                   |
| Ethane         |                    | 620.8                | 0.42                               | 10                   |
| Propane        |                    | 149.3                | 0.52                               | 10                   |

# Measurement #4

| Component | Date<br>(dd/mm/yy) | Result<br>(µmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|-----------|--------------------|----------------------|------------------------------------|----------------------|
|-----------|--------------------|----------------------|------------------------------------|----------------------|

| Methane        |            | 438300 | 0.34 | 10 |
|----------------|------------|--------|------|----|
| Carbon dioxide |            | 390307 | 0.15 | 10 |
| Nitrogen       |            | 158494 | 0.12 | 10 |
| Hydrogen       | 20/07/2015 | 7937.4 | 0.09 | 10 |
| Oxygen         |            | 4457.7 | 0.12 | 10 |
| Ethane         |            | 623.1  | 0.57 | 10 |
| Propane        |            | 148.3  | 0.78 | 10 |

# Measurement #5

| Component      | Date<br>(dd/mm/yy) | Result<br>(µmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|----------------------|------------------------------------|----------------------|
| Methane        |                    | 438544               | 0.21                               | 10                   |
| Carbon dioxide |                    | 390409               | 0.08                               | 10                   |
| Nitrogen       |                    | 158410               | 0.07                               | 10                   |
| Hydrogen       | 21/07/2015         | 7940.4               | 0.19                               | 10                   |
| Oxygen         |                    | 4464.5               | 0.08                               | 10                   |
| Ethane         |                    | 623.6                | 0.77                               | 10                   |
| Propane        |                    | 149.0                | 0.56                               | 10                   |

# Results

| Component      | Date<br>(dd/mm/yy) | Result<br>(µmol/mol) | Expanded uncertainty<br>(µmol/mol) | Coverage factor |
|----------------|--------------------|----------------------|------------------------------------|-----------------|
| Methane        |                    | 438159               | 1271                               | 2               |
| Carbon dioxide |                    | 390234               | 610                                | 2               |
| Nitrogen       |                    | 158340               | 248                                | 2               |
| Hydrogen       | 31/07/2015         | 7948.1               | 13.3                               | 2               |
| Oxygen         |                    | 4465.1               | 6.8                                | 2               |
| Ethane         |                    | 622.4                | 3.4                                | 2               |
| Propane        |                    | 148.5                | 0.8                                | 2               |

## **Calibration standards**

Primary reference gas mixtures used in calibration are given in the Table 1. All the primary standards are mixtures of biogas. They were prepared individually according to ISO 6142 "Gas analysis - Preparation of calibration gases - Gravimetric Method" at TÜBİTAK UME. Several pre-mixtures were individually prepared, and then, these pre-mixtures were diluted to prepare three reference gas standards. Pure methane (5.5 grade), hydrogen (5.0 grade) and oxygen (5.0 grade) were from Linde Gas Germany. Carbon dioxide (5.0 grade) and nitrogen (6.0 grade) were from Linde Gas Turkey and the rest (ethane and propane, all 3.5 grade) were from Air Liquide Germany. The content of the impurities in the pure gases were determined based on the gas producers' specifications. The uncertainties of the mixtures given in Table 1 were determined by combining the standard uncertainties of weighing, purity and molar masses.

| Item | Prepared | Cylinder | Component      | Mole Fraction | Uncertainty (k=1) |
|------|----------|----------|----------------|---------------|-------------------|
| Item | By       | Number   | Component      | (µmol/mol)    | (µmol/mol)        |
|      |          |          | Methane        | 427067        | 214               |
|      |          |          | Carbon dioxide | 344424        | 172               |
|      |          |          | Nitrogen       | 208518        | 104               |
| 1    | UME      | 298308   | Hydrogen       | 9748.9        | 4.9               |
|      |          |          | Oxygen         | 9871.8        | 4.9               |
|      |          |          | Ethane         | 295.79        | 0.15              |
|      |          |          | Propane        | 73.24         | 0.04              |
|      |          | 298312   | Methane        | 447966        | 224               |
|      |          |          | Carbon dioxide | 374571        | 187               |
|      |          |          | Nitrogen       | 164076        | 82                |
| 2    | UME      |          | Hydrogen       | 7738.6        | 3.9               |
|      |          |          | Oxygen         | 4914.6        | 2.5               |
|      |          |          | Ethane         | 586.96        | 0.29              |
|      |          |          | Propane        | 145.34        | 0.07              |
|      |          |          | Methane        | 434994        | 217               |
|      |          |          | Carbon dioxide | 427447        | 214               |
|      |          | 298328   | Nitrogen       | 127609        | 64                |
| 3    | UME      |          | Hydrogen       | 4853.0        | 2.4               |
|      |          |          | Oxygen         | 4001.1        | 2.0               |
|      |          |          | Ethane         | 876.38        | 0.44              |
|      |          |          | Propane        | 217.01        | 0.11              |

 Table 1. List of primary reference gas mixtures

### Instrumentation

The propane in nitrogen was analyzed on an Agilent 7890B gas chromatography instrument equipped with FID and two TCDs, split/splitless injector, gas injection valve, including GC ChemStation software (Rev. B. 04.03-SP2 [108]) to collect and process data. The conditions for the analyses are given below:

Conditions:

OvenEquilibration Time:1Max Temperature:22Slow Fan:DFinal Report CCQM-K112 Biogas

:1 min :220 degrees C :Disabled

**Oven Program** :On 60 °C for 1 min #1 then 20 °C/min to 80 °C for 0 min #2 then 30 °C/min to 190 °C for 0.33 min Run Time :5.9967 min Front SS Inlet He Mode :Split :On 250 °C Heater Pressure :On 18 psi :On 324.89 mL/min **Total Flow** Septum Purge Flow :On 3 mL/min Split Ratio :80:1 Split Flow :317.91 mL/min Column #1 Agilent G3591-81141 2 ft Unibeads IS 60-80 mesh 200 °C: Packed In: PCM B-2 He Out: Back Detector TCD Pressure Program On 9.8 psi for 0 min Run Time 5.9967 min Column #2+#3 Agilent g3591-81142 4 ft Unibeads IS + Agilent g63591-81022 8 ft Molesieve 5A 60/80 mesh 200 °C: Packed In: PCM B-1 He Out: Other Flow Program On 2.7527E+06 mL/min for 0 min Run Time 5.9967 min Column #4 Agilent G3591-81020 3 ft Hayesep Q 80-100 mesh 225 °C: Packed In: PCM C-2 N2 Out: Aux Detector TCD Pressure Program On 12.9 psi for 0 min Run Time 5.9967 min Column #5 Agilent G3591-81022 8 ft Molesieve 5A 60/80 mesh 350 °C: Packed In: PCM C-1 N2 Out: Aux Detector TCD Flow Program On 4.5247E+06 mL/min for 0 min Run Time 5.9967 min

<u>Column #6+#7+#8</u> Agilent 19091P-S12 25 m x 0.32mm x 8μm HP-AL/S 123-1015(cut) 2m x 0.32mm x 5μm DB-1 123-1015(cut) 0.45m x 0.32mm x 5μm DB-1 200 °C: 27 m x 320 μm x 8 μm In: Front SS Inlet He Out: Front Detector FID

| (Initial)<br>Pressure<br>Flow<br>Average Velocity<br>Holdup Time<br>Flow Program<br>Run Time                        | :60 °C<br>:18 psi<br>:3.9739 mL/min<br>:60.334 cm/sec<br>:0.74584 min<br>:On 3.9739 mL/min for 0 min<br>:5.9967 min |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Front Detector FID<br>Heater<br>H2 Flow<br>Air Flow<br>Makeup Flow<br>Const Col + Makeup<br>Flame<br>Electrometer   | :On 250 °C<br>:On 40 mL/min<br>:On 350 mL/min<br>:On 27 mL/min<br>:Off<br>:On<br>:On                                |
| Back Detector TCD<br>Heater<br>Reference Flow<br>Makeup Flow<br>Const Col + Makeup<br>Negative Polarity<br>Filament | :On 250 °C<br>:On 45 mL/min<br>:On 2 mL/min<br>:Off<br>:Off<br>:On                                                  |
| Aux Detector TCD<br>Heater<br>Reference Flow<br>Makeup Flow<br>Const Col + Makeup<br>Negative Polarity<br>Filament  | :On 250 °C<br>:On 45 mL/min<br>:On 2 mL/min<br>:Off<br>:On<br>:On                                                   |

### Calibration method and value assignment

After the arrival of the cylinder from VSL, it was stored in the laboratory where the analyses were carried out. Three primary standard gas mixtures were also stored in the same laboratory during all the measurements. The cylinder and the calibration standards were equipped with pressure reducers and connected to computer programmed multiposition valve gas sampling box. They were flushed before the first measurement. The flow rates of sample and standard gases were controlled by a mass flow controller at 40 ml/min.

The data was collected using ChemStation software. Each sample in the sequence was injected 12 times, and the first two injections in each case were discarded as they were considered as flushing of

sample loop. The responses were averaged. The software "B\_Least" was utilized to determine the fitting data for the calibrations. The value for goodness of fit in each measurement was found to be less than 2 for linear function.

The assigned value was calculated by averaging the results of five independent measurements.

## **Uncertainty evaluation**

The measurement uncertainty of sample was determined according to ISO 6143 "Gas analysis - Comparison methods for determining and checking the composition of calibration gas mixtures" standard, using the B\_Least software.

The combined standard uncertainty was determined by the following equation:

$$u_c = \sqrt{u_m^2 + u_g^2}$$

where

u<sub>m</sub>, standard uncertainty from measurements

ug, standard uncertainty from gravimetric preparation

 $u_m$  % rel. (determined by selecting the largest uncertainty value among the obtained uncertainties for each measurement)

 $u_g$  % rel. (determined by selecting the largest uncertainty value among the uncertainties of primary reference gas mixtures)

 $u_c$  was determined as % rel and stated in relevant table.

The expanded uncertainty was determined by multiplying the combined standard uncertainty by a coverage factor of 2 with a confidence interval of 95%.

# Measurement report VNIIM

Laboratory: D.I. Mendeleyev Institute for Metrology (VNIIM), Research Department for the State Measurement Standards in the field of Physico-Chemical Measurements.

Cylinder number: 2031221

#### Measurement 1

| Component      | Date       | Result (cmol/mol) | Standard deviation<br>(% relative) | Number of replicates |
|----------------|------------|-------------------|------------------------------------|----------------------|
| Hydrogen       |            | 0.7875            | 0.134                              |                      |
| Oxygen         |            | 0.4147            | 0.138                              |                      |
| Nitrogen       |            | 15.633            | 0.063                              | 2×5 sub-             |
| Methane        | 01.07.2015 | 43.665            | 0.070                              | measurements         |
| Carbon dioxide |            | 39.460            | 0.100                              |                      |
| Ethane         |            | 0.06180           | 0.100                              |                      |
| Propane        |            | 0.01484           | 0.120                              |                      |

### Measurement 2

| Component      | Date       | Result (cmol/mol) | Standard deviation<br>(% relative) | Number of replicates |
|----------------|------------|-------------------|------------------------------------|----------------------|
| Hydrogen       |            | 0.7901            | 0.218                              |                      |
| Oxygen         |            | 0.4138            | 0.192                              |                      |
| Nitrogen       |            | 15.609            | 0.084                              | 2×5 sub-             |
| Methane        | 02.07.2015 | 43.613            | 0.071                              | measurements         |
| Carbon dioxide |            | 39.453            | 0.080                              |                      |
| Ethane         |            | 0.06185           | 0.104                              |                      |
| Propane        |            | 0.01484           | 0.101                              |                      |

### Measurement 3

| Component      | Date       | Result (cmol/mol) | Standard deviation<br>(% relative) | Number of replicates |
|----------------|------------|-------------------|------------------------------------|----------------------|
| Hydrogen       |            | 0.7896            | 0.238                              |                      |
| Oxygen         |            | 0.4138            | 0.192                              |                      |
| Nitrogen       | 03.07.2015 | 15.589            | 0.181                              | 2×5 sub-             |
| Methane        | 03.07.2013 | 43.613            | 0.156                              | measurements         |
| Carbon dioxide |            | 39.377            | 0.257                              |                      |
| Ethane         |            | 0.06176           | 0.140                              |                      |

Final Report CCQM-K112 Biogas

| Propane | 0.01484 | 0.042 |  |
|---------|---------|-------|--|
|---------|---------|-------|--|

Measurements NoNo 1-3 were carried out with different calibration standards each. Results

| Component      | Date       | Result<br>(cmol/mol) | Expanded<br>uncertainty<br>(cmol/mol) | Relative<br>expanded<br>uncertainty,<br>% | Coverage<br>factor |
|----------------|------------|----------------------|---------------------------------------|-------------------------------------------|--------------------|
| Hydrogen       |            | 0.7891               | 0.0031                                | 0.39                                      |                    |
| Oxygen         |            | 0.4141               | 0.0012                                | 0.29                                      |                    |
| Nitrogen       |            | 15.61                | 0.03                                  | 0.20                                      |                    |
| Methane        | 10.07.2015 | 43.63                | 0.046                                 | 0.10                                      | k=2                |
| Carbon dioxide |            | 39.43                | 0.06                                  | 0.15                                      |                    |
| Ethane         |            | 0.06180              | 0.00018                               | 0.30                                      |                    |
| Propane        |            | 0.01484              | 0.00006                               | 0.38                                      |                    |

#### **1** Calibration standards

1.1 Preparation of calibration gas mixtures was carried out by gravimety in 2 stages.

Preparation of the pre-mixtures included preparation of

3 binary mixtures -  $O_2/N_2$  (at = 10 cmol/mol) and

3 four-component mixtures - [H<sub>2</sub>( $\equiv$  23 cmol/mol) + C<sub>2</sub>H<sub>6</sub>( $\equiv$  1.8 cmol/mol) + C<sub>3</sub>H<sub>8</sub>( $\equiv$  0.4 cmol/mol)]/N<sub>2</sub>.

Preparation of target calibration gas mixtures

3 target calibration gas mixtures were prepared in Luxfer Al cylinders, V=5 dm<sup>3</sup>. Composition of calibration standards is shown in the tables 1-3.

| Cylinder M365602 |                     |                         |
|------------------|---------------------|-------------------------|
| Component        | Amount of substance | <i>u</i> grav, cmol/mol |
| _                | fraction, cmol/mol  | (k=1)                   |
| Hydrogen         | 0.8030              | 0.0003                  |
| Oxygen           | 0.42361             | 0.00005                 |
| Nitrogen         | 15.7758             | 0.0006                  |
| Methane          | 43.4839             | 0.0010                  |
| Carbon dioxide   | 39.4358             | 0.0008                  |
| Ethane           | 0.062669            | 0.000015                |
| Propane          | 0.015147            | 0.000006                |

Table 2

| Cylinder M365606 |                     |                 |  |  |
|------------------|---------------------|-----------------|--|--|
| Component        | Amount of substance | ugrav, cmol/mol |  |  |
| 1                | fraction, cmol/mol  | (k=1)           |  |  |
| Hydrogen         | 0.79860             | 0.00023         |  |  |
| Oxygen           | 0.41960             | 0.00004         |  |  |
| Nitrogen         | 15.6492             | 0.0005          |  |  |
| Methane          | 43.5154             | 0.0007          |  |  |
| Carbon dioxide   | 39.5393             | 0.0006          |  |  |

| Ethane  | 0.062853 | 0.000015 |
|---------|----------|----------|
| Propane | 0.015048 | 0.000007 |

| Table 3          |                     |                 |
|------------------|---------------------|-----------------|
| Cylinder M365663 |                     |                 |
| Component        | Amount of substance | ugrav, cmol/mol |
| _                | fraction, cmol/mol  | (k=1)           |
| Hydrogen         | 0.7986              | 0.0003          |
| Oxygen           | 0.42051             | 0.00004         |
| Nitrogen         | 15.7315             | 0.0006          |
| Methane          | 43.2820             | 0.0008          |
| Carbon dioxide   | 39.6894             | 0.0006          |
| Ethane           | 0.062852            | 0.000015        |
| Propane          | 0.015048            | 0.000007        |

1.2 Verification measurements were carried out on the same instrument as for the comparison cylinder (description of instrumentation is shown below). Uncertainty from verification is included in the uncertainty budget.

1.3 Purity analysis of the parent gases was carried out by GC- FID, TCD Results of purity analysis are shown in the tables 4-10

| Component                                 | Amount of substance fraction | u, µmol/mol<br>(k=1) |
|-------------------------------------------|------------------------------|----------------------|
| CH <sub>4</sub>                           | 99.998629 cmol/mol           | -                    |
| N <sub>2</sub>                            | 6.88 μmol/mol                | 0.12                 |
| O <sub>2</sub>                            | 2.83 µmol/mol                | 0.04                 |
| $CO_2$                                    | 0.8 µmol/mol                 | 0.4                  |
| $C_2H_6$                                  | 1.0 µmol/mol                 | 0.6                  |
| C <sub>3</sub> H <sub>8</sub>             | 0.50 µmol/mol                | 0.29                 |
| C <sub>4</sub> H <sub>10</sub> (n-butane) | 0.50 µmol/mol                | 0.29                 |
| $H_2$                                     | 0.50 µmol/mol                | 0.29                 |

### Table 4. Methane (cylinder № 324184)

#### Table 5. Carbon dioxide (cylinder № 74318)

| Component       | Amount of substance fraction,<br>µmol/mol | u, µmol/mol<br>(k=1) |
|-----------------|-------------------------------------------|----------------------|
| CO <sub>2</sub> | 99.999345 cmol/mol                        | -                    |
| H <sub>2</sub>  | 5.43 µmol/mol                             | 0.09                 |
| He              | 0.5 µmol/mol                              | 0.29                 |
| N <sub>2</sub>  | 0.25 µmol/mol                             | 0.14                 |
| O <sub>2</sub>  | 0.25 µmol/mol                             | 0.14                 |
| CH <sub>4</sub> | 0.100 µmol/mol                            | 0.003                |
| CO              | 0.020 µmol/mol                            | 0.012                |

#### Table 6. Propane (cylinder № 15049)

| Component                     | Amount of substance fraction | u, µmol/mol<br>(k=1) |
|-------------------------------|------------------------------|----------------------|
| C <sub>3</sub> H <sub>8</sub> | 99.993235 cmol/mol           | -                    |
| $N_2$                         | 21.3 µmol/mol                | 1.6                  |

| C <sub>3</sub> H <sub>6</sub>             | 18.9 µmol/mol  | 1.1   |
|-------------------------------------------|----------------|-------|
| C <sub>4</sub> H <sub>10</sub> (n-butane) | 15.4 µmol/mol  | 0.8   |
| C <sub>2</sub> H <sub>6</sub>             | 5.66 µmol/mol  | 0.28  |
| O <sub>2</sub>                            | 3.44 µmol/mol  | 0.26  |
| i-C <sub>4</sub> H <sub>10</sub>          | 1.77 μmol/mol  | 0.11  |
| CH <sub>4</sub>                           | 1 µmol/mol     | 0.6   |
| Ar                                        | 0.181 µmol/mol | 0.014 |

### Table 7. Oxygen (cylinder № 910287)

| Component       | Amount of substance fraction | u, µmol/mol<br>(k=1) |
|-----------------|------------------------------|----------------------|
| O <sub>2</sub>  | 99.9999881cmol/mol           | —                    |
| CO <sub>2</sub> | 0.0768 µmol/mol              | 0.0037               |
| CH <sub>4</sub> | 0.0338 µmol/mol              | 0.0011               |
| СО              | 0.0075 µmol/mol              | 0.0043               |

### Table 8. Ethane (cylinder № 4877)

| Component                        | Amount of substance fraction | u, µmol/mol |
|----------------------------------|------------------------------|-------------|
| _                                |                              | (k=1)       |
| C <sub>2</sub> H <sub>6</sub>    | 99.998429 cmol/mol           | —           |
| $N_2$                            | 7.26 µmol/mol                | 0.08        |
| $H_2$                            | 2.92 µmol/mol                | 0.05        |
| O <sub>2</sub>                   | 1.25 µmol/mol                | 0.03        |
| CO <sub>2</sub>                  | 0.343 µmol/mol               | 0.008       |
| Не                               | 0.5 µmol/mol                 | 0.29        |
| СО                               | 0.031 µmol/mol               | 0.03        |
| CH <sub>4</sub>                  | 0.024 µmol/mol               | 0.03        |
| $C_4H_{10}$ (n-butane)           | 2.13 µmol/mol                | 0.06        |
| $C_5H_{12}$ (n-pentane)          | 0.5 µmol/mol                 | 0.29        |
| $C_6H_{14}$ (n-hexane)           | 0.5 µmol/mol                 | 0.29        |
| i-C <sub>5</sub> H <sub>12</sub> | 0.5 µmol/mol                 | 0.29        |

### Table 9 Nitrogen (monoblock)

| Component        | Amount of substance fraction | u, µmol/mol<br>(k=1) |
|------------------|------------------------------|----------------------|
| $N_2$            | 99.9998484 cmol/mol          | _                    |
| H <sub>2</sub> O | 0.500 µmol/mol               | 0.017                |
| Ar               | 0.313 µmol/mol               | 0.006                |
| $CO_2$           | 0.030 µmol/mol               | 0.017                |
| O <sub>2</sub>   | 0.030 µmol/mol               | 0.003                |
| $CH_4$           | 0.015 µmol/mol               | 0.009                |
| $H_2$            | 0.0025 µmol/mol              | 0.0014               |
| СО               | 0.0010 µmol/mol              | 0.0006               |

### Table 10 Hydrogen (cylinder № 94353)

| Component       | Amount of substance fraction | u, µmol/mol<br>(k=1) |
|-----------------|------------------------------|----------------------|
| H <sub>2</sub>  | 99.9994404 cmol/mol          |                      |
| $N_2$           | 5.4 µmol/mol                 | 0.3                  |
| $O_2$           | 0.15 µmol/mol                | 0.09                 |
| CO <sub>2</sub> | 0.030 µmol/mol               | 0.017                |
| CH <sub>4</sub> | 0.015 µmol/mol               | 0.009                |

| СО | 0.001 µmol/mol | 0.0006 |
|----|----------------|--------|
|----|----------------|--------|

#### **2** Instrumentation

The measurements were performed using Gas Chromatograph "Chromos GC -1000" (Chromos, Dzerzhinsk, Russia), equipped with 4 detectors (channels)

Data collection: Software "Chromos Setup 2.16.44"

Channel 1  $(H_2; N_2; CH_4)$ : Detector: TCD 1 Column: NaX.  $4 \text{ m} \times 3 \text{ mm}$ Carrier gas: Ar Gas flow:10 ml/min Injected dose: 1cm<sup>3</sup> Detector temperature: 150°C Temperature program of the column thermostat:  $60^{\circ}C - 3 \min$ ,  $20^{\circ}C/\min$ ,  $160^{\circ}C - 0 \min$ , 10°C/min, 200°C. Channel 2 (O<sub>2</sub>; N<sub>2</sub>; CH<sub>4</sub>): Detector: TCD 2 Column: NaX,  $2 \text{ m} \times 3 \text{ mm}$ Carrier gas: He Gas flow:15 ml/min Injected dose: 1cm<sup>3</sup> Detector temperature: 150°C Temperature program of the column thermostat:  $60^{\circ}C - 3 \text{ min}$ ,  $20^{\circ}C/\text{min}$ ,  $160^{\circ}C - 0 \text{ min}$ , 10°C/min. 200°C. Channel 3 (CO<sub>2</sub>; C<sub>2</sub>H<sub>6</sub>; C<sub>3</sub>H<sub>8</sub>): Detector: TCD 3 Column: Haysep Q,  $2 \text{ m} \times 3 \text{ mm}$ Carrier gas: He Gas flow:15 ml/min Injected dose: 1cm<sup>3</sup> Detector temperature: 150°C Temperature program of the column thermostat:  $60^{\circ}C - 3 \min$ ,  $20^{\circ}C/\min$ ,  $160^{\circ}C - 0 \min$ , 10°C/min, 200°C. *Channel* 4 ( $C_2H_6$ ;  $C_3H_8$ ): Detector: FID Column: Haysep R,  $2 \text{ m} \times 3 \text{ mm}$ Carrier gas: He Gas flow:15 ml/min Injected dose: 1cm<sup>3</sup> Detector temperature: 150°C Temperature program of the column thermostat:  $60^{\circ}C - 3 \text{ min}$ ,  $20^{\circ}C/\text{min}$ ,  $160^{\circ}C - 0 \text{ min}$ , 10°C/min, 200°C.

### 3 Measurement procedure

Single point calibration method was used to determine components mole fraction in the comparison mixture (X mixture).

Measurement sequence was in the order: Calibr. mixture 1 - X mixture – Calibr.mixture 1- X mixture – Calibr.mixture 1; Calibr. mixture 2 - X mixture – Calibr.mixture 2 - X mixture – Calibr.mixture 2;

| Component         | Measurem<br>ent result,<br>cmol/mol | u <sub>grav</sub><br>(purity+<br>weighing),<br>cmol/mol | u <sub>ver</sub><br>cmol/mol | u <sub>meas</sub><br>cmol/mol | u (combined<br>standard<br>uncertainty),<br>cmol/mol | U (expanded<br>uncertainty,<br>k=2),<br>cmol/mol | U <sub>0</sub> (relative<br>expanded<br>uncertainty,<br>% |
|-------------------|-------------------------------------|---------------------------------------------------------|------------------------------|-------------------------------|------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|
| Hydrogen          | 0.7891                              | 0.0003                                                  | 0,0014                       | 0.00062                       | 0.0016                                               | 0.0031                                           | 0.39                                                      |
| Oxygen            | 0.4141                              | 0.00005                                                 | 0.00051                      | 0.00024                       | 0.00058                                              | 0.0012                                           | 0.28                                                      |
| Nitrogen          | 15.61                               | 0.0006                                                  | 0.0126                       | 0.0090                        | 0.0155                                               | 0.0311                                           | 0.20                                                      |
| Methane           | 43.63                               | 0.0010                                                  | 0.0151                       | 0.0171                        | 0.0228                                               | 0.0456                                           | 0.10                                                      |
| Carbon<br>dioxide | 39.43                               | 0.0008                                                  | 0.0212                       | 0.0217                        | 0.0304                                               | 0.0607                                           | 0.15                                                      |
| Ethane            | 0.06180                             | 0.000015                                                | 0.000077                     | 0.000047                      | 0.000092                                             | 0.000184                                         | 0.30                                                      |
| Propane           | 0.01484                             | 0.000006                                                | 0.000027                     | 0.000005                      | 0.000028                                             | 0.000056                                         | 0.38                                                      |

Calibr. mixture 3 - X mixture – Calibr.mixture 3 - X mixture – Calibr.mixture 3. **4 Uncertainty evaluation** 

Date: 17/07/2015

# Measurement report VSL

Cylinder number: 1224

## Measurement #1

| Component      | Date<br>(dd/mm/yy) | Result<br>(cmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|----------------------|------------------------------------|----------------------|
| Methane        | 2015-08-31         | 43.70                | 0.02                               | 6                    |
| Carbon dioxide | 2015-08-31         | 39.31                | 0.03                               | 6                    |
| Nitrogen       | 2015-08-31         | 15.70                | 0.01                               | 6                    |
| Hydrogen       | 2015-08-31         | 0.79                 | 0.04                               | 6                    |
| Oxygen         | 2015-08-31         | 0.40                 | 0.04                               | 6                    |
| Ethane         | 2015-08-24         | 0.062                | 0.03                               | 6                    |
| Propane        | 2015-08-24         | 0.015                | 0.02                               | 6                    |

# Measurement #2

| Component      | Date<br>(dd/mm/yy) | Result<br>(cmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|----------------------|------------------------------------|----------------------|
| Methane        | 2015-09-04         | 43.71                | 0.01                               | 6                    |
| Carbon dioxide | 2015-09-04         | 39.28                | 0.03                               | 6                    |
| Nitrogen       | 2015-09-04         | 15.69                | 0.03                               | 6                    |
| Hydrogen       | 2015-09-04         | 0.79                 | 0.03                               | 6                    |
| Oxygen         | 2015-09-04         | 0.40                 | 0.03                               | 6                    |
| Ethane         | 2015-08-25         | 0.062                | 0.08                               | 6                    |
| Propane        | 2015-08-25         | 0.015                | 0.04                               | 6                    |

# Measurement #3

| Component      | Date<br>(dd/mm/yy) | Result<br>(cmol/mol) | Standard deviation<br>(% relative) | number of replicates |
|----------------|--------------------|----------------------|------------------------------------|----------------------|
| Methane        | 2015-09-08         | 43.69                | 0.02                               | 6                    |
| Carbon dioxide | 2015-09-08         | 39.31                | 0.01                               | 6                    |
| Nitrogen       | 2015-09-08         | 15.70                | 0.01                               | 6                    |
| Hydrogen       | 2015-09-08         | 0.79                 | 0.01                               | 6                    |
| Oxygen         | 2015-09-08         | 0.40                 | 0.13                               | 6                    |
| Ethane         | 2015-08-27         | 0.062                | 0.03                               | 6                    |
| Propane        | 2015-08-27         | 0.015                | 0.03                               | 6                    |

### Results

| Component      | Result<br>(cmol/mol) | Expanded uncertainty<br>(cmol/mol) | Coverage factor |
|----------------|----------------------|------------------------------------|-----------------|
| Methane        | 43.70                | 0.026                              | 2               |
| Carbon dioxide | 39.30                | 0.032                              | 2               |
| Nitrogen       | 15.70                | 0.013                              | 2               |
| Hydrogen       | 0.79                 | 0.0014                             | 2               |
| Oxygen         | 0.40                 | 0.0019                             | 2               |
| Ethane         | 0.062                | 0.00013                            | 2               |
| Propane        | 0.015                | 0.000021                           | 2               |

### **Calibration standards**

All Primary Standard gas Mixtures (PSMs) for the measurements of biogas are multi compound mixtures. Preparation and validation of the PSM's were performed according ISO 6142-1 [1]. The standard uncertainty is based on the uncertainty of the gravimetric preparation process and the purity analysis of the parent gases.

For the PSM's two different carbon dioxide parent gases were used.

| Compound       | Mol fraction | Uncertainity   |
|----------------|--------------|----------------|
|                | x (mol/mol)  | u(x) (mol/mol) |
| Methane        | 0.99999860   | 0.00000060     |
| Carbon dioxide | 0.000000050  | 0.00000030     |
| Ethane         | 0.000000050  | 0.00000030     |
| Propane        | 0.000000050  | 0.000000030    |
| Hydrogen       | 0.000000050  | 0.00000030     |
| Nitrogen       | 0.00000100   | 0.0000060      |
| Oxygen         | 0.0000025    | 0.00000014     |

### Table 2: Purity table methane APCH4

#### Table 3: Purity table Carbon dioxide AP9367

| Compound        | Mol fraction<br>x (mol/mol) | Uncertainity<br>u(x) (mol/mol) |
|-----------------|-----------------------------|--------------------------------|
| Carbon monoxide | 0.000000120                 | 0.000000025                    |
| Carbon dioxide  | 0.99999774                  | 0.00000035                     |
| Water           | 0.00000050                  | 0.00000025                     |
| Nitrogen        | 0.00000150                  | 0.00000023                     |
| Oxygen          | 0.00000246                  | 0.00000065                     |

#### Table 4: Purity table Carbon dioxide AP6453

| Compound       | Mol fraction | Uncertainity   |  |
|----------------|--------------|----------------|--|
|                | x (mol/mol)  | u(x) (mol/mol) |  |
| Argon          | 0.00000730   | 0.00000040     |  |
| Carbon dioxide | 0.9999710    | 0.0000020      |  |
| Ethane         | 0.000003080  | 0.000000040    |  |

| Nitrogen | 0.0000141  | 0.0000012 |
|----------|------------|-----------|
| Oxygen   | 0.00000730 | 0.0000030 |

### Table 5: Purity table Nitrogen APN26b

| Compound        | Mol fraction | Uncertainity   |
|-----------------|--------------|----------------|
|                 | x (mol/mol)  | u(x) (mol/mol) |
| Argon           | 0.0000050    | 0.0000030      |
| Methane         | 0.000000080  | 0.000000050    |
| Carbon monoxide | 0.000000150  | 0.000000090    |
| Carbon dioxide  | 0.0000000100 | 0.000000060    |
| Hydrogen        | 0.00000025   | 0.000000015    |
| Water           | 0.0000000100 | 0.000000060    |
| Nitrogen        | 0.9999949    | 0.0000060      |
| Oxygen          | 0.000000050  | 0.000000030    |

### Table 6: Purity table Hydrogen AP8449

| Compound        | Mol fraction  | Uncertainity   |
|-----------------|---------------|----------------|
|                 | x (mol/mol)   | u(x) (mol/mol) |
| Methane         | 0.00000025    | 0.00000014     |
| Carbon monoxide | 0.00000000100 | 0.0000000060   |
| Carbon dioxide  | 0.00000025    | 0.00000014     |
| Hydrogen        | 0.99999955    | 0.0000020      |
| Water           | 0.0000025     | 0.00000014     |
| Nitrogen        | 0.000000100   | 0.00000058     |
| Oxygen          | 0.000000050   | 0.00000029     |

### Table 7: Purity table Oxygen LI0656

| Compound        | Mol fraction | Uncertainity   |  |
|-----------------|--------------|----------------|--|
|                 | x (mol/mol)  | u(x) (mol/mol) |  |
| Argon           | 0.0000020    | 0.0000010      |  |
| Methane         | 0.000000330  | 0.000000030    |  |
| Carbon monoxide | 0.0000000100 | 0.000000020    |  |
| Carbon dioxide  | 0.0000000100 | 0.000000060    |  |
| Water           | 0.00000040   | 0.00000010     |  |
| Nitrogen        | 0.0000030    | 0.0000017      |  |
| Oxygen          | 0.9999949    | 0.0000022      |  |

### Table 8: Purity table Ethane SC0084

| Compound | Mol fraction<br>x (mol/mol) | Uncertainity<br>u(x) (mol/mol) |  |
|----------|-----------------------------|--------------------------------|--|
| Ethane   | 0.9999756                   | 0.0000030                      |  |
| Nitrogen | 0.0000112                   | 0.0000018                      |  |
| Oxygen   | 0.0000132                   | 0.0000011                      |  |

### Table 9: Purity table Propane AP4621

| Compound | Mol fraction<br>x (mol/mol) | Uncertainity<br>u(x) (mol/mol) |  |
|----------|-----------------------------|--------------------------------|--|
| Argon    | 0.0000040                   | 0.0000020                      |  |

| Ethane        | 0.0000603    | 0.0000014   |
|---------------|--------------|-------------|
| Propene       | 0.00004700   | 0.0000060   |
| Propane       | 0.999829     | 0.000010    |
| 1,3-butadiene | 0.000000146  | 0.000000010 |
| iso-butene    | 0.0000001450 | 0.000000050 |
| n-butane      | 0.000000590  | 0.00000030  |
| iso-butane    | 0.0000448    | 0.0000015   |
| Nitrogen      | 0.0000101    | 0.0000012   |
| Oxygen        | 0.0000040    | 0.0000020   |

# Verification measures

The calibration curves for one of the measurements (first) are given in tables 9 through 15, which are obtained with CurveFit software.

### Table 10: Calibration curve of Methane.

| Mixture   | x        | u(x)     | у       | u( <i>y</i> ) | $\Delta x/u(x)$ | $\Delta y/u(y)$ |
|-----------|----------|----------|---------|---------------|-----------------|-----------------|
|           | cmol/mol | cmol/mol | a.u.    | a.u.          |                 |                 |
| VSL338377 | 38.78    | 0.0029   | 990.41  | 0.13          | -0.17           | 0.31            |
| VSL400230 | 39.065   | 0.0037   | 997.50  | 0.18          | 0.22            | -0.42           |
| VSL143505 | 58.94    | 0.0023   | 1482.28 | 0.24          | 0.05            | -0.23           |
| VSL143724 | 63.65    | 0.0021   | 1595.14 | 0.10          | -0.08           | 0.16            |
| VSL247675 | 69.33    | 0.0019   | 1730.88 | 0.11          | 0.03            | -0.07           |

#### Table 11: Calibration curve of Carbon dioxide.

| Mixture   | x        | u(x)     | у       | u(y) | $\Delta x/u(x)$ | $\Delta y/u(y)$ |
|-----------|----------|----------|---------|------|-----------------|-----------------|
|           | cmol/mol | cmol/mol | a.u.    | a.u. |                 |                 |
| VSL247675 | 9.87     | 0.00073  | 228.34  | 0.04 | -0.16           | 0.37            |
| VSL143505 | 14.99    | 0.00094  | 346.089 | 0.03 | 0.29            | -0.40           |
| VSL248507 | 38.68    | 0.0022   | 884.64  | 0.07 | -0.61           | 0.85            |
| VSL338377 | 39.83    | 0.0021   | 910.57  | 0.17 | -0.05           | 0.19            |
| VSL400230 | 43.852   | 0.0029   | 1001.23 | 0.13 | 0.61            | -1.21           |

#### Table 12: Calibration curve of Nitrogen.

| Mixture   | x        | u(x)     | у       | u(y) | $\Delta x/u(x)$ | $\Delta y/u(y)$ |
|-----------|----------|----------|---------|------|-----------------|-----------------|
|           | cmol/mol | cmol/mol | a.u.    | a.u. |                 |                 |
| VSL143724 | 9.98     | 0.0011   | 667.012 | 0.13 | 0.02            | -0.04           |
| VSL400230 | 14.99    | 0.0015   | 998.98  | 0.08 | -0.40           | 0.31            |
| VSL248507 | 15.78    | 0.0013   | 1051.15 | 0.13 | 0.32            | -0.49           |
| VSL338377 | 19.75    | 0.0012   | 1313.73 | 0.27 | -0.01           | 0.03            |
| VSL143505 | 24.98    | 0.0015   | 1658.63 | 0.13 | -0.01           | 0.01            |

### Table 13: Calibration curve of Hydrogen.

| Mixture   | x        | u(x)     | у       | u(y) | $\Delta x/u(x)$ | $\Delta y/u(y)$ |
|-----------|----------|----------|---------|------|-----------------|-----------------|
|           | cmol/mol | cmol/mol | a.u.    | a.u. |                 |                 |
| VSL247675 | 0.10     | 0.000044 | 50.27   | 0.03 | -0.03           | 0.04            |
| VSL143505 | 0.49     | 0.00018  | 249.64  | 0.06 | 0.47            | -0.32           |
| VSL248507 | 0.81     | 0.00050  | 403.90  | 0.08 | -1.45           | 0.46            |
| VSL338377 | 1.51     | 0.00060  | 755.53  | 0.27 | 0.71            | -0.64           |
| VSL400230 | 2.03     | 0.00080  | 1012.82 | 0.16 | -0.29           | 0.12            |

### Table 14: Calibration curve of Oxygen.

| Mixture   | x        | u(x)     | у        | u(y)  | $\Delta x/u(x)$ | $\Delta y/u(y)$ |
|-----------|----------|----------|----------|-------|-----------------|-----------------|
|           | cmol/mol | cmol/mol | a.u.     | a.u.  |                 |                 |
| VSL400230 | 0.050    | 0.000016 | 968.96   | 0.49  | 0.10            | -0.15           |
| VSL338377 | 0.10     | 0.000020 | 1956.48  | 3.07  | -0.21           | 1.63            |
| VSL143724 | 0.30     | 0.000052 | 5974.92  | 2.72  | 0.45            | -1.16           |
| VSL143505 | 0.50     | 0.000076 | 9934.06  | 4.72  | -0.40           | 1.21            |
| VSL247675 | 0.80     | 0.00016  | 16184.89 | 41.17 | 0.15            | -1.90           |

### Table 15: Calibration curve of Ethane.

| Mixture   | x        | u(x)      | у        | u( <i>y</i> ) | $\Delta x/u(x)$ | $\Delta y/u(y)$ |
|-----------|----------|-----------|----------|---------------|-----------------|-----------------|
|           | cmol/mol | cmol/mol  | a.u.     | a.u.          |                 |                 |
| VSL400230 | 0.0099   | 0.0000030 | 997.89   | 1.02          | 0.10            | -0.35           |
| VSL338377 | 0.020    | 0.0000040 | 1991.83  | 1.70          | -0.22           | 0.83            |
| VSL143724 | 0.040    | 0.000014  | 3995.67  | 3.45          | 0.08            | -0.21           |
| VSL143505 | 0.070    | 0.000017  | 6984.42  | 1.67          | 0.27            | -0.26           |
| VSL247675 | 0.10     | 0.000022  | 10014.64 | 2.09          | -0.15           | 0.15            |

### Table 16: Calibration curve of Propane.

| Mixture   | x        | u(x)      | у        | u(y) | $\Delta x/u(x)$ | $\Delta y/u(y)$ |
|-----------|----------|-----------|----------|------|-----------------|-----------------|
|           | cmol/mol | cmol/mol  | a.u.     | a.u. |                 |                 |
| VSL400230 | 0.0020   | 0.0000010 | 997.30   | 0.30 | 0.09            | -0.07           |
| VSL338377 | 0.0040   | 0.0000010 | 2007.14  | 1.53 | -0.27           | 0.65            |
| VSL143724 | 0.0080   | 0.0000030 | 4050.72  | 4.48 | 0.43            | -1.16           |
| VSL143505 | 0.014    | 0.0000050 | 7091.60  | 2.74 | -0.17           | 0.20            |
| VSL247675 | 0.020    | 0.0000060 | 10194.86 | 2.16 | 0.03            | -0.02           |

### Instrumentation

The compounds are determined on two different GC's

| GC-1 (Biogas analyzer | ·                                                              |                |
|-----------------------|----------------------------------------------------------------|----------------|
| Methane, Carbon diox  | ide, Nitrogen, Hydrogen and Oxygen.                            |                |
| GC:                   | Agilent 7980A                                                  |                |
| Channels:             | Back channel: pre-column HayeSep Q and HayeSep T+ Therma       | l conductivity |
|                       | detector (TCD). Helium as carrier, carbon dioxide and methane  | are            |
|                       | determined.                                                    |                |
|                       | Aux Channel: Hayesep/Molsieve column + TCD. Argon as carri     | er gas:        |
|                       | Hydrogen, oxygen and nitrogen are determined.                  |                |
| Sample Method:        | 35°C for 6 minutes, with 10°C/min to 100°C hold for 0.5 minute | es.            |
|                       | 0.0.                                                           | D 01 ( 00      |

| Sample introduction: | Multi position gas sampling valves, injection at ambient pressure.          |
|----------------------|-----------------------------------------------------------------------------|
| Data collection:     | HP Chemstation Software                                                     |
| 00.14                |                                                                             |
| GC-14:               |                                                                             |
| Ethane and Propane   |                                                                             |
| GC:                  | Agilent 7980A                                                               |
| Channels:            | Back channel: 10' x 1/8" Sulfinert, Molsieve 5A + flame ionization detector |
|                      | (FID).                                                                      |
| Sample Method:       | 100 °C for 20 minutes.                                                      |
| Sample introduction: | Multi position gas sampling valves, injection at ambient pressure.          |
| Data collection:     | HP Chemstation Software                                                     |

### Calibration method and value assignment

The set of standards used for a measurement and the mixtures to be analysed are connected to the gas chromatograph. A measurement of a cylinder consist of 6 injections that are averaged and corrected for area using the following equation [2].

$$y_i = \frac{A_i}{A_{ref,i}}$$

Where  $Y_i$  is the corrected response,  $A_i$  is the average of the areas of the sample (6 injections) and  $A_{ref,i}$  is the standard pressure.

After the area correction the calibration curve was obtained in accordance with ISO6143 [3]. A parabolia was used for all the components as calibration function.

### Uncertainty evaluation

The calibration curves where obtained in accordance with ISO 6143 [3]. As indicated, a straight line was used. The value for amount of fraction (results) is obtained by reverse use of the calibration curve [3]. The associated uncertainty is obtained using the law of propagation of uncertainty. To arrive at the final result, the results of the three measurements were averaged. The standard error of the mean was combined with the pooled uncertainty from evaluating the data. The expanded uncertainty was obtained by multiplying the standard uncertainty with a coverage factor of k = 2.

### References

- International Organization for Standardization, "ISO 6142-1:2015(E) Gas analysis --Preparation of calibration gas mixtures – Part 1: Gravimetric method for Class I mixtures", ISO Geneva, 2015
- [2] van der Veen A.M.H., Ziel P.R., Oudwater R., Quist Y.M., Alberti D., Zalewska E.T. (2012) Natural gas analysis - Development of a method for retaining the calibration status of a gas chromatograph, Delft VSL, report number: S-CH.09.34
- [3] International Organization for Standardization, "ISO 6143 Gas analysis -- Comparison methods for determining and checking the composition of calibration gas mixtures", ISO Geneva, 2001