Report on on-going CCL Key Comparison for the year 2014

Comparison of optical frequency and wavelength standards

CCL-K11

Final

Michael Matus (BEV),

Veselin Gavalyugov, Denita Tamakyarska (BIM),
Monludee Runusawud, Anusorn Tonmueanwai (NIMT),
Feng-Lei Hong, Jun Ishikawa (NMIJ),
Girija Moona, Rina Sharma (NPL-I),
Asep Hapiddin, Ahmad Mohamad Boynawan (KIM-LIPI)
Nasser Alqahtani, Mohammad Alfohaid (SASO),
Lennart Robertsson (BIPM)

Vienna, Austria, July 2016
Contents

1 Document control 3

2 Introduction 3

3 Organization 4

 3.1 Participants 4

 3.2 Schedule 5

4 Artefacts 5

 4.1 Description of artefacts 5

5 Measuring instructions 5

 5.1 Measurands 5

6 Results 6

 6.1 Results and standard uncertainties as reported by participants 6

7 Analysis 8

 7.1 Calculation of the KCRV 8

 7.2 Calculation of Degrees of Equivalence 9

 7.3 Discussion of results 9

 7.4 Linking of result to other comparisons 9

Appendix A Equipment and measuring processes of the participants 10
1 Document control

Final version Issued on 4 July 2016

2 Introduction

The metrological equivalence of national measurement standards and of calibration certificates issued by national metrology institutes is established by a set of key and supplementary comparisons chosen and organized by the Consultative Committees of the CIPM or by the regional metrology organizations in collaboration with the Consultative Committees.

The BIPM.L-K10 (K10) key comparison was initiated in 1993 to provide a basis for demonstrating equivalence of national realizations of wavelength-standards used for the realization of the definition of the metre according to the method (c) in what was called the Mise en Pratique (MeP, refers to the document “Practical realization of the definition of the metre”). Such a comparison seemed of particular importance since the whole field of dimensional metrology had to be traceable to such realizations of the metre. The K10 comparison took only the 633 nm He-Ne standards into consideration. The measurand of the comparison was the difference of the average frequency of the hyperfine components d, e, f, and g in the R(127) 11-5 line as obtained by matrix measurements. The frequency of the reference laser BIPM4 was used as the key comparison reference value, representing the value recommended in the MeP.

The situation for realization of the SI-metre has changed due to the introduction of new techniques for absolute frequency measurements. This has opened up the alternative method (b) in the MeP to realize a frequency/wavelength standard traceable to the SI-second. The practical consequences of this development are that at least two methods are at the moment being used to realize the metre, and that standards of different wavelengths, important for dimensional metrology applications, can now demonstrate traceability with relative ease. Considering these circumstances the 11th CCL meeting which was held in October 2003 at the BIPM decided to close the K10 comparison and initiate a new key comparison named BIPM.L-K11. First measurements in BIPM.L-K11 were made at the BIPM in May 2004. Results from BIPM.L-K10 and BIPM.L-K11 can be found at http://kcdb.bipm.org.

Subsequently, the CIPM has decided, that the comb-related work, which used to provide external services, should stop at the BIPM at the end of 2006. This decision had direct implications on the activity which supported the BIPM.L-K11 that consequently were closed down at the end of year 2006. A proposal for a new scheme for the comparison, based on a group of node-laboratories in the different RMOs and piloted by the Bundesamt für Eich- und Vermessungswesen (BEV, Austria) was therefore made. This proposal, which had been agreed on by the President of the CCL, was given support by the CIPM at its 95th meeting and was endorsed by the 13th meeting of CCL in September 2007. The technical protocol (available from the BIPM web page) defines the procedures to follow in this new comparison, now transferred to the CCL, and named CCL-K11.

This document constitutes the sixth final report for the ongoing key comparison CCL-K11.
3 Organization

3.1 Participants

Table 1. List of participant (and node) laboratories and their contacts.

<table>
<thead>
<tr>
<th>Laboratory Code</th>
<th>Contact person, Laboratory</th>
<th>Phone, Fax, email</th>
</tr>
</thead>
</table>
| BIM | Veselin Gavalyugov, Denita Tamakyarska | Tel. +359 2 9702760
e-mail: v.gavalyugov@bim.government.bg
d.tamakyarska@bim.government.bg |
| | Bulgarian Institute of Metrology
BIM
52-B. G.M. Dimitrov Blvd., 1040 Sofia
Bulgaria |
| SASO | Nasser Alqahtani, Mohammad Alfohaid | Tel. +966 11 4520000
e-mail: n.qahtani@saso.gov.sa |
| | Saudi Standards, Metrology & Quality Org.
SASO
P.O.Box: 3437 Riyadh 11471
Saudi Arabia |
| NPLI | Girija Moona, Rina Sharma
CSIR-National Physical Laboratory, India
NPLI
Dr. K.S. KRISHNAN MARG, New Delhi – 110012, India |
| | Tel. +91-9999112305
+91-1145608642
e-mail: moonag@mail.nplindia.org
girijamoona1@gmail.com |
| KIM-LIPI | Asep Hapiddin, Ahmad Mohamad Boynawan
Indonesian Institute of Sciences
Puslit KIM-LIPI
Kompleks PUSPIPTEK Serpong, Tangerang, Banten, Indonesia |
| | Tel. +62 217560033
e-mail: aseph@kim.lipi.go.id
boy@kim.lipi.go.id |
| NIMT | Monludee Ranusawud
National Institute of Metrology (Thailand)
NIMT
3/4 – 5 Moo 3, Klong 5, Klong Luang, Pathumthani 12120
Thailand |
| | Tel. +662 5775100
e-mail: monludee@nimt.or.th |
| BEV (pilot, node) | Michael Matus
Bundesamt für Eich- und Vermessungswesen
BEV
Arltgasse 35, 1160 Wien
Austria |
| | Tel. +43 1 21110 6540
Fax +43 1 21110 996000
e-mail: michael.matus@bev.gv.at |
| NMIJ (node) | Feng-Lei Hong, Jun Ishikawa
National Metrology Institute of Japan and
National Institute of Advanced Industrial Science and Technology
NMIJ, AIST
Tsukuba Central 3, Umezono 1-1-1, Tsukuba 305-8563
Japan |
| | Tel. +81-29-861-4275
e-mail: f.hong@aist.go.jp |
| BIPM (observer) | Lennart Robertsson
BIPM
Pavillon de Breteuil, 92312 Sèvres
France |
| | Tel. +33 1 45 07 70 53
Fax +33 1 45 34 20 21
e-mail: lroberts@bipm.org |
3.2 Schedule

Table 2 lists the measurements in chronological order, specifying the participants, the places and the dates. It is a characteristic of this comparison to receive the data immediately after completing the measurements which are performed in the respective node or host laboratories.

Table 2. Schedule of the comparison.

<table>
<thead>
<tr>
<th>RMO</th>
<th>Laboratory (country code)</th>
<th>Date of measurement</th>
<th>Node laboratory (place of measurements)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>EURAMET</td>
<td>BIM (BG)</td>
<td>June 2014</td>
<td>BEV</td>
<td>–</td>
</tr>
<tr>
<td>APMP</td>
<td>NPLI (IN)</td>
<td>July 2014</td>
<td>NMIJ (NIMT)</td>
<td>NIMT acting as host</td>
</tr>
<tr>
<td>APMP</td>
<td>KIM-LIPI (ID)</td>
<td>July 2014</td>
<td>NMIJ (NIMT)</td>
<td>NIMT acting as host</td>
</tr>
<tr>
<td>GULFMET</td>
<td>SASO (SA)</td>
<td>November 2014</td>
<td>BEV</td>
<td>–</td>
</tr>
</tbody>
</table>

4 Artefacts

4.1 Description of artefacts

Artefacts in this campaign are iodine stabilized HeNe-lasers at $\lambda \approx 633$ nm. Three of them are stabilized on the f component of the 127I$_2$ R(127) 11-5 transition. The laser from BIM however operates according to a different scheme: it outputs a free space beam, frequency offset locked to an internal MeP laser (stabilized on the e component). The offset frequency is fixed by the manufacturer and the internal laser is not accessible for measurements or characterisation. The designations of the artefacts, as chosen by the owner, are summarized in table 3.

Table 3. Artefacts participating.

<table>
<thead>
<tr>
<th>Laboratory (country code)</th>
<th>Designation of standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIM (BG)</td>
<td>WEO M200 1013</td>
<td>Non MeP, commercial, Winters Electro-Optics Inc., Model 200</td>
</tr>
<tr>
<td>NPLI (IN)</td>
<td>CSIR-NPL-I(1)</td>
<td>MeP, commercial, NEOARK, NEO-92SI-NF</td>
</tr>
<tr>
<td>KIM-LIPI (ID)</td>
<td>KIM-1</td>
<td>MeP, commercial, NEOARK, NEO-92SI</td>
</tr>
<tr>
<td>SASO (SA)</td>
<td>SASO-NMCC-1</td>
<td>MeP, commercial, Winters Electro-Optics Inc., Model 100</td>
</tr>
</tbody>
</table>

5 Measuring instructions

5.1 Measurands

Measurements reported here were either performed according to the so-called method m1 (Absolute frequency measurement traceable to the realisation of the SI second) or to method m3 (beat measurement on standard laser utilizing an AOM). Setups of the node laboratories are outlined in the appendices 1-4 of this report.

Initially to the actual measurements each participating laboratory had to state:

- The expected frequency of the standard, f_e. This should normally be the frequency used in their calibration service. It is either the recommended value or a value determined by some other means.
The standard uncertainty \(u_e \) of the expected value. This should be a value compatible with the uncertainty given in the CMC for this service.

- The operational parameters used to obtain the two values mentioned above (if applicable).

- Sensitivity coefficients with uncertainties for parameters appearing in the uncertainty budget for the standard (if applicable).

The stated frequency \(f_e \) is the actual measurand in this type of key comparison. It is compared on a per lab basis with the measured frequency \(f_m \) possibly corrected to the reference operational parameters as given below. One has to note, that the comparison is blind; the participant is not told the result of the measurement before stating his value for \(f_e \).

The standard uncertainty of the determined frequency is composed of two parts, one from the frequency measurement, \(u_0 \), and one from the uncertainty in the settings of the working (and other) parameters, \(u_p \). The latter, the uncertainties related to the standard itself are to be estimated by each operator in accordance with their quality system. The uncertainty stemming from the measurements, \(u_0 \), is estimated by the operator of the experiment alone, or together with personnel involved in the comparison, again in accordance with a quality procedure. These uncertainties are reported in sections D8 and D9 (of the Technical Protocol) and are given as standard uncertainties following GUM practice. The combined uncertainty of \(u_0 \) and \(u_p \), \(u_m \), reported in D10 are given as the root sum squares of \(u_0 \) and \(u_p \).

Table 4 gives the values used for the most important working parameters for each laser. Additional information can be found in the appendices.

Table 4

<table>
<thead>
<tr>
<th>Standard</th>
<th>Power in (\mu \text{W})</th>
<th>Modulation width (peak to peak) in MHz</th>
<th>(I_2) cold-finger temperature in °C</th>
<th>Cell wall temperature in °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEO M200 1013 †)</td>
<td>- (--)</td>
<td>- (--)</td>
<td>- (--)</td>
<td>- (--)</td>
</tr>
<tr>
<td>CSIR-NPL-I(1)</td>
<td>50 (25)</td>
<td>6,0 (0,3)</td>
<td>15,0 (0,2)</td>
<td>25 (5)</td>
</tr>
<tr>
<td>KIM-1</td>
<td>50 (25)</td>
<td>6,0 (0,3)</td>
<td>15,0 (0,2)</td>
<td>25 (5)</td>
</tr>
<tr>
<td>SASO-NMCC-1</td>
<td>148 (3)</td>
<td>5,99 (0,10)</td>
<td>14,9 (0,2)</td>
<td>28 (1)</td>
</tr>
</tbody>
</table>

†) the parameters are not accessible without special setup

6 Results

6.1 Results and standard uncertainties as reported by participants

The stated frequencies \(f_e \) and the measured frequencies \(f_m \) (see section 7) and \(f_m \) are given in table 5. The allocated standard uncertainties \(u_e \), \(u_0 \) and \(u_m \), respectively, are included in parenthesis. Two participant (NPLI and KIM-LIPI) estimate \(f_e \) and \(u_e \) by using the CIPM recommended values for the \(f \) component of the R(127) 11-5 transition. The remaining participants use other sources of knowledge to estimate these values (former calibrations).

The data from table 5 are used to calculate the final results according to equations (5-7). The results are given in table 6 and figure 1, respectively.
Table 5. Expected frequencies f_e, measured (uncorrected) frequencies f_0, and measured frequencies, corrected for influence of operational parameters f_m, together with the respective standard uncertainties of the values.

<table>
<thead>
<tr>
<th>Standard</th>
<th>$f_e (u_e)$ / kHz</th>
<th>$f_0 (u_0)$ / kHz</th>
<th>$f_m (u_m)$ / kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEO M200 1013</td>
<td>269 956 (17)</td>
<td>269 966,99 (0,07)</td>
<td>269 966,99 (0,07)</td>
</tr>
<tr>
<td>CSIR-NPL-I(1)</td>
<td>604 (10)</td>
<td>602 (11)</td>
<td>603,1 (11,0)</td>
</tr>
<tr>
<td>KIM-1</td>
<td>604 (10)</td>
<td>614,5 (11,0)</td>
<td>613,3 (11,1)</td>
</tr>
<tr>
<td>SASO-NMCC-1</td>
<td>606 (12)</td>
<td>606,52 (0,07)</td>
<td>606,14 (1,88)</td>
</tr>
</tbody>
</table>

Table 6. Degree of equivalence and E_n values for the standards.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Δf_r</th>
<th>$U_r = 2u_r$</th>
<th>$E_n = \Delta f_r / U_r$</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEO M200 1013</td>
<td>$-23,2 \times 10^{-12}$</td>
<td>$71,8 \times 10^{-12}$</td>
<td>$-0,32$</td>
</tr>
<tr>
<td>CSIR-NPL-I(1)</td>
<td>$+1,9 \times 10^{-12}$</td>
<td>$64,1 \times 10^{-12}$</td>
<td>$+0,03$</td>
</tr>
<tr>
<td>KIM-1</td>
<td>$-20,3 \times 10^{-12}$</td>
<td>$63,4 \times 10^{-12}$</td>
<td>$-0,32$</td>
</tr>
<tr>
<td>SASO-NMCC-1</td>
<td>$-0,3 \times 10^{-12}$</td>
<td>$51,3 \times 10^{-12}$</td>
<td>$-0,01$</td>
</tr>
</tbody>
</table>

Figure 1. Relative degree of equivalence for the standards. Error bars represent the relative expanded (for $k=2$) uncertainties $U_r(i)$.
7 Analysis

7.1 Calculation of the KCRV

It is a distinctive feature of this key comparison, that the KCRV is determined on a per participant basis. Thus each participant has its own KCRV which is used to test consistency.

Denote the measured (uncorrected) frequency f_0 with standard uncertainty u_0, and the measured frequency, corrected for influence of operational parameters f_m with standard uncertainty u_m. Then the following holds:

$$f_m = f_0 - \delta$$ \hspace{1cm} (1)

The symbol δ denotes the condensed information about the influence of the actual working parameters and other quantities on the laser frequency. A linear model is commonly used:

$$\delta = \sum_i s_i \cdot \Delta x_i + \sum_i \delta_i$$ \hspace{1cm} (2)

Where the s_i denote the sensitivity coefficients and Δx_i the deviations of the respective working parameters from the nominal values (care must be taken choosing the correct signs for both quantities). All other influence quantities (e.g. electronic offsets, cavity alignments, etc.) are modelled with the quantities δ_i. These have usually zero expectation values but non-zero uncertainties. The uncertainties are thus derived in a straightforward way as:

$$u_p = \sqrt{\left(\sum_i (s_i \cdot \Delta x_i)^2\right) + \left(\sum_i (s_i \cdot u(\delta_i))^2\right) + \sum_i (\delta_i)^2}$$ \hspace{1cm} (3)

and

$$u_m = \sqrt{u_p^2 + u_0^2}$$ \hspace{1cm} (4)

Denote the expected frequency f_e with standard uncertainty u_e, and the measured frequency, corrected for influence of operational parameters f_m with standard uncertainty u_m. In the nomenclature of the CIPM-MRA f_m (together with its standard uncertainty u_m) denotes the KCRV and f_e (together with its standard uncertainty u_e) the measurand.

For a particular standard, i, construct the dimensionless quantities

$$\Delta f_i = \frac{f_e(i) - f_m(i)}{f_m(i)}$$ \hspace{1cm} (5)

$$u_e(i) = \sqrt{\frac{u_e^2(i) + u_m^2(i)}{f_m(i)}}$$ \hspace{1cm} (6)

It must be noted that f_e and f_m should be transferred to the same (usually nominal) working parameters for the standard, which would be expected to coincide with those for which f_e is valid if no other instructions are given by the participating laboratory.
7.2 Calculation of Degrees of Equivalence

To test consistency between the measured values and the expected ones, hypothesis testing at a confidence level of 95% is to be performed. The result will serve as a basis for the review of the CMC and indicate the compatibility with the claimed capabilities. In this framework the “degree of equivalence” (DoE) can be obtained in the usual way. Thus the (relative) DoE is Δf_r (equ. 5) with its standard uncertainty u_r (equ. 6). The consistency can thus be checked by the following condition:

$$-1 \leq E_a = \frac{\Delta f_r(i)}{U_r(i)} \leq 1 \text{ with } U_r(i) = 2 \cdot u_r(i)$$

(7)

As discussed at the 14th CCL meeting, June 2009, it is neither necessary nor useful to determine a pairwise degree of equivalence. For all results reported the expanded uncertainty to a 95% confidence level can be obtained by multiplying the standard uncertainties with $k = 2$.

7.3 Discussion of results

Frequency measurements have been carried out on 4 national wavelength standards. A good agreement between the stated and the measured frequency values was found.

Two participants have respective CMC for this kind of service. For NPLI the comparison performance supports the claimed CMC uncertainty whereas, at the time of measurements, for BIM the CMC uncertainty were considerably smaller as the participant stated uncertainty for this comparison. The value published by BIM corresponds to an MeP laser whereas the current national standard is of different construction with a higher uncertainty.

During preparation of this document BIM had taken measures within EURAMET regarding an appropriate increase in their MRA-listed CMC uncertainty.

The homogenized data are summarized in table 7.

Table 7. Relative expanded uncertainties stated in this comparison versus published uncertainties in Appendix C of the KCDB. All values are recalculated to multiples of 10^{-12} for ease of comparison.

<table>
<thead>
<tr>
<th>Laboratory (country code)</th>
<th>$U_e = 2u_e$</th>
<th>U_{CMC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIM (BG)</td>
<td>$72 \cdot 10^{-12}$</td>
<td>$72 \cdot 10^{-12}$</td>
</tr>
<tr>
<td>NPLI (IN)</td>
<td>$42 \cdot 10^{-12}$</td>
<td>$42 \cdot 10^{-12}$</td>
</tr>
<tr>
<td>KIM-LIPI (ID)</td>
<td>$42 \cdot 10^{-12}$</td>
<td>—</td>
</tr>
<tr>
<td>SASO (SA)</td>
<td>$51 \cdot 10^{-12}$</td>
<td>—</td>
</tr>
</tbody>
</table>

CCL-K11 is not indented to derive a better value for any of the frequencies from the list of recommended radiations for the realisation of the metre and other optical frequency standards (formally known as MeP). Therefore it is not mandatory that f_e is a value out of this list, nor is it necessary to correct for the nominal working parameters. It is however necessary for each participant to follow his internal working procedures like for any calibration for the respective CMC entry.

7.4 Linking of result to other comparisons

Plotting the DoE of all participants in the same graph links the results of this on-going key comparison. This is possible even for different nominal frequencies since the DoE are defined as relative quantities.
Appendix A Equipment and measuring processes of the participants

Details on the individual equipment and standards can be found in the measurement reports collated in the appendices 1 to 4 of the supplementary data to this report. These files are electronic copies; the respective node laboratories keep the signed originals.