Final report, Ongoing Key Comparison BIPM.QM-K1, Ozone at ambient level, comparison with ISCIII, (December 2012)

Joële Viallon¹, Philippe Moussay¹, Faraz Idrees¹, Robert Wielgosz¹, Pilar Morillo Gomez ², Carmen Sánchez²

1 BIPM (Bureau International des Poids et Mesures), Pavillon de Breteuil, F-92312 Sèvres, France
2 ISCIII (Instituto de Salud Carlos III), Crta. Majadahonda-Pozuelo Km 2. 28220 Majadahonda, Spain

Abstract

As part of the ongoing key comparison BIPM.QM-K1, a comparison has been performed between the ozone national standard of the Instituto de Salud Carlos III (ISCIII) and the common reference standard of the key comparison, maintained by the Bureau International des Poids et Mesures (BIPM). The instruments have been compared over a nominal ozone amount-of-substance fraction range of 0 nmol/mol to 500 nmol/mol.

Contents:

1. FIELD ... 2
2. SUBJECT ... 2
3. PARTICIPANTS ... 2
4. ORGANIZING BODY ... 2
5. RATIONALE ... 2
6. TERMS AND DEFINITIONS .. 2
7. MEASUREMENTS SCHEDULE ... 2
8. MEASUREMENT PROTOCOL .. 3
9. REPORTING MEASUREMENT RESULTS .. 5
10. POST COMPARISON CALCULATION .. 5
11. DEVIATIONS FROM THE COMPARISON PROTOCOL ... 5
12. MEASUREMENT STANDARDS .. 5
13. MEASUREMENT RESULTS AND UNCERTAINTIES ... 9
14. ANALYSIS OF THE MEASUREMENT RESULTS BY GENERALISED LEAST-SQUARE REGRESSION ... 9
15. DEGREES OF EQUIVALENCE .. 11
16. STABILITY OF THE TRANSFER STANDARD .. 13
17. HISTORY OF COMPARISONS BETWEEN BIPM SRP27, SRP28 AND ISCIII SRP22 ... 13
18. SUMMARY OF PREVIOUS COMPARISONS INCLUDED IN BIPM.QM-K1 14
19. CONCLUSION .. 14
20. REFERENCES .. 14

APPENDIX 1 - FORM BIPM.QM-K1-R2-ISCIII-10 ... 15

* Author for correspondence. E-mail jviallon@bipm.org, Tel: +33 1 45 07 62 70, Fax: +33 1 45 07 20 21.
1. Field
Amount of substance.

2. Subject
Comparison of reference measurement standards for ozone at ambient level.

3. Participants
BIPM.QM-K1 is an on-going key comparison, which is structured as an on-going series of bilateral comparisons. The results of the comparison with the Instituto de Salud Carlos III (ISCIII) are reported here.

4. Organizing body
BIPM.

5. Rationale
The on-going key comparison BIPM.QM-K1 has been running since January 2007. It follows the pilot study CCQM-P28 that included 23 participants and was performed between July 2003 and February 2005 [1]. It is aimed at evaluating the degree of equivalence of ozone photometers that are maintained as national standards, or as primary standards within international networks for ambient ozone measurements. The reference value is determined using the NIST Standard Reference Photometer (BIPM-SRP27) maintained by the BIPM as a common reference.

6. Terms and definitions
- \(x_{\text{nom}} \): nominal ozone amount-of-substance fraction in dry air furnished by the ozone generator
- \(x_{A,i} \): \(i \)th measurement of the nominal value \(x_{\text{nom}} \) by the photometer A.
- \(\bar{x}_A \): the mean of \(N \) measurements of the nominal value \(x_{\text{nom}} \) measured by the photometer A:
 \[
 \bar{x}_A = \frac{1}{N} \sum_{i=1}^{N} x_{A,i}
 \]
- \(s_A \): standard deviation of \(N \) measurements of the nominal value \(x_{\text{nom}} \) measured by the photometer A:
 \[
 s_A = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_{A,i} - \bar{x}_A)^2}
 \]
- The result of the linear regression fit performed between two sets of data measured by the photometers A and B during a comparison is written:
 \[
 x_A = a_{A,B} x_B + b_{A,B}
 \]
 With this notation, the photometer A is compared against the photometer B. \(a_{A,B} \) is dimensionless and \(b_{A,B} \) is expressed in units of nmol/mol.

7. Measurements schedule
The key comparison BIPM.QM-K1 was initially organised in 2 year cycles. The 2007 to 2008 round, the results of which are published in the [Key Comparison Database](#) of the BIPM,
included 16 participants. The second round of BIPM.QM-K1 started in March 2009 for a period of 4 years, following the decision of the CCQM/GAWG to reduce the repeat frequency of the bilateral comparisons. Measurements reported in this report were performed from 14 November 2012 to 30 January 2013 at the ISCIII and the BIPM.

8. Measurement protocol

The comparison protocol is summarised in this section. The complete version can be downloaded from the BIPM website (http://www.bipm.org/utils/en/pdf/BIPM.QM-K1_protocol.pdf).

This comparison was performed following protocol B, corresponding to a comparison between the ISCIII national standard SRP22 and the common reference standard BIPM-SRP27 maintained at the BIPM via the transfer standard TEI49CPS-67730-358. The national standard SRP22 and the transfer standard TEI49CPS-67730-358 were first compared at the ISCIII in November 2012. Then TEI49CPS-67730-358 was compared with the common reference standard SRP27 at the BIPM two weeks later. Finally, the national standard SRP22 and the transfer standard TEI49CPS-67730-358 were again compared at the ISCIII in January 2013 to test the stability of the transfer standard.

A comparison between two (or more) ozone photometers consists of producing ozone-air mixtures at different mole fractions over the required range, and measuring these with the photometers.

8.1. Comparisons at the ISCIII

a). Ozone generation

The source of purified air is a compressor with scrubbers for NOx, VOCs, O₃, and humidity. This air is used to provide reference air as well as the ozone-air mixture to each ozone photometer. Ozone is produced using the generator provided with SRP22.

b). Comparison procedure

Prior to the comparison, all the instruments were switched on and allowed to stabilise for a week. The characteristics of the instruments were checked at this time following an internal procedure. Basic adjustments of temperature, pressure, and dark counts following the SRP operating characteristics checkout were performed.

One comparison run includes 10 different mole fractions distributed to cover the range, together with the measurement of reference air at the beginning and end of each run. The nominal mole fractions were measured in a sequence imposed by the protocol (0, 220, 80, 420, 120, 320, 30, 370, 170, 500, 270, and 0) nmol/mol. Each of these points is an average of 10 single measurements.

For each nominal value of the ozone amount-of-substance fraction x_{nom} furnished by the ozone generator, the standard deviation s_{SRP22} on the set of 10 consecutive measurements $x_{SRP22,i}$ recorded by SRP22 was calculated. The measurement results were considered as valid if s_{SRP22} was less than 1 nmol/mol, which ensures that the photometers were measuring a
stable ozone concentration. If not, another series of 10 consecutive measurements was performed.

c). Comparison repeatability

The comparison procedure was repeated continuously to evaluate its repeatability.

8.2. Comparisons at the BIPM

a). Ozone generation

The same source of purified air is used for all the ozone photometers being compared. This air is used to provide reference air as well as the ozone-air mixture to each ozone photometer. Ambient air is used as the source for reference air. The air is compressed with an oil-free compressor, dried and scrubbed with a commercial purification system so that the mole fraction of ozone and nitrogen oxides remaining in the air is below detectable limits. The relative humidity of the reference air is monitored and the mole fraction of water in air typically found to be less than 3 μmol/mol. The mole fraction of volatile organic hydrocarbons in the reference air was measured (November 2002), with no mole fraction of any detected component exceeding 1 nmol/mol.

A common dual external manifold in Pyrex is used to furnish the necessary flows of reference air and ozone-air mixtures to the ozone photometers. The two columns of this manifold are vented to atmospheric pressure.

b). Comparison procedure

Prior to the comparison, all the instruments were switched on and allowed to stabilise for at least 8 hours. The pressure and temperature measurement systems of the instruments were checked at this time. If any adjustments were required, these were noted. For this comparison, no adjustments were necessary.

One comparison run includes 10 different mole fractions distributed to cover the range, together with the measurement of reference air at the beginning and end of each run. The nominal mole fractions were measured in a sequence imposed by the protocol (0, 220, 80, 420, 120, 320, 30, 370, 170, 500, 270, and 0) nmol/mol. Each of these points is an average of 10 single measurements.

For each nominal value of the ozone amount-of-substance fraction \(x_{\text{nom}} \) furnished by the ozone generator, the standard deviation \(s_{\text{SRP27}} \) on the set of 10 consecutive measurements \(x_{\text{SRP27,i}} \) recorded by BIPM-SRP27 was calculated. The measurement results were considered as valid if \(s_{\text{SRP27}} \) was less than 1 nmol/mol, which ensures that the photometers were measuring a stable ozone concentration. If not, another series of 10 consecutive measurements was performed.

c). Comparison repeatability

The comparison procedure was repeated continuously to evaluate its repeatability. The participant and the BIPM commonly decided when both instruments were stable enough to
start recording a set of measurement results to be considered as the official comparison results.

d). SRP27 stability check

A second ozone reference standard, BIPM-SRP28, was included in the comparison to verify its agreement with BIPM-SRP27 and thus follow its stability over the period of the on-going key comparison.

9. Reporting measurement results

The participant and the BIPM staff reported the measurement results in the result form BIPM.QM-K1-R2 provided by the BIPM and available on the BIPM website. It includes details on the comparison conditions, measurement results and associated uncertainties, as well as the standard deviation for each series of 10 ozone amount-of-substance fractions measured by the participant’ standard and the common reference standard. The completed form BIPM.QM-K1-R2-ISCIII-12 is given in appendix 1.

10. Post comparison calculation

All calculations were performed by the BIPM using the form BIPM.QM-K1-R2. It includes the two degrees of equivalence that are reported as comparison results in the Appendix B of the BIPM KCDB (key comparison database). Additionally, the degrees of equivalence at all nominal ozone amount-of-substance fractions are reported in the same form, as well as the linear relationship between the participant standard and the common reference standard.

11. Deviations from the comparison protocol

In this comparison, there was no deviation from the protocol.

12. Measurement standards

All instruments included in this comparison were Standard Reference Photometers built by the NIST. More details on the instrument's principle and its capabilities can be found in [2]. The following section describes the SRP operating principle and uncertainty budget.

12.1. Measurement equation of a NIST SRP

The measurement of the ozone amount-of-substance fraction by an SRP is based on the absorption of radiation at 253.7 nm by ozonized air in the gas cells of the instrument. One particularity of the instrument design is the use of two gas cells to overcome the instability of the light source. The measurement equation is derived from the Beer-Lambert and ideal gas laws. The number concentration \(C \) of ozone is calculated from:

\[
C = \frac{-1}{2 \sigma_L \sigma_D} \frac{T}{T_{(L)\text{opt}}} \frac{P_{\text{std}}}{P} \ln(D)
\]

where
\[\sigma \] is the absorption cross-section of ozone at 253.7 nm under standard conditions of temperature and pressure, \(1.1476 \times 10^{-17} \text{ cm}^2/\text{molecule} \) [3].

\(L_{\text{opt}} \) is the mean optical path length of the two cells;

\(T \) is the measured temperature of the cells;

\(T_{\text{std}} \) is the standard temperature (273.15 K);

\(P \) is the measured pressure of the cells;

\(P_{\text{std}} \) is the standard pressure (101.325 kPa);

\(D \) is the product of transmittances of two cells, with the transmittance \((T_r) \) of one cell defined as

\[T_r = \frac{I_{\text{ozone}}}{I_{\text{air}}} \] \hspace{1cm} (2)

where

\(I_{\text{ozone}} \) is the UV radiation intensity measured from the cell when containing ozonized air, and

\(I_{\text{air}} \) is the UV radiation intensity measured from the cell when containing pure air (also called reference or zero air).

Using the ideal gas law, equation (1) can be rearranged to express the measurement results as an amount-of-substance fraction \((x) \) of ozone in air:

\[x = \frac{-1}{2 \sigma L_{\text{opt}} \frac{T}{P} \frac{R}{N_A}} \ln(D) \] \hspace{1cm} (3)

where

\(N_A \) is the Avogadro constant, \(6.022142 \times 10^{23} \text{ mol}^{-1} \), and

\(R \) is the gas constant, \(8.314472 \text{ J mol}^{-1} \text{ K}^{-1} \).

The formulation implemented in the SRP software is:

\[x = \frac{-1}{2 \alpha_s L_{\text{opt}} \frac{T}{T_{\text{std}}} \frac{P_{\text{std}}}{P}} \ln(D) \] \hspace{1cm} (4)

where

\(\alpha_s \) is the linear absorption coefficient at standard conditions, expressed in cm\(^{-1}\), linked to the absorption cross-section with the relation:

\[\alpha_s = \sigma \frac{N_A}{R} \frac{P_{\text{std}}}{T_{\text{std}}} \] \hspace{1cm} (5)

12.2. Absorption cross-section for ozone

The linear absorption coefficient under standard conditions \(\alpha_s \) used within the SRP software algorithm is 308.32 cm\(^{-1}\). This corresponds to a value for the absorption cross section \(\sigma \) of \(1.1476 \times 10^{-17} \text{ cm}^2/\text{molecule} \), rather than the more often quoted \(1.147 \times 10^{-17} \text{ cm}^2/\text{molecule} \). In the comparison of two SRP instruments, the absorption cross-section can be considered to have a conventional value and its uncertainty can be set to zero. However, in the comparison of different methods or when considering the complete uncertainty budget of the method the uncertainty of the absorption cross-section should be taken into account. A consensus value of
2.12 % at a 95 % level of confidence for the uncertainty of the absorption cross-section has been proposed by the BIPM and the NIST in a recent publication [4].

12.3. Condition of the BIPM SRPs

Compared to the original design described in [2], SRP27 and SRP28 have been modified to deal with two biases revealed by the study conducted by the BIPM and the NIST [4]. In 2009, an “SRP upgrade kit” was installed in the instruments, as described in the report [5].

12.4. Uncertainty budget of the common reference BIPM-SRP27

The uncertainty budget for the ozone amount-of-substance fraction in dry air (x) measured by the instruments BIPM-SRP27 and BIPM-SRP28 in the nominal range 0 nmol/mol to 500 nmol/mol is given in Table 1.

Table 1: Uncertainty budget for the SRPs maintained by the BIPM

<table>
<thead>
<tr>
<th>Component (y)</th>
<th>Source</th>
<th>Distribution</th>
<th>Standard Uncertainty</th>
<th>Combined standard uncertainty u(y)</th>
<th>Sensitivity coefficient ci = ∂x/∂y</th>
<th>contribution to u(x)</th>
<th>nmol/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Path Lopt</td>
<td>Measurement scale</td>
<td>Rectangular</td>
<td>0.0006 cm</td>
<td>0.52 cm</td>
<td>-x/Lopt</td>
<td>2.89 × 10⁻³ x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repeatability</td>
<td>Normal</td>
<td>0.01 cm</td>
<td>0.52 cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correction factor</td>
<td>Rectangular</td>
<td>0.02 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure P</td>
<td>Pressure gauge</td>
<td>Rectangular</td>
<td>0.029 kPa</td>
<td>0.034 kPa</td>
<td>-x/p</td>
<td>3.37 × 10⁻⁴ x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Difference between cells</td>
<td>Rectangular</td>
<td>0.017 kPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature T</td>
<td>Temperature probe</td>
<td>Rectangular</td>
<td>0.03 K</td>
<td>0.07 K</td>
<td>x/T</td>
<td>2.29 × 10⁻⁴ x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temperature gradient</td>
<td>Rectangular</td>
<td>0.058 K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio of intensities D</td>
<td>Scaler resolution</td>
<td>Rectangular</td>
<td>8 × 10⁻⁶</td>
<td>1.4 × 10⁻⁵</td>
<td>x/D ln(D)</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repeatability</td>
<td>Triangular</td>
<td>1.1 × 10⁻⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorption Cross section σ</td>
<td>Hearn value</td>
<td></td>
<td>1.22 × 10⁻¹⁹ cm²/molecule</td>
<td>1.22 × 10⁻¹⁹ cm²/molecule</td>
<td>-x/α</td>
<td>1.06 × 10⁻² x</td>
<td></td>
</tr>
</tbody>
</table>

Following this budget, as explained in the protocol of the comparison, the standard uncertainty associated with the ozone amount-of-substance fraction measurement with the BIPM SRPs can be expressed as a numerical equation (numerical values expressed as nmol/mol):

\[u(x) = \sqrt{(0.28)^2 + (2.92 \times 10^{-3} x)^2} \] (6)

12.5. Covariance terms for the common reference BIPM-SRP27

As explained in section 14, correlations between the results of two measurements performed at two different ozone amount-of-substance fractions with BIPM-SRP27 were taken into
account in the software OzonE. More details on the covariance expression can be found in the protocol. The following expression was applied:

\[u(x_i, x_j) = x_i \cdot x_j \cdot u_b^2 \]

(7)

where:

\[u_b^2 = \frac{u^2(T)}{T^2} + \frac{u^2(P)}{P^2} + \frac{u^2(L_{opt})}{L_{opt}^2} \]

(8)

The value of \(u_b \) is given by the expression of the measurement uncertainty: \(u_b = 2.92 \times 10^{-3} \).

12.6. Condition of the ISCIII SRP22

Compared to the original design, the ISCIII SRP22 has been modified to deal with the two biases revealed in [4]. In 2010, an “SRP upgrade kit” was installed by NIST.

12.7. Uncertainty budget of the ISCIII SRP22

The uncertainty budget for the ozone amount-of-substance fraction in dry air \(x \) measured by the ISCIII standard SRP22 in the nominal range 0 nmol/mol to 500 nmol/mol is given in Table 2.

| Component (\(y \)) | Uncertainty \(u(y) \) | Sensitivity coefficient \(c_i = \frac{\partial x}{\partial y} \) | contribution to \(u(x) \) \(\left| x \right| \cdot u(y) \) nmol/mol |
|---------------------|-----------------------|---------------------------------|------------------------|
| Optical Path \(L_{opt} \) | Measurement scale | Rectangular 0.0005 cm | - \(\frac{x}{L_{opt}} \) | 2.89 \times 10^{-3} \(x \) |
| | Repeatability | Normal 0.004 cm | 0.52 cm | |
| | Correction factor | Rectangular 0.52 cm | |
| Pressure \(P \) | Pressure gauge | Rectangular 0.029 kPa | - \(\frac{x}{P} \) | 3.37 \times 10^{-4} \(x \) |
| | Difference between cells | Rectangular 0.017 kPa | 0.03 kPa | |
| Temperature \(T \) | Temperature probe | Rectangular 0.029 K | \(\frac{x}{T} \) | 2.29 \times 10^{-4} \(x \) |
| | Temperature gradient | Rectangular 0.058 K | 0.07 K | |
| Ratio of intensities \(D \) | Scaler resolution | Rectangular 8 \times 10^{-6} | 1.4 \times 10^{-5} \(\frac{x}{D \ln(D)} \) | 0.28 |
| | Repeatability | Triangular 1.1 \times 10^{-5} | |
| Absorption Cross section \(\alpha \) | Hearn value | 1.22 \times 10^{-19} cm²/molecule | 1.22 \times 10^{-19} cm²/molecule | \(\frac{x}{\alpha} \) | 1.06 \times 10^{-2} \(x \) |
Following this budget, the standard uncertainty associated with the ozone amount-of-substance fraction measurement with the ISCIII SRP22 can be expressed as a numerical equation (numerical values expressed as nmol/mol):

\[u(x) = \sqrt{(0.28)^2 + (2.92 \cdot 10^{-3} x)^2} \]

(9)

No covariance term for the ISCIII SRP22 was included in the calculations.

12.8. Transfer standard TEI49CPS-67730-358

The transfer standard used by ISCIII is a TEI49CPS-67730-358PS. It is an ozone photometer based on a principle similar to the SRP, although many components are simplified. This model does not include any scrubber. It is normally used by ISCIII as a laboratory instrument.

The uncertainty budget for the ozone amount-of-substance fraction in dry air \(x \) measured by the TEI49CPS-67730-358 in the nominal range 0 nmol/mol to 500 nmol/mol is given in Table 3. As recommended in the protocol, only the repeatability and the reproducibility are considered in the uncertainty budget. The following expressions were provided by ISCIII:

- **Repeatability**: maximal value of the experimental standard deviation observed at ISCII \((s = 1.96 \text{ nmol/mol}) \).
- **Reproducibility**: difference between the maximum and the minimum value of the slope of the regression line between the national standard and the transfer standard. Using a rectangular distribution, the standard relative uncertainty is \(0.0012x \).

<table>
<thead>
<tr>
<th>Source</th>
<th>Distribution</th>
<th>Contribution to (u(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeatability</td>
<td>Normal</td>
<td>(1.96 \text{ nmol/mol})</td>
</tr>
<tr>
<td>Reproducibility</td>
<td>Rectangular</td>
<td>(0.0012x)</td>
</tr>
</tbody>
</table>

13. Measurement results and uncertainties

Details of the measurement results, the measurement uncertainties and the standard deviations at each nominal ozone amount-of-substance fraction can be found in the form BIPM.QM-K1-R2-ISCIII-12 given in appendix 1.

14. Analysis of the measurement results by generalised least-square regression

The relationship between the national and reference standards was first evaluated with a generalised least-square regression fit, using the software OzonE. This software, which is documented in a publication [6], is an extension of the previously used software B_Least recommended by the ISO standard 6143:2001 [7]. It includes the possibility to take into account correlations between measurements performed with the same instrument at different ozone amount-of-substance fractions. It also facilitates the use of a transfer standard, by
handling of unavoidable correlations, which arise since this instrument needs to be calibrated
by the reference standard.

The two comparisons performed via the transfer standard were treated as follows:

- The first comparison results are calculated by performing a linear regression on the
data points from the BIPM visit \((x_{RS}, x_{TS})\) (calibration of the transfer standard)
followed by a second linear regression of the data points from the pre BIPM visit \((x_{NS}, x'_{TS})\), \(x'_{TS}\) being the corrected values of the transfer standard calibrated by the reference
standard.

- The second comparison results are calculated by performing a linear regression on the
data points from the BIPM visit \((x_{RS}, x_{TS})\) (calibration of the transfer standard)
followed by a second linear regression of the data points from the post BIPM visit \((x_{NS}, x'_{TS})\), \(x'_{TS}\) being the corrected values of the transfer standard calibrated by the reference
standard.

For each comparison, a linear relationship between the ozone amount-of-substance fractions
measured by SRPn and SRP27 is obtained:

\[
x_{SRPn} = a_0 + a_1 x_{SRP27}
\]

(10)

The associated uncertainties on the slope \(u(a_1)\) and the intercept \(u(a_0)\) are given by OzonE, as
well as the covariance between them and the usual statistical parameters to validate the fitting
function.

14.1. Least-square regression results

The two relationships between SRP22 and SRP27 are:

\[
x_{SRP22} = 0.16 + 1.0021 \times x_{SRP27}
\]

(11)

from the pre BIPM visit, with the uncertainties \(u(a_0) = 0.97\) nmol/mol, \(u(a_1) = 0.0043\),
\(\text{cov}(a_0, a_1) = -3.10 \times 10^{-3}\),

and

\[
x_{SRP22} = 0.20 + 1.0025 \times x_{SRP27}
\]

(12)

from the post BIPM visit, with the uncertainties \(u(a_0) = 0.97\) nmol/mol, \(u(a_1) = 0.0042\),
\(\text{cov}(a_0, a_1) = -3.05 \times 10^{-3}\).

To assess the agreement of the standards from equations 11 and 12, the difference between
the calculated slope value and unity, and the intercept value and zero, together with their
measurement uncertainties need to be considered. In both comparisons, the value of the
intercept is consistent with an intercept of zero, considering the uncertainty in the value of this
parameter; i.e \(|a_0| < 2u(a_0)\), and the value of the slope is consistent with a slope of 1;
\(1 - a_1 < 2u(a_1)\).
15. Degrees of equivalence

Degrees of equivalence are calculated at two nominal ozone amount-of-substance fractions among the twelve measured in each comparison, in the nominal range 0 nmol/mol to 500 nmol/mol: 80 nmol/mol and 420 nmol/mol. These values correspond to points number 3 and 4 recorded in each comparison. As an ozone generator has limited reproducibility, the ozone amount-of-substance fractions measured by the ozone standards can differ from the nominal values. However, as stated in the protocol, the value measured by the common reference SRP27 was expected to be within ±15 nmol/mol of the nominal value. Hence, it is meaningful to compare the degree of equivalence calculated for all the participants at the same nominal value.

15.1. Definition of the degrees of equivalence

Within protocol B, the degree of equivalence of the participant \(i \), at a nominal value \(x_{\text{nom}} \) is defined as:

\[
D = x_i - \hat{x}_{\text{SRP27}}
\]

(13)

Where \(x_i \) is the measurement results of the national standard at the nominal value \(x_{\text{nom}} \), and \(\hat{x}_{\text{SRP27}} \) is the predicted value of SRP27 at the same nominal value, deduced from the transfer standard measurement result during its comparison with the national standard.

Its associated standard uncertainty is:

\[
u(D) = \sqrt{u^2(x_i) + u^2(\hat{x}_{\text{SRP27}})}
\]

(14)

where \(u(x_i) \) is the measurement uncertainties of the participant \(i \) and \(u(\hat{x}_{\text{SRP27}}) \) is the uncertainty associated with the predicted value of SRP27.

15.2. Calculation of SRP27 predicted values and their related uncertainties

The comparison performed at the BIPM between the transfer standard and the reference standard SRP27 is used to calibrate the transfer standard. The data \(\bar{x}_{\text{RS}} \) and \(\bar{x}_{\text{TS}} \) are fitted using the generalised least square program OzonE, taking into account the associated uncertainties \(u(\bar{x}_{\text{RS}}) \) and \(u(\bar{x}_{\text{TS}}) \), as well as covariance terms between the reference standard measurement results.

The parameters \(a_{\text{RS,TS}} \) and \(b_{\text{RS,TS}} \) of the linear relationship between \(x_{\text{RS}} \) and \(x_{\text{TS}} \) (\(x_{\text{RS}} = a_{\text{RS,TS}} x_{\text{TS}} + b_{\text{RS,T}} \)) are calculated as well as their uncertainties.

Then, for each value \(\bar{x}_{\text{TS}} \) measured with the transfer standard during its comparison with the national standard, a predicted value \(\hat{x}_{\text{RS}} \) for the reference standard is evaluated using the linear relationships between the two instruments calculated above.

The standard uncertainties associated with the predicted values \(\hat{x}_{\text{RS}} \) are evaluated according to the equation:
\[
\hat{u}(\hat{x}_{RS}) = \sqrt{u^2_{RS,TS} + x^2_{TS} \cdot u^2(a_{RS,TS}) + a^2_{RS,TS} \cdot u^2(x_{TS}) + 2 \cdot x_{TS} \cdot u(a_{RS,TS}, b_{RS,TS})}
\]

(15)

Where the uncertainty components \(u(a_{RS,TS}), u(b_{RS,TS})\) and \(u(a_{RS,TS}, b_{RS,TS})\) are calculated with the generalised least-square software OzonE.

15.3. Values of the degrees of equivalence

When protocol B is followed, the national and reference standards are compared twice to monitor the transfer standard stability. Therefore, two degrees of equivalence are calculated at each nominal ozone amount-of-substance fraction.

The degrees of equivalence and their uncertainties calculated in the form BIPM.QM-K1-R2-ISCIII-12 are reported in the table below. Corresponding graphs of equivalence are displayed in Figure 1. The expanded uncertainties are calculated with a coverage factor \(k = 2\).

Table 4 : degrees of equivalence of the ISCIII at the ozone nominal amount-of-substance fractions 80 nmol/mol and 420 nmol/mol

<table>
<thead>
<tr>
<th>Nominal value</th>
<th>(x_i)</th>
<th>(u_i)</th>
<th>(x\text{SRP}27)</th>
<th>(u\text{SRP}27)</th>
<th>(D_i)</th>
<th>(u(D_i))</th>
<th>(U(D_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>81.43</td>
<td>0.37</td>
<td>81.40</td>
<td>1.92</td>
<td>0.02</td>
<td>1.95</td>
<td>3.91</td>
</tr>
<tr>
<td>420</td>
<td>419.27</td>
<td>1.26</td>
<td>418.69</td>
<td>2.07</td>
<td>0.58</td>
<td>2.42</td>
<td>4.85</td>
</tr>
<tr>
<td>80</td>
<td>79.95</td>
<td>0.36</td>
<td>79.64</td>
<td>1.92</td>
<td>0.30</td>
<td>1.95</td>
<td>3.90</td>
</tr>
<tr>
<td>420</td>
<td>423.76</td>
<td>1.27</td>
<td>422.51</td>
<td>2.08</td>
<td>1.26</td>
<td>2.43</td>
<td>4.86</td>
</tr>
</tbody>
</table>
The degrees of equivalence between the ISCIII standard and the common reference standard BIPM SRP27 indicate good agreement between the standards. A discussion on the relation between degrees of equivalence and CMC statements can be found in [1].

16. Stability of the transfer standard

The slope of the linear relationship deduced from the two comparisons performed between the ISCIII national standard SRP22 and the common reference standard SRP27 shows a decrease of 0.04% (equations 11 and 12). This is very small compared to the uncertainties. The transfer standard TEI49CPS-67730-358 can be considered stable over the course of this comparison.

17. History of comparisons between BIPM SRP27, SRP28 and ISCIII SRP22

Results of the previous comparison performed with ISCIII during the pilot study CCQM-P28 and the key comparison BIPM.QM-K1 are displayed in Figure 2 together with the results of this comparison. The slopes a_1 of the linear relation $x_{SRP_n} = a_0 + a_1 x_{SRP27}$ are represented together with their associated uncertainties calculated at the time of each comparison. Results of comparisons performed before 2009 have been corrected to take into account the changes in the reference BIPM-SRP27 described in [5] which explains the larger uncertainties associated with the corresponding slopes. Figure 2 shows that all standards included in these comparisons stayed in close agreement.
Figure 2: Results of previous comparisons between SRP27, SRP28 and ISCIII-SRP22 realised at the BIPM. Uncertainties are calculated at $k = 2$, with the uncertainty budget in use at the time of each comparison.

18. Summary of previous comparisons included in BIPM.QM-K1

The comparison with ISCIII is the fifteenth one in the 2009-2012 round of BIPM.QM-K1. An updated summary of BIPM.QM-K1 results can be found in the key comparison database: http://kcdb.bipm.org/appendixB/.

19. Conclusion

For the third time since the launch of the on-going key comparison BIPM.QM-K1, a comparison has been performed between the ozone national standard of Spain, maintained by the ISCIII, and the common reference standard of the key comparison, maintained by the BIPM. The instruments have been compared over a nominal ozone amount-of-substance fraction range of 0 nmol/mol to 500 nmol/mol. Degrees of equivalence of this comparison indicated very good agreement between the two standards.

20. References

Appendix 1 - Form BIPM.QM-K1-R2-ISCIII-12

See the following pages.
OZONE COMPARISON RESULT - PROTOCOL B - WITH A TRANSFER STANDARD

Participating institute information

<table>
<thead>
<tr>
<th>Institute</th>
<th>INSTITUTO DE SALUD CARLO III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>CTRA.MAJADAHONDA-POZUELO KM.2, 28220 MAJADAHONDA</td>
</tr>
<tr>
<td>Contact</td>
<td>PILAR MORILLO; CARMEN SANCHEZ</td>
</tr>
<tr>
<td>Email</td>
<td>pmorillo@iscii.es; carmensb@iscii.es</td>
</tr>
<tr>
<td>Telephone</td>
<td>+34 91 822 35 05</td>
</tr>
</tbody>
</table>

Instruments information

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Reference Standard</th>
<th>National Standard</th>
<th>Transfer Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRP</td>
<td>NIST</td>
<td>NIST</td>
<td>THERMO</td>
</tr>
<tr>
<td>Type</td>
<td>SRP27</td>
<td>SRP22</td>
<td>49CPS</td>
</tr>
<tr>
<td>Serial number</td>
<td></td>
<td></td>
<td>67730-358</td>
</tr>
</tbody>
</table>

Content of the report

- Page 1: General informations
- Page 2: Summary of the comparison results
- Page 3: Calculation of the national standard vs reference standard first relationship
- Page 4: Calculation of the national standard vs reference standard second relationship
- Page 5: Data reporting sheet - first comparison of the transfer standard vs the national standard
- Page 7: Calibration of the transfer standard by the reference standard at the BIPM
- Page 9: Data reporting sheet - second comparison of the transfer standard vs the national standard
- Page 11: Uncertainty budgets

This workbook contains macros. It is recommended not to use them.

Please complete the cells containing blue stars only.
After completion of the appropriate section of this report, please send to Joëlle Viallon by email (jviallon@bipm.org), fax (+33 1 45342021), or mail (BIPM, Pavillon de Breteuil, F-92312 Sèvres)
comparison national standard (RS) vs reference standard (NS)

Summary of comparison results

Equation \[x_{NS} = a_{NS,RS} x_{RS} + b_{NS,RS} \]

Least-square regression parameters

<table>
<thead>
<tr>
<th></th>
<th>(a_{NS,RS})</th>
<th>(u(a_{NS,RS}))</th>
<th>(b_{NS,RS}) (nmol/mol)</th>
<th>(u(b_{NS,RS})) (nmol/mol)</th>
<th>(u(a,b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>first comparison</td>
<td>1.0021</td>
<td>0.0043</td>
<td>0.16</td>
<td>0.97</td>
<td>-3.10E-03</td>
</tr>
<tr>
<td>second comparison</td>
<td>1.0025</td>
<td>0.0042</td>
<td>0.20</td>
<td>0.97</td>
<td>-3.05E-03</td>
</tr>
</tbody>
</table>

Degrees of equivalence at 80 nmol/mol and 420 nmol/mol:

<table>
<thead>
<tr>
<th></th>
<th>Nom value (nmol/mol)</th>
<th>(D_i) (nmol/mol)</th>
<th>(u(D_i)) (nmol/mol)</th>
<th>(U(D_i)) (nmol/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>first comparison</td>
<td>80</td>
<td>0.02</td>
<td>1.95</td>
<td>3.91</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>0.58</td>
<td>2.42</td>
<td>4.85</td>
</tr>
<tr>
<td>second comparison</td>
<td>80</td>
<td>0.30</td>
<td>1.95</td>
<td>3.90</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>1.26</td>
<td>2.43</td>
<td>4.86</td>
</tr>
</tbody>
</table>

Degrees of equivalence at all measured values (k=2)
Calculation of the National Standard vs Reference Standard comparison results through the first National Standard vs Transfer Standard comparison

First comparison results

<table>
<thead>
<tr>
<th>Nominal value</th>
<th>National standard measurement results</th>
<th>Transfer standard measurement results</th>
<th>Reference Standard predicted values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x_{NS}) nmol/mol</td>
<td>(u(x_{NS})) nmol/mol</td>
<td>(x_{TS}) nmol/mol</td>
</tr>
<tr>
<td>0</td>
<td>-0.07</td>
<td>0.28</td>
<td>0.37</td>
</tr>
<tr>
<td>220</td>
<td>216.35</td>
<td>0.69</td>
<td>217.78</td>
</tr>
<tr>
<td>80</td>
<td>81.43</td>
<td>0.37</td>
<td>82.59</td>
</tr>
<tr>
<td>420</td>
<td>419.27</td>
<td>1.26</td>
<td>422.77</td>
</tr>
<tr>
<td>120</td>
<td>119.36</td>
<td>0.45</td>
<td>120.21</td>
</tr>
<tr>
<td>320</td>
<td>319.17</td>
<td>0.97</td>
<td>322.18</td>
</tr>
<tr>
<td>30</td>
<td>32.34</td>
<td>0.30</td>
<td>32.82</td>
</tr>
<tr>
<td>370</td>
<td>367.57</td>
<td>1.11</td>
<td>370.22</td>
</tr>
<tr>
<td>170</td>
<td>174.50</td>
<td>0.58</td>
<td>176.09</td>
</tr>
<tr>
<td>500</td>
<td>497.01</td>
<td>1.48</td>
<td>499.87</td>
</tr>
<tr>
<td>270</td>
<td>274.82</td>
<td>0.85</td>
<td>276.87</td>
</tr>
<tr>
<td>0</td>
<td>0.20</td>
<td>0.28</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Reference standard predicted values are deduced from the transfer standard measurement results using the calibration performed at the BIPM, with the parameters calculated in Excel Worksheet 4 (page 7)

\[
x'_{RS} = a_{RS,TS} x_{TS} + b_{RS,TS}
\]

\[
u(x'_{RS}) = \sqrt{a_{RS,TS}^2 \cdot u(x_{TS})^2 + x_{TS}^2 \cdot u(a_{RS,TS})^2 + b_{RS,TS}^2 \cdot u(b_{RS,TS})^2 + 2 \cdot x_{TS} \cdot u(a_{RS,TS} \cdot b_{RS,TS})}
\]

\[
a_{RS,TS} = 0.9915
\]

\[
b_{RS,TS} (\text{nmol/mol}) = -0.49, u(a, b) = -2.79 \cdot 10^{-4}
\]

\[
u(a, b) = 0.0017, u(b_{RS,TS}) (\text{nmol/mol}) = 0.26
\]

Degrees of Equivalence

\[
D_i = x_{NS} - x'_{RS}
\]

<table>
<thead>
<tr>
<th>Point Number</th>
<th>Nom value (nmol/mol)</th>
<th>(D_i) (nmol/mol)</th>
<th>(u(D_i)) (nmol/mol)</th>
<th>(U(D_i)) (nmol/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.06</td>
<td>1.94</td>
<td>3.88</td>
</tr>
<tr>
<td>2</td>
<td>220</td>
<td>0.90</td>
<td>2.07</td>
<td>4.13</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>0.02</td>
<td>1.95</td>
<td>3.91</td>
</tr>
<tr>
<td>4</td>
<td>420</td>
<td>0.58</td>
<td>2.42</td>
<td>4.85</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>0.66</td>
<td>1.97</td>
<td>3.95</td>
</tr>
<tr>
<td>6</td>
<td>320</td>
<td>0.23</td>
<td>2.22</td>
<td>4.45</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>0.29</td>
<td>1.94</td>
<td>3.88</td>
</tr>
<tr>
<td>8</td>
<td>370</td>
<td>0.99</td>
<td>2.31</td>
<td>4.63</td>
</tr>
<tr>
<td>9</td>
<td>170</td>
<td>0.40</td>
<td>2.02</td>
<td>4.04</td>
</tr>
<tr>
<td>10</td>
<td>500</td>
<td>1.88</td>
<td>2.60</td>
<td>5.20</td>
</tr>
<tr>
<td>11</td>
<td>270</td>
<td>0.79</td>
<td>2.15</td>
<td>4.30</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0.35</td>
<td>1.94</td>
<td>3.88</td>
</tr>
</tbody>
</table>

Least-square regression parameters

\[
a_{NS,RS}, \quad u(a_{NS,RS}), \quad b_{NS,RS}, \quad u(b_{NS,RS}), \quad u(a, b)
\]

\[
a_{NS,RS} = 1.0020913, \quad u(a_{NS,RS}) = 0.0042672, \quad b_{NS,RS} = 0.1605729, \quad u(b_{NS,RS}) = 0.9721339, \quad u(a, b) = -0.0030998
\]
Calculation of the National Standard vs Reference Standard comparison results through the second National Standard vs Transfer Standard comparison

Second comparison results

<table>
<thead>
<tr>
<th>Nominal value</th>
<th>National standard measurement results</th>
<th>Transfer standard measurement results</th>
<th>Reference Standard predicted values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x_{NS} nmol/mol</td>
<td>$u(x_{NS})$ nmol/mol</td>
<td>x_{TS} nmol/mol</td>
</tr>
<tr>
<td>0</td>
<td>0.11</td>
<td>0.28</td>
<td>0.30</td>
</tr>
<tr>
<td>220</td>
<td>235.65</td>
<td>0.74</td>
<td>237.29</td>
</tr>
<tr>
<td>80</td>
<td>79.95</td>
<td>0.36</td>
<td>80.82</td>
</tr>
<tr>
<td>420</td>
<td>423.76</td>
<td>1.27</td>
<td>426.62</td>
</tr>
<tr>
<td>120</td>
<td>123.15</td>
<td>0.46</td>
<td>124.24</td>
</tr>
<tr>
<td>320</td>
<td>319.38</td>
<td>0.97</td>
<td>321.63</td>
</tr>
<tr>
<td>30</td>
<td>29.89</td>
<td>0.29</td>
<td>30.18</td>
</tr>
<tr>
<td>370</td>
<td>372.48</td>
<td>1.12</td>
<td>375.16</td>
</tr>
<tr>
<td>170</td>
<td>174.77</td>
<td>0.58</td>
<td>176.71</td>
</tr>
<tr>
<td>500</td>
<td>510.08</td>
<td>1.52</td>
<td>513.45</td>
</tr>
<tr>
<td>270</td>
<td>279.01</td>
<td>0.86</td>
<td>280.57</td>
</tr>
<tr>
<td>0</td>
<td>0.04</td>
<td>0.28</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Reference standard predicted values are deduced from the transfer standard measurement results using the calibration performed at the BIPM, with the parameters calculated in Excel Worksheet 4 (page 7)

\[
x'_{RS} = a_{RS,TS} x_{TS} + b_{RS,TS}
\]

\[
\begin{align*}
\hat{a}_{RS,TS} &= 0.9915 \\
\hat{u}(\hat{a}_{RS,TS}) &= 0.0017 \\
\hat{b}_{NS,TS} &\text{nmmol/mol} \\
\hat{u}(\hat{b}_{NS,TS}) &= -0.49 \\
\hat{u}(a,b) &= -2.79E-04
\end{align*}
\]

Degrees of Equivalence

\[
D_i = x_{NS} - x'_{RS}
\]

<table>
<thead>
<tr>
<th>Point Number</th>
<th>Nominal value (nmol/mol)</th>
<th>D_i (nmol/mol)</th>
<th>$u(D_i)$ (nmol/mol)</th>
<th>$U(D_i)$ (nmol/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.30</td>
<td>1.94</td>
<td>3.88</td>
</tr>
<tr>
<td>2</td>
<td>220</td>
<td>0.87</td>
<td>2.09</td>
<td>4.18</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>0.30</td>
<td>1.95</td>
<td>3.90</td>
</tr>
<tr>
<td>4</td>
<td>420</td>
<td>1.26</td>
<td>2.43</td>
<td>4.86</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>0.46</td>
<td>1.98</td>
<td>3.95</td>
</tr>
<tr>
<td>6</td>
<td>320</td>
<td>0.97</td>
<td>2.22</td>
<td>4.45</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>0.45</td>
<td>1.94</td>
<td>3.88</td>
</tr>
<tr>
<td>8</td>
<td>370</td>
<td>1.01</td>
<td>2.32</td>
<td>4.65</td>
</tr>
<tr>
<td>9</td>
<td>170</td>
<td>0.05</td>
<td>2.02</td>
<td>4.04</td>
</tr>
<tr>
<td>10</td>
<td>500</td>
<td>1.48</td>
<td>2.63</td>
<td>5.27</td>
</tr>
<tr>
<td>11</td>
<td>270</td>
<td>1.32</td>
<td>2.16</td>
<td>4.31</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0.15</td>
<td>1.94</td>
<td>3.88</td>
</tr>
</tbody>
</table>

Least-square regression parameters

\[
\begin{align*}
\hat{a}_{NS,RS} &= 1.0024796 \\
\hat{u}(\hat{a}_{NS,RS}) &= 0.0042105 \\
\hat{b}_{NS,RS} &\text{nmmol/mol} \\
\hat{u}(\hat{b}_{NS,RS}) &= 0.1950085 \\
\hat{u}(a,b) &= 0.9718066 \\
\hat{u}(a,b) &= -0.0030489
\end{align*}
\]
Data reporting sheet

First comparison of transfer standard (TS) vs national standard (NS)

<table>
<thead>
<tr>
<th>Operator</th>
<th>CARMEN SANCHEZ</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison begin date / time</td>
<td>14.11.12 / 14:17</td>
<td>Comparison end date / time</td>
</tr>
</tbody>
</table>

Measurement results

<table>
<thead>
<tr>
<th>Nominal value</th>
<th>x_{TS} nmol/mol</th>
<th>s_{TS} nmol/mol</th>
<th>$u(x_{TS})$ nmol/mol</th>
<th>x_{NS} nmol/mol</th>
<th>s_{NS} nmol/mol</th>
<th>$u(x_{NS})$ nmol/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.37</td>
<td>0.11</td>
<td>1.92</td>
<td>-0.07</td>
<td>0.13</td>
<td>0.28</td>
</tr>
<tr>
<td>220</td>
<td>217.78</td>
<td>0.67</td>
<td>1.94</td>
<td>216.35</td>
<td>0.37</td>
<td>0.69</td>
</tr>
<tr>
<td>80</td>
<td>82.59</td>
<td>0.32</td>
<td>1.92</td>
<td>81.43</td>
<td>0.50</td>
<td>0.37</td>
</tr>
<tr>
<td>420</td>
<td>422.77</td>
<td>0.58</td>
<td>2.01</td>
<td>419.27</td>
<td>0.64</td>
<td>1.26</td>
</tr>
<tr>
<td>120</td>
<td>120.21</td>
<td>0.29</td>
<td>1.93</td>
<td>119.36</td>
<td>0.30</td>
<td>0.45</td>
</tr>
<tr>
<td>320</td>
<td>322.18</td>
<td>0.88</td>
<td>1.97</td>
<td>319.17</td>
<td>0.46</td>
<td>0.97</td>
</tr>
<tr>
<td>30</td>
<td>32.82</td>
<td>0.10</td>
<td>1.92</td>
<td>32.34</td>
<td>0.21</td>
<td>0.30</td>
</tr>
<tr>
<td>370</td>
<td>370.22</td>
<td>0.45</td>
<td>1.99</td>
<td>367.57</td>
<td>0.32</td>
<td>1.11</td>
</tr>
<tr>
<td>170</td>
<td>176.09</td>
<td>0.40</td>
<td>1.94</td>
<td>174.50</td>
<td>0.51</td>
<td>0.58</td>
</tr>
<tr>
<td>500</td>
<td>499.87</td>
<td>0.93</td>
<td>2.04</td>
<td>497.01</td>
<td>0.89</td>
<td>1.48</td>
</tr>
<tr>
<td>270</td>
<td>276.87</td>
<td>0.71</td>
<td>1.96</td>
<td>274.82</td>
<td>0.86</td>
<td>0.85</td>
</tr>
<tr>
<td>0</td>
<td>0.34</td>
<td>0.08</td>
<td>1.92</td>
<td>0.20</td>
<td>0.23</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Note: according to the protocol, these measurement results are the last TS-NS comparison measurement results recorded.

Covariance terms in between two measurement results of the national standard:

Equation: $u(x_i, x_j) = \alpha \cdot x_i \cdot x_j$

Value of α: 0.00E+00

Comparison conditions

- **Ozone generator manufacturer**: NIST
- **Ozone generator type**: NIST-SRP
- **Ozone generator serial number**: SRP22
- **Room temperature (min-max) / °C**: 19.2 °C - 20.3 °C
- **Room pressure (average) / hpa**: 93.1 hPa
- **Zero air source**: Air compressor with scrubbers for NOx, VOCs, O3
- **Reference air flow rate (L/min)**: 5 l/min
- **Sample flow rate (L/min)**: 5 l/min
- **Instruments stabilisation time**: 48 hours
- **Instruments acquisition time /s (one measurement)**: 1 min.
- **Instruments averaging time /s**: SRP22: none, TEI49CPS: 1 min.
- **Total time for ozone conditioning**: 2 hours
- **Ozone mole fraction during conditioning**: 500 nmol/mol ± 15 nmol/mol
- **Comparison repeated continously (Yes/No)**: Yes
- **If no, ozone mole fraction in between the comparison repeats**: ***
- **Total number of comparison repeats realised**: 7
Instruments checks and adjustments

National Standard

INSTRUMENTS CHECKS:

- Pressure
- Temperature
- Scaler Test
- Scaler Test with shutter
- Stability

NO ADJUSTMENT WAS NECESSARY

Transfer Standard

INSTRUMENTS CHECKS:

- Pressure
- Temperatures: Bench and lamp UV
- Flows
- Intensities

NO ADJUSTMENT WAS NECESSARY
calibration of the transfer standard (TS) by the reference standard (RS)

Operator

F. Idrees

Location

CHEM 9

Comparison begin date / time

18/12/2012 11:31

Comparison end date / time

20/12/2012 11:00

Calibration results

Equation

\[x_{RS} = a_{RS,TS} x_{TS} + b_{RS,TS} \]

Least-square regression parameters

<table>
<thead>
<tr>
<th></th>
<th>(a_{RS,TS})</th>
<th>(u(a_{RS,TS}))</th>
<th>(b_{RS,TS})</th>
<th>(u(b_{RS,TS}))</th>
<th>(u(a,b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_{RS})</td>
<td>0.9914904</td>
<td>0.0016604</td>
<td>-0.4875402</td>
<td>0.2606727</td>
<td>-0.0002786</td>
</tr>
</tbody>
</table>

(Least-square regression parameters will be computed by the BIPM using the software OzonE v2.0)

Measurement results

<table>
<thead>
<tr>
<th>Nominal value</th>
<th>(x_{TS}) nmol/mol</th>
<th>(s_{TS}) nmol/mol</th>
<th>(u(x_{TS})) nmol/mol</th>
<th>(x_{RS}) nmol/mol</th>
<th>(s_{RS}) nmol/mol</th>
<th>(u(x_{RS})) nmol/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.58</td>
<td>0.11</td>
<td>0.40</td>
<td>0.05</td>
<td>0.13</td>
<td>0.28</td>
</tr>
<tr>
<td>220</td>
<td>219.61</td>
<td>0.20</td>
<td>0.48</td>
<td>217.17</td>
<td>0.22</td>
<td>0.69</td>
</tr>
<tr>
<td>80</td>
<td>81.71</td>
<td>0.19</td>
<td>0.41</td>
<td>80.64</td>
<td>0.32</td>
<td>0.37</td>
</tr>
<tr>
<td>420</td>
<td>422.86</td>
<td>0.33</td>
<td>0.65</td>
<td>419.02</td>
<td>0.32</td>
<td>1.26</td>
</tr>
<tr>
<td>120</td>
<td>122.18</td>
<td>0.14</td>
<td>0.43</td>
<td>120.75</td>
<td>0.19</td>
<td>0.45</td>
</tr>
<tr>
<td>320</td>
<td>319.55</td>
<td>0.14</td>
<td>0.55</td>
<td>316.44</td>
<td>0.34</td>
<td>0.97</td>
</tr>
<tr>
<td>30</td>
<td>33.17</td>
<td>0.12</td>
<td>0.40</td>
<td>32.26</td>
<td>0.19</td>
<td>0.30</td>
</tr>
<tr>
<td>370</td>
<td>370.99</td>
<td>0.40</td>
<td>0.60</td>
<td>367.35</td>
<td>0.29</td>
<td>1.11</td>
</tr>
<tr>
<td>170</td>
<td>171.51</td>
<td>0.16</td>
<td>0.45</td>
<td>169.38</td>
<td>0.25</td>
<td>0.57</td>
</tr>
<tr>
<td>500</td>
<td>509.51</td>
<td>0.14</td>
<td>0.73</td>
<td>504.63</td>
<td>0.25</td>
<td>1.50</td>
</tr>
<tr>
<td>270</td>
<td>269.92</td>
<td>0.16</td>
<td>0.51</td>
<td>267.05</td>
<td>0.19</td>
<td>0.83</td>
</tr>
<tr>
<td>0</td>
<td>0.52</td>
<td>0.18</td>
<td>0.40</td>
<td>0.14</td>
<td>0.16</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Note: according to the protocol, these measurement results are the last TS-RS comparison measurement results

Covariance terms in between two measurement results of the reference standard

Equation

\[u(x_i, x_j) = \alpha \cdot x_i \cdot x_j \]

Value of \(\alpha \)

0.00E+00
Comparison conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone generator manufacturer</td>
<td>Environics</td>
</tr>
<tr>
<td>Ozone generator type</td>
<td>Model 6100</td>
</tr>
<tr>
<td>Ozone generator serial number</td>
<td>3128</td>
</tr>
<tr>
<td>Room temperature (min-max) / °C</td>
<td>22 - 23</td>
</tr>
<tr>
<td>Room pressure (average) / hpa</td>
<td>997 - 999</td>
</tr>
<tr>
<td>Zero air source</td>
<td>compressor + BekoKAT + dryer + Aadco 737-R</td>
</tr>
<tr>
<td>Reference air flow rate (L/min)</td>
<td>12</td>
</tr>
<tr>
<td>Sample flow rate (L/min)</td>
<td>10</td>
</tr>
<tr>
<td>Instruments stabilisation time</td>
<td>24 hours</td>
</tr>
<tr>
<td>Instruments acquisition time /s (one measurement)</td>
<td>5</td>
</tr>
<tr>
<td>Instruments averaging time /s</td>
<td>60 for the 49 CPS</td>
</tr>
<tr>
<td>Total time for ozone conditioning</td>
<td>20 hours</td>
</tr>
<tr>
<td>Ozone mole fraction during conditioning</td>
<td>850 nmol/mol</td>
</tr>
<tr>
<td>Comparison repeated continuously (Yes/No)</td>
<td>yes</td>
</tr>
<tr>
<td>If no, ozone mole fraction in between the comparison repeats</td>
<td></td>
</tr>
<tr>
<td>Total number of comparison repeats realised</td>
<td>21</td>
</tr>
<tr>
<td>Data files names and location</td>
<td>\chem83\D:\SRP\Data\2012\c121218001.xls to c121219010.xls</td>
</tr>
</tbody>
</table>

Instruments checks and adjustments

Reference Standard

As written in the procedure BIPM/CHEM-T-05.

Transfer Standard
Data reporting sheet
Second comparison of transfer standard (TS) vs national standard (NS)

<table>
<thead>
<tr>
<th>Operator</th>
<th>CARMEN SANCHEZ</th>
<th>Location</th>
<th>LAB 51.02.23A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison begin date / time</td>
<td>30/01/2013 / 8:44 h</td>
<td>Comparison end date / time</td>
<td>30/01/2013 / 21:56 h</td>
</tr>
</tbody>
</table>

Measurement results

<table>
<thead>
<tr>
<th>Nominal value</th>
<th>x_{TS} (nmol/mol)</th>
<th>s_{TS} (nmol/mol)</th>
<th>$u(x_{TS})$ (nmol/mol)</th>
<th>x_{NS} (nmol/mol)</th>
<th>s_{NS} (nmol/mol)</th>
<th>$u(x_{NS})$ (nmol/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.30</td>
<td>0.13</td>
<td>1.92</td>
<td>0.11</td>
<td>0.23</td>
<td>0.28</td>
</tr>
<tr>
<td>220</td>
<td>237.29</td>
<td>0.75</td>
<td>1.95</td>
<td>235.65</td>
<td>0.50</td>
<td>0.74</td>
</tr>
<tr>
<td>80</td>
<td>80.82</td>
<td>0.31</td>
<td>1.92</td>
<td>79.95</td>
<td>0.47</td>
<td>0.36</td>
</tr>
<tr>
<td>420</td>
<td>426.62</td>
<td>1.20</td>
<td>2.01</td>
<td>423.76</td>
<td>0.67</td>
<td>1.27</td>
</tr>
<tr>
<td>120</td>
<td>124.24</td>
<td>0.26</td>
<td>1.93</td>
<td>123.15</td>
<td>0.44</td>
<td>0.46</td>
</tr>
<tr>
<td>320</td>
<td>321.63</td>
<td>0.56</td>
<td>1.97</td>
<td>319.38</td>
<td>0.72</td>
<td>0.97</td>
</tr>
<tr>
<td>30</td>
<td>30.18</td>
<td>0.15</td>
<td>1.92</td>
<td>29.89</td>
<td>0.23</td>
<td>0.29</td>
</tr>
<tr>
<td>370</td>
<td>375.16</td>
<td>0.93</td>
<td>1.99</td>
<td>372.48</td>
<td>0.66</td>
<td>1.12</td>
</tr>
<tr>
<td>170</td>
<td>176.71</td>
<td>0.59</td>
<td>1.94</td>
<td>174.77</td>
<td>0.32</td>
<td>0.58</td>
</tr>
<tr>
<td>500</td>
<td>513.45</td>
<td>1.22</td>
<td>2.05</td>
<td>510.08</td>
<td>0.84</td>
<td>1.52</td>
</tr>
<tr>
<td>270</td>
<td>280.57</td>
<td>0.27</td>
<td>1.96</td>
<td>279.01</td>
<td>0.52</td>
<td>0.86</td>
</tr>
<tr>
<td>0</td>
<td>0.38</td>
<td>0.19</td>
<td>1.92</td>
<td>0.04</td>
<td>0.23</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Note: according to the protocol, these measurement results are the last TS-NS comparison measurement results recorded.

Covariance terms in between two measurement results of the national standard

Equation $u(x_i, x_j) = \alpha \cdot x_i \cdot x_j$ Value of α 0.00E+00

Comparison conditions

<table>
<thead>
<tr>
<th>Ozone generator manufacturer</th>
<th>NIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone generator type</td>
<td>NIST-SRP</td>
</tr>
<tr>
<td>Ozone generator serial number</td>
<td>SRP22</td>
</tr>
<tr>
<td>Room temperature (min-max) / °C</td>
<td>19.3 °C - 20.6 °C</td>
</tr>
<tr>
<td>Room pressure (average) / hpa</td>
<td>93.9 hPa</td>
</tr>
<tr>
<td>Zero air source</td>
<td>Air compressor with scrubbers for NOx, VOCs, O3</td>
</tr>
<tr>
<td>Reference air flow rate (L/min)</td>
<td>5 l/min</td>
</tr>
<tr>
<td>Sample flow rate (L/min)</td>
<td>5 l/min</td>
</tr>
<tr>
<td>Instruments stabilisation time</td>
<td>48 hours</td>
</tr>
<tr>
<td>Instruments acquisition time /s (one measurement)</td>
<td>1 min.</td>
</tr>
<tr>
<td>Instruments averaging time /s</td>
<td>SRP22: none, TEI49CPS: 1 min.</td>
</tr>
<tr>
<td>Total time for ozone conditioning</td>
<td>2 hours</td>
</tr>
<tr>
<td>Ozone mole fraction during conditioning</td>
<td>500 nmol/mol ± 15 nmol/mol</td>
</tr>
<tr>
<td>Comparison repeated contiuous (Yes/No)</td>
<td>Yes</td>
</tr>
<tr>
<td>If no, ozone mole fraction in between the comparison repeats</td>
<td>***</td>
</tr>
<tr>
<td>Total number of comparison repeats realised</td>
<td>5</td>
</tr>
</tbody>
</table>
Instruments checks and adjustments

National Standard

<table>
<thead>
<tr>
<th>INSTRUMENTS CHECKS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Scaler Test</td>
</tr>
<tr>
<td>Scaler Test with shutter</td>
</tr>
<tr>
<td>Stability</td>
</tr>
</tbody>
</table>

NO ADJUSTAMENT WAS NECESSARY

Transfer Standard

<table>
<thead>
<tr>
<th>INSTRUMENTS CHECKS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
</tr>
<tr>
<td>Temperatures: Bench and lamp UV</td>
</tr>
<tr>
<td>Flows</td>
</tr>
<tr>
<td>Intensities</td>
</tr>
</tbody>
</table>

NO ADJUSTAMENT WAS NECESSARY
Uncertainty budgets (description or reference)

<table>
<thead>
<tr>
<th>Component (y)</th>
<th>Distribution</th>
<th>Standard Uncertainty u(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeatability</td>
<td>Experimental standard deviation</td>
<td></td>
</tr>
<tr>
<td>Reproducibility</td>
<td>Rectangular</td>
<td>reproducibility/2√3</td>
</tr>
</tbody>
</table>

Repeatability: maximal value of the experimental standard deviation observed at ISCIII (s = 1.96 nmol/mol)

Reproducibility: difference between the maximum value of the slope of the regression line between the national standard and the transfer standard. Using a rectangular distribution, the standard relative uncertainty is 0.0012 x

The transfer standard uncertainty can be summarised by the formula:

\[
u_{PT} = \sqrt{(0.0012 x)^2 + (1.96)^2}\]
National Standard

<table>
<thead>
<tr>
<th>Component (y)</th>
<th>Source</th>
<th>Distribution</th>
<th>Standard Uncertainty</th>
<th>Combined standard uncertainty (u(y))</th>
<th>Sensitivity coefficient (c_i)</th>
<th>Contribution to (u(x)) ([c_i] \cdot u(y)) nmol/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Path (L_{opt})</td>
<td>Measurement Scale</td>
<td>Rectangular</td>
<td>0.0005 cm</td>
<td>0.52 cm</td>
<td>(- \frac{x}{L_{opt}})</td>
<td>(2.89 \times 10^{-3} x)</td>
</tr>
<tr>
<td></td>
<td>Repeatability</td>
<td>Normal</td>
<td>0.004 cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correction factor</td>
<td>Rectangular</td>
<td>0.52 cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure (P)</td>
<td>Pressure gauge</td>
<td>Rectangular</td>
<td>0.029 kPa</td>
<td>0.03 kPa</td>
<td>(- \frac{x}{P})</td>
<td>(3.37 \times 10^{-4} x)</td>
</tr>
<tr>
<td></td>
<td>Difference between cells</td>
<td>Rectangular</td>
<td>0.017 kPa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (T)</td>
<td>Temperature probe</td>
<td>Rectangular</td>
<td>0.029 K</td>
<td>0.07 K</td>
<td>(\frac{x}{T})</td>
<td>(2.29 \times 10^{-4} x)</td>
</tr>
<tr>
<td></td>
<td>Temperature gradient</td>
<td>Rectangular</td>
<td>0.058 K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio of intensities (D)</td>
<td>Scaler resolution</td>
<td>Rectangular</td>
<td>(8 \times 10^{-6})</td>
<td>2.4 \times 10^{-3}</td>
<td>(\frac{x}{D \ln(D)})</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>Repeatability</td>
<td>Triangular</td>
<td>(1.1 \times 10^{-5})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorption Cross section (\alpha)</td>
<td>Hearn value</td>
<td></td>
<td>1.22 \times 10^{-19} cm²/molecule</td>
<td>1.22 \times 10^{-19} cm²/molecule</td>
<td>(- \frac{x}{\alpha})</td>
<td>(1.06 \times 10^{-2} x)</td>
</tr>
</tbody>
</table>

\[
u(x) = \sqrt{(0.28)^2 + (2.92 \times 10^{-3} x)^2} \text{ nmol/mol}
\]

This numerical equation has been calculated without the uncertainty of absorption cross section.