Final Report of CCAUV.V-K3: Key comparison in the field of Acceleration on the complex voltage sensitivity

2016-11-18

This report was updated on 11 July 2017 to include some editorial modifications improving the understanding of the text.

Authors:

SUN Qiao and YANG Lifeng, NIM China Claire Bartoli, LNE France Ian Veldman, NMISA South Africa

Co-Authors:

Gustavo P. Ripper, INMETRO Brazil Thomas Bruns, PTB Germany Torben Rask Licht, BKSV-DPLA Denmark Joanna Kolasa, GUM Poland Christian Hof, METAS Switzerland Guillermo Silva Pineda, CENAM Mexico Laurence Dickinson, NMIA Australia Akihiro OTA, NMIJ Japan Wan Sup Cheung, KRISS Republic of Korea Alexander Yankovsky, VNIIM Russia Federation Cui Shan, NMC A*STAR Singapore

Table of contents

1.	Introduction	. 3
2.	Participants	. 3
3.	Task and purpose of the comparison	. 4
4.	Transfer standard as artefacts	. 5
5.	Circulation of the artefacts	. 5
6.	Results of the monitoring measurements	. 6
7.	Results of the participants	12
8.	Degrees of equivalence with respect to the weighted mean	16
9.	Conclusion	41
10.	Acknowledgment	41
Bibli	ography	42
Anne	ex A - Technical protocol	43
Anne	x B : Measurement uncertainty Budget (MUB)	49

1. Introduction

This report presents the results of the first CCAUV comparison in the area of low-frequency 'vibration', which in this case means sinusoidal acceleration.

The participants have reached consensus and considered the weighted mean as the most appropriate method for this particular comparison to compute the key comparison reference values (KCRVs) and the degrees of equivalence (DoEs). Detailed analysis and application of the method for use of the weighted mean in comparisons in the field of vibration, is documented in the CCAUV.V-K1 report [1]. The calculation of the KCRVs is also in accordance with the Guidelines for CIPM key comparisons [2].

The Technical Protocol, published in 2015 [3], specifies in detail the aim, the task of the comparison, the conditions for the measurements, the transfer standard used, measurement instructions, time schedule and other items. A brief survey of the Technical Protocol is given in the following sections.

2. Participants

Fourteen metrology institutes (NMIs) from five Regional Metrology Organizations (RMOs) participated in the comparison. They are listed in chronological order of measurement in Table 2.1.

No.	Participant Laboratory	Acronym	Country	RMO	Calibration period (week/year)
1	National Institute of Metrology, China	NIM	China	APMP	35/2014 to 09/2016
2	Laboratoire National de Métrologie et d'Essais	LNE	France	EURAMET	37/2014 to 39/2014
3	Physikalisch-Technische Bundesanstalt	РТВ	Germany	EURAMET	40/2014 to 42/2014
4	Brüel & Kjaer Sound & Vibration Measurement Ltd - Danish Primary Laboratory for Acoustics Section	BKSV- DPLA	Denmark	EURAMET	43/2014 to 45/2014
5	Central Office of Measures	GUM	Poland	EURAMET	46/2014 to 48/2014
6	Swiss Federal Office of Metrology	METAS	Switzerland	EURAMET	49/2014 to 03/2015

Table 2.1: List of participants and schedule of CCAUV.V-K3

7	National Metrology Institute of South Africa	NMISA	South Africa	AFRIMETS	12/2015 to 14/2015
8	Instituto Nacional de Metrologia, Qualidade e Tecnologia	INMETRO	Brazil	SIM	15/2015 to 17/2015
9	Centro Nacional de Metrologia	CENAM	Mexico	SIM	18/2015 to 20/2015
10	National Measurement Institute of Australia	NMIA	Australia	APMP	21/2015 to 23/2015
11	National Metrology Institute of Japan	NMIJ	Japan	APMP	24/2015 to 26/2015
12	Korea Research Institute of Standards and Science	KRISS	Republic of Korea	APMP	27/2015 to 29/2015
13	D.I. Mendeleyev Institute for Metrology	VNIIM	Russia Federation	COOMET	30/2015 to 32/2015
14	National Metrology Centre, Agency for Science, Technology and Research	NMC A*STAR	Singapore	APMP	33/2015 to 35/2015

3. Task and purpose of the comparison

According to the rules set up by the CIPM MRA [4], the consultative committees of the CIPM have the responsibility to establish Degrees of Equivalence (DoEs) between the different measurement standards operated by the NMIs. This is done by conducting key comparisons (KC) on different levels of the international metrological infrastructure. The previous top level KCs in the field of vibration metrology, CCAUV.V-K1 was completed in the year 2001 in the frequency range 40 Hz to 5 kHz, and CCAUV.V-K2 was completed in the year 2014 in the frequency range 10 Hz to 10 kHz.

However, recent developments in technology and improvements at the NMIs have extended the low-frequency vibration limit of calibration capabilities down to 0.4 Hz and even down to 0.1 Hz or lower frequencies. Therefore during the 8th meeting of CCAUV in 2012, the decision was taken to make preparations for a further comparison targeted at the low frequency range.

In the field of vibration, this key comparison was organized in order to compare measurements of sinusoidal linear accelerations in the frequency range from 0.1 Hz to 40 Hz. Moreover, the complex sensitivity calibration and measurement capabilities (CMCs) of the participating laboratories for accelerometer calibration were to be examined and compared. It was the task of the comparison to measure the complex sensitivity of one accelerometer standard set (a quartz-flexure servo accelerometer of single-ended type and a signal conditioner) at different frequencies with acceleration

amplitudes as specified in Section 3. The results of this key comparison will, after approval of equivalence, serve as the foundation to stablish the Key Comparison Reference Values (KCRV) at low vibration frequency to determine the DoEs derived from three existing regional low frequency key comparisons. These DoEs will provide a supporting evidence for the registration of 'calibration and measurement capabilities' (CMC) in the framework of the CIPM MRA [4].

The results of this comparison are expected to provide direct support to CMCs related to the primary calibration of complex voltage sensitivity of both acceleration measuring chains and accelerometers at low frequencies. This support can be extended to a wider scope of measurements, including primary calibration of complex charge sensitivity and current sensitivity of accelerometers.

For the calibration of the accelerometer standard set, laser interferometry in compliance with method 3 of the international standard ISO 16063-11:1999 had to be applied in order to cover the entire frequency range. Specifically, the magnitude of the complex voltage sensitivity had to be given in millivolts per metre per second squared $(mV/(m/s^2))$ and phase shift in degrees (°) for the different measurement conditions specified in Section 4.

The reported complex sensitivities and associated uncertainties are then supposed to be used for the calculation of the DoEs between the participating NMI and the KCRVs.

4. Transfer standard as artefacts

For the purpose of the comparison the pilot laboratory selected one accelerometer of which monitoring data for six months were available and not included in any published international cooperation work.

- One transfer standard accelerometer (single-ended), type SA704, S/N 1040 (manufacturer: NIM).
- One signal conditioner, type MSA-I, S/N 02011001 (manufacturer: NIM).

The investigation of the long-term stability was continued throughout the circulation period. The results of the NIM stability measurements and other individual data of the transfer standards are given in Section 6.

5. Circulation of the artefacts

The accelerometer standard set was circulated in two loops with a measurement period of two weeks provided for each participating laboratory and one week for the monitoring measurements carried out by the pilot laboratory. At the beginning and the end of the circulation as well as between certain subsequent measurements of participating laboratories, the accelerometer standard set was measured by the pilot laboratory in order to monitor the stability of the accelerometer standard set.

The acceleration input range of the SA-704 is 600 m/s^2 and the highest environment shock is 1000 m/s^2 . Therefore, any violent drop could change its sensitivity or even damage it. The accelerometer standard set had to be hand-carried during transportation between participants with great caution.

6. Results of the monitoring measurements

Starting with calibration data in February 2014, the artefacts were monitored during the preparation period and the intervals of the comparison when it was back at the pilot laboratory. As a representative of the overall change, the measurements at several sample frequencies are presented in Figure 6.1 and Figure 6.2. These figures depict the stability of the artefact over time for the duration of the comparison.

It is worth noting that normalization was applied to the values between 0.1 Hz and 0.4 Hz. At these frequencies, the 20 dB gain option was selected on the conditioner, which gave a nominal voltage sensitivity of approximately $1300 \text{ mV/(m/s}^2)$. The pilot laboratory applied a -20 dB correction to all the results in the frequency range to allow direct comparison with the results reported for the frequencies higher than 0.4 Hz, for which a 0 dB gain was used.

Figure 6.1 Monitoring of the amplitude sensitivity over the comparison period

Figure 6.2 Monitoring of the phase sensitivity over the comparison period

A visual inspection of the above results indicates that the artefact was sufficiently stable during the whole period of the comparison.

7. Results of the participants

The following sections report the results submitted by the participants for the comparison to the pilot laboratory using the mandatory report spreadsheet. The results presented are in $mV/(m/s^2)$ for the magnitude and in degrees for the phase shift.

The axis of the vibration excitation was horizontal for all the participants of this comparison.

Note that VNIIM did not submit its results

7.1 Results for the magnitude of the complex sensitivity

It should be noted that the results for frequencies below 0.5 Hz in table 7.1 are the reported values by the participants after correction for the gain was applied by the pilot laboratory to all magnitude values reported.

Table 7.1.1	: Reported	participants'	results for	the mag	gnitude o	of the	accelerom	eter se	et with
relative exp	panded unc	ertainties (k	= 2)	•					

	NI	м	LN	E	PT	в	BKSV-	DPLA	GU	М
actual frequency	magnitude of voltage sensitivity	rel. exp. Unc.								
in Hz	mV/(m/s²)	%								
0.1	136.13	0.5			136.55	0.5	137.09	0.5		
0.125	136.30	0.5			136.59	0.5	136.84	0.5		
0.16	136.42	0.5			136.56	0.5	136.75	0.5		
0.2	136.49	0.5			136.57	0.3	136.72	0.4	138.03	0.9
0.25	136.53	0.5			136.55	0.3	136.66	0.4	137.56	0.9
0.315	136.55	0.5			136.54	0.3	136.65	0.4	137.24	0.9
0.4	136.57	0.2	136.84	0.3	136.53	0.2	136.63	0.4	137.04	0.5
0.5	136.63	0.2	136.68	0.3	136.45	0.2	136.55	0.4	136.85	0.5
0.63	136.64	0.2	136.68	0.3	136.46	0.2	136.57	0.4	136.80	0.5
0.8	136.59	0.2	136.59	0.3	136.47	0.2	136.56	0.4	136.72	0.5
1	136.59	0.2	136.56	0.3	136.48	0.2	136.52	0.4	136.70	0.4
1.25	136.57	0.2	136.59	0.3	136.48	0.2	136.54	0.4	136.68	0.4
1.60	136.56	0.2	136.59	0.3	136.48	0.2	136.54	0.4	136.67	0.4
2	136.52	0.2	136.58	0.3	136.49	0.2	136.53	0.4	136.67	0.4
2.50	136.57	0.2	136.58	0.3	136.47	0.2	136.53	0.4	136.67	0.4
3.15	136.58	0.2	136.58	0.3	136.47	0.2	136.55	0.4	136.66	0.4
4	136.58	0.2	136.60	0.3	136.48	0.2	136.55	0.4	136.67	0.4
5	136.56	0.2	136.60	0.3	136.47	0.2	136.57	0.4	136.70	0.3
6.3	136.60	0.2	136.62	0.3	136.49	0.2	136.58	0.4	136.72	0.3
8	136.63	0.2	136.64	0.3	136.53	0.2	136.62	0.4	136.76	0.3
10	136.69	0.2	136.69	0.3	136.56	0.1	136.67	0.4	136.83	0.3
12.5	136.78	0.2	136.76	0.3	136.64	0.1	136.75	0.4	136.85	0.3
16	136.98	0.2	136.90	0.3	136.80	0.1	136.89	0.4	137.00	0.3
20	136.91	0.2	137.10	0.3	137.04	0.1	137.10	0.4	137.20	0.3
25	137.26	0.2	137.37	0.3	137.37	0.1	137.32	0.5	137.49	0.3
31.5	137.82	0.2	137.83	0.3	137.88	0.1	137.80	0.5	137.93	0.3
40	138.56	0.2	138.49	0.3	138.63	0.1	138.93	0.5	138.59	0.3

	MET	TAS	NM	SA	INME	TRO	CEN	АМ	NM	IIA
actual frequency	magnitude of voltage sensitivity	rel. exp. Unc.								
in Hz	mV/(m/s²)	%								
0.1			140.96	0.6			136.97	0.7	137.03	0.2
0.125			139.24	0.6			136.94	0.7	136.88	0.2
0.16			138.33	0.6			136.86	0.7	136.80	0.2
0.2	136.52	0.31	137.71	0.6	136.84	0.25	136.81	0.5	136.76	0.2
0.25	136.58	0.31	137.31	0.6	136.75	0.25	136.70	0.5	136.72	0.2
0.315	136.64	0.31	137.03	0.6	136.69	0.25	136.63	0.5	136.70	0.2
0.4	136.66	0.31	136.86	0.6	136.63	0.25	136.63	0.5	136.67	0.2
0.5	136.61	0.31	136.58	0.3	136.55	0.25	136.37	0.3	136.57	0.2
0.63	136.63	0.31	136.52	0.3	136.56	0.25	136.30	0.3	136.56	0.2
0.8	136.62	0.31	136.49	0.3	136.52	0.25	136.29	0.3	136.56	0.2
1	136.63	0.30	136.50	0.3	136.51	0.25	136.35	0.3	136.55	0.2
1.25	136.62	0.30	136.51	0.3	136.50	0.25	136.39	0.3	136.56	0.2
1.60	136.62	0.30	136.50	0.3	136.49	0.25	136.38	0.3	136.56	0.2
2	136.64	0.29	136.51	0.3	136.49	0.25	136.42	0.3	136.56	0.2
2.50	136.63	0.29	136.50	0.3	136.50	0.25	136.43	0.3	136.56	0.2
3.15	136.64	0.29	136.49	0.3	136.51	0.25	136.45	0.3	136.56	0.2
4	136.66	0.29	136.54	0.3	136.50	0.25	136.48	0.3	136.57	0.2
5	136.66	0.24	136.52	0.3	136.50	0.25	136.48	0.3	136.58	0.2
6.3	136.66	0.24	136.54	0.3	136.55	0.25	136.52	0.3	136.60	0.2
8	136.71	0.24	136.59	0.3	136.52	0.25	136.55	0.3	136.64	0.2
10	136.77	0.37	136.65	0.3	136.56	0.25	136.61	0.3	136.69	0.2
12.5	136.79	0.37	136.75	0.3	136.65	0.25	136.64	0.3	136.76	0.2
16	136.94	0.37	136.87	0.3	136.70	0.25	136.87	0.3	136.90	0.2
20	137.12	0.36	137.13	0.3	136.97	0.25	137.03	0.3	137.09	0.2
25	137.39	0.36	137.43	0.3	137.29	0.25	137.28	0.3	137.38	0.2
31.5	137.87	0.36	137.86	0.3	137.69	0.25	137.71	0.3	137.83	0.2
40	138.49	0.36	138.59	0.3	138.31	0.25	138.36	0.3	138.49	0.2

	NN	۸IJ	KR	ISS	VN	MII	A*S	TAR
actual frequency	magnitude of voltage sensitivity	rel. exp. Unc.						
in Hz	mV/(m/s²)	%	mV/(m/s²)	%	mV/(m/s²) %		mV/(m/s²)	%
0.1	136.65	0.15	138.66	0.20			136.30	0.56
0.125	136.65	0.15	137.86	0.15			136.55	0.52
0.16	136.65	0.15	137.32	0.10			136.71	0.51
0.2	136.65	0.15	137.07	0.10			136.77	0.40
0.25	136.64	0.15	136.86	0.10			136.75	0.40
0.315	136.64	0.15	136.75	0.10			136.73	0.40
0.4	136.63	0.15	136.66	0.10			136.69	0.27
0.5	136.54	0.15	136.61	0.10			136.63	0.27
0.63	136.54	0.15	136.57	0.10			136.67	0.27
0.8	136.54	0.15	136.56	0.10			136.61	0.27
1	136.54	0.15	136.55	0.10			136.58	0.29
1.25	136.54	0.15	136.55	0.10			136.60	0.29
1.60	136.54	0.15	136.54	0.10			136.59	0.29
2	136.54	0.15	136.55	0.10			136.60	0.29
2.50	136.55	0.15	136.55	0.10			136.61	0.30
3.15	136.55	0.15	136.57	0.10			136.62	0.30
4	136.56	0.15	136.59	0.10			136.64	0.30
5	136.58	0.15	136.63	0.10			136.68	0.31
6.3	136.59	0.15	136.68	0.10			136.70	0.31
8	136.62	0.15	136.58	0.10			136.73	0.31
10	136.67	0.15	136.60	0.10			136.76	0.33
12.5	136.75	0.15	136.70	0.10			136.84	0.32
16	136.89	0.15	136.70	0.10			136.96	0.35
20	137.09	0.15	136.71	0.10			137.15	0.33
25	137.38	0.15	136.98	0.10			137.43	0.31
31.5	137.77	0.2	137.59	0.10			137.88	0.31
40	138.47	0.2	138.25	0.10			138.59	0.29

7.2 Results for the phase of the complex sensitivity

Table 7.2.1: Reported participants' results for the phase shift of the accelerometer set with absolute expanded uncertainties (k = 2)

	NI	М	LN	IE	PT	В	BKSV	DPLA	GL	JM
actual frequency	phase of voltage sensitivity	abs. exp. Unc.	phase of voltage sensitivity	abs.exp. Unc.	phase of voltage sensitivity	abs.exp. Unc.	phase of voltage sensitivity	abs. exp. Unc.	phase of voltage sensitivity	abs. exp. Unc.
in Hz	in	1°	in	•	in	•	in	•	in	•
0.1	-0.35	0.20			-0.40	0.20	-0.38	0.30		
0.125	-0.43	0.20			-0.50	0.20	-0.46	0.30		
0.16	-0.55	0.20			-0.64	0.20	-0.55	0.30		
0.2	-0.68	0.20			-0.79	0.20	-0.68	0.30	-0.77	0.90
0.25	-0.85	0.20			-0.93	0.20	-0.85	0.30	-0.94	0.90
0.315	-1.07	0.20			-1.17	0.20	-1.09	0.30	-1.15	0.90
0.4	-1.36	0.20	-0.02	0.50	-1.48	0.20	-1.36	0.30	-1.42	0.50
0.5	-0.01	0.20	-0.02	0.50	-0.08	0.20	-0.02	0.30	-0.08	0.50
0.63	-0.04	0.20	-0.02	0.50	-0.08	0.20	-0.02	0.30	-0.07	0.50
0.8	0.01	0.20	-0.03	0.50	-0.09	0.20	-0.03	0.30	-0.07	0.50
1	-0.03	0.20			-0.08	0.20	-0.04	0.30	-0.07	0.50
1.25	-0.05	0.20			-0.10	0.20	-0.05	0.30	-0.07	0.50
1.60	-0.06	0.20			-0.12	0.20	-0.06	0.30	-0.08	0.50
2	-0.08	0.20	-0.09	0.50	-0.15	0.20	-0.07	0.30	-0.09	0.50
2.50	-0.10	0.20	-0.11	0.50	-0.14	0.20	-0.09	0.30	-0.10	0.50
3.15	-0.12	0.20	-0.14	0.50	-0.17	0.20	-0.12	0.30	-0.12	0.50
4	-0.16	0.20	-0.15	0.50	-0.22	0.20	-0.14	0.30	-0.15	0.50
5	-0.16	0.20	-0.19	0.50	-0.22	0.20	-0.18	0.30	-0.18	0.50
6.3	-0.23	0.20	-0.25	0.50	-0.28	0.20	-0.23	0.30	-0.23	0.50
8	-0.31	0.20	-0.30	0.50	-0.37	0.20	-0.29	0.30	-0.29	0.50
10	-0.37	0.20	-0.37	0.50	-0.43	0.20	-0.37	0.30	-0.37	0.50
12.5	-0.47	0.20	-0.47	0.50	-0.54	0.20	-0.47	0.30	-0.47	0.50
16	-0.62	0.20	-0.61	0.50	-0.71	0.20	-0.61	0.30	-0.60	0.50
20	-0.76	0.20	-0.78	0.50	-0.89	0.20	-0.80	0.30	-0.77	0.50
25	-0.96	0.20	-1.00	0.50	-1.15	0.20	-1.01	0.30	-1.00	0.50
31.5	-1.28	0.20	-1.34	0.50	-1.51	0.20	-1.38	0.50	-1.32	0.50
40	-1.84	0.20	-1.82	0.50	-2.06	0.20	-1.76	0.50	-1.81	0.50

	MET	ra s	NM	ISA	INME	TRO	CEN	АМ	NN	IIA
actual frequency	phase of voltage sensitivity	abs. exp. Unc.	phase of voltage sensitivity	abs.exp. Unc.	phase of voltage sensitivity	abs.exp. Unc.	phase of voltage sensitivity	abs. exp. Unc.	phase of voltage sensitivity	abs. exp. Unc.
in Hz	in	•	in	•	in	•	in	•	in	•
0.1			-0.38	0.40			-0.28	0.20	-0.37	0.30
0.125			-0.44	0.40			-0.25	0.20	-0.43	0.30
0.16			-0.55	0.40			-0.35	0.20	-0.54	0.30
0.2	-0.58	0.78	-0.68	0.40	-0.68	0.25	-0.42	0.20	-0.68	0.30
0.25	-0.76	0.78	-0.85	0.40	-0.84	0.25	-0.68	0.50	-0.85	0.30
0.315	-1.00	0.78	-1.07	0.40	-1.06	0.25	-0.83	0.50	-1.07	0.30
0.4	-1.30	0.78	-1.34	0.40	-1.35	0.25	-1.06	0.50	-1.35	0.30
0.5	0.02	0.78	-0.02	0.40	-0.02	0.25	-0.34	0.50	-0.02	0.30
0.63	0.01	0.78	-0.02	0.40	-0.02	0.25	-0.42	0.50	-0.02	0.30
0.8	0.00	0.78	-0.03	0.40	-0.03	0.25	-0.56	0.50	-0.03	0.30
1	-0.02	0.46	-0.04	0.40	-0.04	0.25	-0.68	0.50	-0.03	0.30
1.25	-0.03	0.46	-0.04	0.40	-0.04	0.25	-0.93	0.50	-0.04	0.30
1.60	-0.04	0.46	-0.06	0.40	-0.06	0.25	-1.17	0.50	-0.05	0.30
2	-0.06	0.46	-0.07	0.40	-0.07	0.25	-1.35	0.50	-0.06	0.30
2.50	-0.08	0.46	-0.09	0.40	-0.09	0.25	-1.59	0.50	-0.08	0.30
3.15	-0.10	0.46	-0.11	0.40	-0.11	0.25	-2.13	0.50	-0.10	0.30
4	-0.14	0.46	-0.14	0.40	-0.14	0.25	-2.70	0.50	-0.13	0.30
5	-0.18	0.46	-0.18	0.40	-0.18	0.25	-3.37	0.50	-0.16	0.30
6.3	-0.23	0.46	-0.23	0.40	-0.23	0.25	-4.36	0.50	-0.20	0.30
8	-0.29	0.46	-0.29	0.40	-0.30	0.25	-5.37	0.50	-0.28	0.30
10	-0.36	0.40	-0.37	0.80	-0.38	0.25	-6.71	0.50	-0.34	0.30
12.5	-0.47	0.40	-0.47	0.40	-0.48	0.25	-8.37	0.50	-0.42	0.30
16	-0.60	0.40	-0.60	0.50	-0.62	0.25	-10.72	0.50	-0.55	0.30
20	-0.76	0.41	-0.79	0.50	-0.84	0.25	-13.41	0.50	-0.69	0.30
25	-0.99	0.41	-1.04	0.50	-1.06	0.25	-16.69	0.50	-0.90	0.30
31.5	-1.30	0.41	-1.37	0.50	-1.38	0.25	-20.92	0.50	-1.22	0.30
40	-1.78	0.41	-1.90	0.50	-1.91	0.25	-26.55	0.50	-1.68	0.30

	NI	NIJ	KR	ISS	VN	IIM	A*S	TAR	
actual frequency	phase of voltage sensitivity	abs. exp. Unc.							
in Hz	in	•	in	•	ir	1°	in	in °	
0.1	-0.34	0.05	-0.01	0.20			-0.24	0.87	
0.125	-0.42	0.05	-0.01	0.10			-0.31	0.86	
0.16	-0.54	0.05	-0.02	0.10			-0.57	0.86	
0.2	-0.68	0.05	-0.02	0.10			-0.69	0.51	
0.25	-0.85	0.05	-0.03	0.10			-0.84	0.51	
0.315	-1.07	0.05	-0.04	0.10			-1.08	0.51	
0.4	-1.35	0.05	-0.05	0.10			-1.35	0.31	
0.5	-0.02	0.05	-0.05	0.10			-0.01	0.31	
0.63	-0.02	0.05	-0.07	0.10			-0.01	0.31	
0.8	-0.03	0.05	-0.09	0.10			-0.03	0.31	
1	-0.04	0.05	-0.10	0.10			-0.03	0.35	
1.25	-0.05	0.05	-0.13	0.10			-0.04	0.35	
1.60	-0.06	0.05	-0.17	0.10			-0.05	0.35	
2	-0.07	0.05	-0.20	0.10			-0.07	0.35	
2.50	-0.09	0.05	-0.25	0.10			-0.10	0.35	
3.15	-0.12	0.05	-0.31	0.10			-0.14	0.35	
4	-0.15	0.05	-0.39	0.10			-0.17	0.35	
5	-0.19	0.05	-0.48	0.10			-0.23	0.35	
6.3	-0.25	0.10	-0.60	0.10			-0.28	0.35	
8	-0.30	0.10	-0.76	0.10			-0.34	0.35	
10	-0.38	0.10	-0.95	0.10			-0.41	0.35	
12.5	-0.48	0.10	-1.18	0.10			-0.50	0.35	
16	-0.62	0.10	-1.55	0.10			-0.75	0.35	
20	-0.80	0.10	-1.92	0.10			-0.84	0.35	
25	-1.02	0.10	-2.44	0.10			-1.07	0.35	
31.5	-1.38	0.10	-3.10	0.10			-1.37	0.35	
40	-1.85	0.10	-4.10	0.10			-1.86	0.35	

8. Degrees of equivalence with respect to the weighted mean

The evaluation of the results was performed using a weighted mean computed with the following equations:

$$\boldsymbol{x}_{WM}(f) = \sum \frac{\boldsymbol{x}_{i}(f)}{u_{i}^{2}(f)} \cdot \left(\sum \frac{1}{u_{i}^{2}(f)}\right)^{-1}$$
(1)
$$\boldsymbol{u}_{WM}(f) = \left(\sum \frac{1}{u_{i}^{2}(f)}\right)^{-1/2}$$
(2)

where the WM was calculated using the results of the participants according to [1]. In the equations above the following symbols were used:

- $x_i(f)$ result of participant *i* at frequency *f*
- $u_i(f)$ absolute standard uncertainty of participant *i* at frequency *f*
- $x_{\text{WM}}(f)$ best estimate of the weighted mean (WM) sensitivity at frequency f
- $u_{WM}(f)$ estimated absolute standard uncertainty for the weighted mean (WM) at frequency f

Consistency checks were performed for phase and magnitude of the complex sensitivity. The test defined by Cox in [5, 6] was applied in order to determine the participants that are members of the largest consistent subset (LCS).

The key comparison reference values (KCRV) were finally determined by recalculating the WM using the participants that are members of the largest consistent subset (MoCS):

 $x_{\text{KCRV}}(f)$ best estimate of the KCRV at frequency f

 $u_{\text{KCRV}}(f)$ estimated absolute standard uncertainty of the KCRV at frequency f

Table 8.1 presents the results of the consistency test for both magnitude and phase results. Cells are highlighted in yellow when $X^2obs > X^2(nu)$.

Frenquency in Hz	number of participants	number of degrees of freedom	X²obs	X²(nu) with P<0,05	Frenquency in Hz	number of participants	number of degrees of freedom	X²obs	X²(nu) with P<0,05
0.1	8	7	107.81	14.07	0.1	8	7	0.92	14.07
0.125	8	7	39.68	14.07	0.125	8	7	3.67	14.07
0.16	8	7	16.87	14.07	0.16	8	7	4.61	14.07
0.2	11	10	13.22	18.31	0.2	11	10	7.97	18.31
0.25	11	10	5.66	18.31	0.25	11	10	1.19	18.31
0.315	11	10	2.37	18.31	0.315	11	10	1.99	18.31
0.4	12	11	3.65	19.68	0.4	12	11	31.39	19.68
0.5	13	12	3.44	21.03	0.5	13	12	2.24	21.03
0.63	13	12	3.89	21.03	0.63	13	12	3.53	21.03
0.8	13	12	2.69	21.03	0.8	13	12	5.99	21.03
1	13	12	1.88	21.03	1	12	11	7.65	19.68
1.25	13	12	1.46	21.03	1.25	12	11	14.24	19.68
1.60	13	12	1.47	21.03	1.60	12	11	23.12	19.68
2	13	12	1.26	21.03	2	13	12	30.96	21.03
2.50	13	12	1.31	21.03	2.50	13	12	42.94	21.03
3.15	13	12	1.35	21.03	3.15	13	12	74.32	21.03
4	13	12	1.40	21.03	4	13	12	119.37	21.03
5	13	12	2.52	21.03	5	13	12	184.72	21.03
6.3	13	12	2.83	21.03	6.3	13	12	287.62	21.03
8	13	12	2.24	21.03	8	13	12	438.37	21.03
10	13	12	3.66	21.03	10	13	12	684.74	21.03
12.5	13	12	2.89	21.03	12.5	13	12	1062.92	21.03
16	13	12	7.50	21.03	16	13	12	1749.25	21.03
20	13	12	21.37	21.03	20	13	12	2714.00	21.03
25	13	12	24.59	21.03	25	13	12	4206.20	21.03
31.5	13	12	11.32	21.03	31.5	13	12	6505.07	21.03
40	13	12	19.83	21.03	40	13	12	10327.75	21.03

Table 8.1 a: Results of the consistency test applied to all the results reported by the participants respectively for magnitude (left) and phase (right)

Table 8.1 b: Results of the consistency test applied to all the results reported by the largest consistent subset respectively for magnitude (left) and phase (right)

Frenquency in Hz	number of participants	number of degrees of freedom	X²obs	X²(nu) with P≺0,05	Frenquency in Hz	number of participants	number of degrees of freedom	X²obs	X²(nu) with P<0,05
0.1	7	6	11.37	12.59	0.1	8	7	0.92	14.07
0.125	7	6	4.03	12.59	0.125	8	7	3.67	14.07
0.16	7	6	1.73	12.59	0.16	8	7	4.61	14.07
0.2	11	10	13.22	18.31	0.2	11	10	7.97	18.31
0.25	11	10	5.66	19.68	0.25	11	10	1.19	18.31
0.315	11	10	2.37	19.68	0.315	11	10	1.99	18.31
0.4	12	11	3.65	21.03	0.4	12	11	3.10	19.68
0.5	13	12	3.44	21.03	0.5	13	12	2.24	21.03
0.63	13	12	3.89	21.03	0.63	13	12	3.53	21.03
0.8	13	12	2.69	21.03	0.8	13	12	5.99	21.03
1	13	12	1.88	21.03	1	12	11	7.65	19.68
1.25	13	12	1.46	21.03	1.25	12	11	14.24	19.68
1.60	13	12	1.47	21.03	1.60	11	10	4.23	18.31
2	13	12	1.26	21.03	2	13	12	5.92	21.03
2.50	13	12	1.31	21.03	2.50	13	12	8.52	21.03
3.15	13	12	1.35	21.03	3.15	13	12	12.16	21.03
4	13	12	1.40	21.03	4	13	12	19.34	21.03
5	13	12	2.52	21.03	5	11	10	0.29	18.31
6.3	13	12	2.83	21.03	6.3	11	10	0.32	18.31
8	13	12	2.24	21.03	8	11	10	0.52	18.31
10	13	12	3.66	21.03	10	11	10	0.37	18.31
12.5	13	12	2.89	21.03	12.5	11	10	0.55	18.31
16	13	12	7.50	21.03	16	11	10	1.53	18.31
20	12	11	2.56	19.68	20	11	10	1.72	18.31
25	12	11	1.57	19.68	25	11	10	2.90	18.31
31.5	13	12	11.32	21.03	31.5	11	10	3.99	18.31
40	13	12	19.83	21.03	40	11	10	6.00	18.31

The results presented in tables 7.1.1 and 7.2.1 marked with an asterisk (*) were considered as not within the LCS and were excluded from the calculation of the KCRV. It should be noted that KRISS's results from 0.1 Hz to 0.4 Hz did not contribute to the calculation of the KCRV because they did not use the same gain settings as all the other participants at those frequencies.

Table 8.1b presents the results of the consistency test applied to the results reported by the LCS respectively for magnitude (left) and phase (right).

For the further evaluation of the comparison, the unilateral degrees of equivalence with respect to the KCRV were calculated according to:

$$d_{i,KCRV}(f) = x_i(f) - x_{KCRV}(f)$$
(3)
$$u_{i,KCRV}^2(f) = \begin{cases} u_i^2(f) - u_{KCRV}^2(f) \text{ for results within the LCS} \\ u_i^2(f) + u_{KCRV}^2(f) \text{ for results not within the LCS} \end{cases}$$
(4)

These formulas were applied for both phase and magnitude results. In the subsequent tables 8.1.1 and 8.2.1, $U_i = 2 u_i$ and the results are marked using a light brown background when $d_{i,KCRV}(f) > 2 \cdot u_{i,KCRV}(f)$.

Unilateral DoEs obtained from results which were excluded from the largest consistent subset and which therefore did not contribute to the calculation of the KCRV are marked with an asterisk (*) in tables 8.1.1 and 8.2.1.

DoEs were not calculated for KRISS from 0.1 Hz to 0.4 Hz because they did not follow the specified signal conditioner settings stated for this frequency range. Therefore, these DoEs are not included in the Tables and graphs presented in sections 8.1 and 8.2.

8.1 Results for the magnitude of the complex sensitivity

Table 8.1.1: Unilateral degrees of equivalence for the magnitude of sensitivity with absolute expanded uncertainties (k = 2)

	KCRV		NIM		LI	NE	PTB		BK SV-DPLA		GUM		
actual frequency	XKCRV	UKCRV	d _{I,KCRV}	U	d _{I, KCRV}	U	d _{i,KCRV}	U	d _{i,KCRV}	UI,KCRV	d _{I,KCR/}	UI,KCRV	
in Hz	mV/(m/s²)	mV/(m/s²)	mV/(m/s²)		mV/(mV/(m/s²)		mV/(m/s²)		mV/(m/s²)	
0.1	136.75	0.15	-0.62	0.66			-0.20	0.67	0.34	0.67			
0.125	136.71	0.15	-0.41	0.67			-0.12	0.67	0.13	0.67			
0.16	136.69	0.15	-0.27	0.67			-0.13	0.67	0.06	0.67			
0.2	136.72	0.12	-0.23	0.67			-0.15	0.39	0.00	0.53	1.31	1.24	
0.25	136.68	0.12	-0.15	0.68			-0.13	0.40	-0.02	0.54	0.88	1.23	
0.315	136.66	0.12	-0.11	0.68			-0.12	0.40	-0.01	0.54	0.58	1.23	
0.4	136.64	0.10	-0.07	0.26	0.20	0.40	-0.11	0.26	-0.01	0.54	0.40	0.68	
0.5	136.58	0.08	0.05	0.26	0.10	0.40	-0.13	0.26	-0.03	0.54	0.27	0.68	
0.63	136.56	0.08	0.08	0.26	0.12	0.40	-0.10	0.26	0.01	0.54	0.24	0.68	
0.8	136.55	0.08	0.04	0.26	0.04	0.40	-0.08	0.26	0.01	0.54	0.17	0.68	
1	136.54	0.08	0.05	0.26	0.02	0.40	-0.06	0.26	-0.02	0.54	0.16	0.54	
1.25	136.54	0.08	0.03	0.26	0.05	0.40	-0.06	0.26	0.00	0.54	0.14	0.54	
1.60	136.54	0.08	0.02	0.26	0.05	0.40	-0.06	0.26	0.00	0.54	0.13	0.54	
2	136.54	0.08	-0.02	0.26	0.04	0.40	-0.05	0.26	-0.01	0.54	0.13	0.54	
2.50	136.55	0.08	0.02	0.26	0.03	0.40	-0.08	0.26	-0.02	0.54	0.12	0.54	
3.15	136.55	0.08	0.03	0.26	0.03	0.40	-0.08	0.26	0.00	0.54	0.11	0.54	
4	136.57	0.08	0.01	0.26	0.03	0.40	-0.09	0.26	-0.02	0.54	0.10	0.54	
5	136.59	0.08	-0.03	0.26	0.01	0.40	-0.12	0.26	-0.02	0.54	0.11	0.40	
6.3	136.62	0.08	-0.02	0.26	0.00	0.40	-0.13	0.26	-0.04	0.54	0.10	0.40	
8	136.61	0.08	0.02	0.26	0.03	0.40	-0.08	0.26	0.01	0.54	0.15	0.40	
10	136.63	0.07	0.06	0.26	0.06	0.40	-0.07	0.12	0.04	0.54	0.20	0.40	
12.5	136.71	0.07	0.07	0.26	0.05	0.40	-0.07	0.12	0.04	0.54	0.14	0.40	
16	136.82	0.07	0.16	0.26	0.08	0.40	-0.02	0.12	0.07	0.54	0.18	0.40	
20	137.06	0.08	-0.15	0.26	0.04	0.41	-0.02	0.12	0.04	0.54	0.14	0.41	
25	137.36	0.08	-0.10	0.26	0.01	0.40	0.01	0.11	-0.04	0.68	0.13	0.40	
31.5	137.77	0.07	0.05	0.27	0.06	0.41	0.11	0.12	0.03	0.69	0.16	0.41	
40	138 47	0.07	0.09	0.27	0.02	0.41	0.16	0.12	0.46	0.69	0.12	0.41	

	KCRV		METAS		NMISA		INMETRO		CENAM		NMIA		
actual frequency	XKCRV	UKCRV	d _{I,KCRV}	U	d _{I, KCRV}	U	d _{I,KCRV}	U	d _{i,KCRV}	UI,KCRV	d _{I,KCRV}	UI,KCRV	
in Hz	mV/	m/s²)	mV/(m/s²)	mV/(m/s²)		mV/(mV/(m/s²)		mV/(m/s²)		mV/(m/s²)	
0.1	136.75	0.15			4.21(*)	0.86(*)			0.22	0.95	0.28	0.23	
0.125	136.71	0.15			2.53(*)	0.84(*)			0.23	0.95	0.17	0.23	
0.16	136.69	0.15			1.64(*)	0.84(*)			0.17	0.95	0.11	0.23	
0.2	136.72	0.12	-0.20	0.41	0.99	0.82	0.12	0.32	0.09	0.67	0.04	0.25	
0.25	136.68	0.12	-0.10	0.41	0.63	0.82	0.07	0.33	0.02	0.68	0.04	0.26	
0.315	136.66	0.12	-0.02	0.41	0.37	0.82	0.03	0.33	-0.03	0.68	0.04	0.26	
0.4	136.64	0.10	0.02	0.42	0.22	0.82	-0.01	0.33	-0.01	0.68	0.03	0.26	
0.5	136.58	0.08	0.03	0.42	0.00	0.40	-0.03	0.33	-0.21	0.40	-0.01	0.26	
0.63	136.56	0.08	0.07	0.42	-0.04	0.40	0.00	0.33	-0.26	0.40	0.00	0.26	
0.8	136.55	0.08	0.07	0.42	-0.06	0.40	-0.03	0.33	-0.26	0.40	0.01	0.26	
1	136.54	0.08	0.09	0.40	-0.04	0.40	-0.03	0.33	-0.19	0.40	0.01	0.26	
1.25	136.54	0.08	0.08	0.40	-0.03	0.40	-0.04	0.33	-0.15	0.40	0.02	0.26	
1.60	136.54	0.08	0.08	0.40	-0.04	0.40	-0.05	0.33	-0.16	0.40	0.02	0.26	
2	136.54	0.08	0.10	0.39	-0.03	0.40	-0.05	0.33	-0.12	0.40	0.02	0.26	
2.50	136.55	0.08	0.08	0.39	-0.05	0.40	-0.05	0.33	-0.12	0.40	0.01	0.26	
3.15	136.55	0.08	0.09	0.39	-0.06	0.40	-0.04	0.33	-0.10	0.40	0.01	0.26	
4	136.57	0.08	0.09	0.39	-0.03	0.40	-0.07	0.33	-0.09	0.40	0.00	0.26	
5	136.59	0.08	0.07	0.32	-0.07	0.40	-0.09	0.33	-0.11	0.40	-0.01	0.26	
6.3	136.62	0.08	0.04	0.32	-0.08	0.40	-0.07	0.33	-0.10	0.40	-0.02	0.26	
8	136.61	0.08	0.10	0.32	-0.02	0.40	-0.09	0.33	-0.06	0.40	0.03	0.26	
10	136.63	0.07	0.14	0.50	0.02	0.40	-0.07	0.33	-0.02	0.40	0.06	0.26	
12.5	136.71	0.07	0.08	0.50	0.04	0.40	-0.06	0.33	-0.07	0.40	0.05	0.26	
16	136.82	0.07	0.12	0.50	0.05	0.40	-0.12	0.33	0.05	0.40	0.08	0.26	
20	137.06	0.08	0.06	0.49	0.07	0.41	-0.09	0.34	-0.03	0.41	0.03	0.26	
25	137.36	0.08	0.03	0.49	0.07	0.40	-0.07	0.33	-0.08	0.40	0.02	0.26	
31.5	137.77	0.07	0.10	0.49	0.09	0.41	-0.08	0.34	-0.06	0.41	0.06	0.27	
40	138 47	0.07	0.02	0.49	0.12	0 41	-0.16	0.34	-0.11	0.41	0.02	0.27	

	KCRV		NMIJ		KR	KRISS		IIM	A*STAR	
actual frequency	XKCRV	UKCRV	d _{I,KCRV} U _{I,KCRV}		d _{i, kcrv}	U	d _{i,KCRV}	U	d _{i,KCRV}	UI,KCRV
in Hz	mV/(m/s²)	mV/(m/s²)	mV/(m/s²)		mV/(m/s²)		mV/(m/s²)	
0.1	136.75	0.15	-0.10	0.14					-0.45	0.75
0.125	136.71	0.15	-0.06	0.14					-0.16	0.69
0.16	136.69	0.15	-0.04	0.14					0.02	0.68
0.2	136.72	0.12	-0.07	0.17					0.05	0.53
0.25	136.68	0.12	-0.04	0.18					0.07	0.54
0.315	136.66	0.12	-0.02	0.18					0.07	0.54
0.4	136.64	0.10	-0.01	0.19					0.05	0.36
0.5	136.58	0.08	-0.04	0.19	0.03	0.11			0.05	0.36
0.63	136.56	0.08	-0.02	0.19	0.01	0.11			0.11	0.36
0.8	136.55	0.08	-0.01	0.19	0.01	0.11			0.06	0.36
1	136.54	0.08	0.00	0.19	0.01	0.11			0.04	0.39
1.25	136.54	0.08	0.00	0.19	0.01	0.11			0.06	0.39
1.60	136.54	0.08	0.00	0.19	0.00	0.11			0.05	0.39
2	136.54	0.08	0.00	0.19	0.01	0.11			0.06	0.39
2.50	136.55	0.08	0.00	0.19	0.00	0.11			0.06	0.40
3.15	136.55	0.08	0.00	0.19	0.02	0.11			0.07	0.40
4	136.57	0.08	-0.01	0.19	0.02	0.11			0.07	0.40
5	136.59	0.08	-0.01	0.19	0.04	0.11			0.09	0.42
6.3	136.62	0.08	-0.03	0.19	0.06	0.11			0.08	0.42
8	136.61	0.08	0.01	0.19	-0.03	0.11			0.12	0.42
10	136.63	0.07	0.04	0.19	-0.03	0.12			0.13	0.45
12.5	136.71	0.07	0.04	0.19	-0.01	0.12			0.13	0.43
16	136.82	0.07	0.07	0.19	-0.12	0.12			0.14	0.47
20	137.06	0.08	0.03	0.19	-0.35(*)	0.12(*)			0.09	0.45
25	137.36	0.08	0.02	0.19	-0.38(*)	0.16(*)			0.07	0.42
31.5	137.77	0.07	0.00	0.27	-0.18	0.12			0.11	0.42
40	138.47	0.07	0.00	0.27	-0.22	0.12			0.12	0.40

Figure 8.1.1 : Deviation of the magnitude from the KCRV for all frequencies of the comparison with expanded uncertainties $U_{i,\text{KCRV}}$ (k = 2)

8.2 Results for the phase of the complex sensitivity

Table 8.2.1: Unilateral degrees of equivalence for the phase of sensitivity with absolute expanded uncertainties (k = 2)

	KCRV		N	IM	LNE		PTB		BK SV-DPLA		GUM	
actual trequency	XKCRV	UKCRV	d _{I,KCRV}	ULKCRV	d _{I,KCRV}	UI, KCRV	d _{I,KCRV}	ULKCRV	d _{I,KCRV}	UI,KCRV	d _{I, KCRV}	ULKCRV
in Hz	i	n°	in °		in °		in °		in °		in °	
0.1	-0.34	0.04	-0.01	0.19			-0.06	0.19	-0.04	0.30		
0.125	-0.42	0.04	-0.01	0.19			-0.08	0.19	-0.04	0.30		
0.16	-0.54	0.04	-0.01	0.19			-0.10	0.19	-0.01	0.30		
0.2	-0.67	0.04	-0.01	0.20			-0.12	0.20	-0.01	0.30	-0.10	0.90
0.25	-0.85	0.04	0.00	0.19			-0.08	0.19	0.00	0.30	-0.09	0.90
0.315	-1.07	0.04	0.00	0.19			-0.10	0.19	-0.02	0.30	-0.08	0.90
0.4	-1.36	0.04	0.00	0.20	1.34(*)	0.50(*)	-0.12	0.20	0.00	0.30	-0.06	0.50
0.5	-0.03	0.04	0.02	0.20	0.01	0.50	-0.05	0.20	0.01	0.30	-0.05	0.50
0.63	-0.03	0.04	-0.01	0.20	0.01	0.50	-0.05	0.20	0.01	0.30	-0.04	0.50
0.8	-0.04	0.04	0.05	0.20	0.01	0.50	-0.05	0.20	0.01	0.30	-0.03	0.50
1	-0.05	0.04	0.02	0.20			-0.03	0.20	0.01	0.30	-0.02	0.50
1.25	-0.07	0.04	0.02	0.20			-0.03	0.20	0.02	0.30	0.00	0.50
1.60	-0.08	0.04	0.02	0.20			-0.04	0.20	0.02	0.30	0.00	0.50
2	-0.09	0.04	0.01	0.20	0.00	0.50	-0.06	0.20	0.02	0.30	0.00	0.50
2.50	-0.12	0.04	0.02	0.20	0.01	0.50	-0.02	0.20	0.03	0.30	0.02	0.50
3.15	-0.15	0.04	0.03	0.20	0.01	0.50	-0.02	0.20	0.03	0.30	0.03	0.50
4	-0.19	0.04	0.03	0.20	0.04	0.50	-0.03	0.20	0.05	0.30	0.04	0.50
5	-0.19	0.04	0.03	0.20	0.00	0.50	-0.03	0.20	0.01	0.30	0.01	0.50
6.3	-0.25	0.07	0.02	0.19	0.00	0.50	-0.03	0.19	0.02	0.29	0.02	0.50
8	-0.31	0.07	0.00	0.19	0.01	0.50	-0.06	0.19	0.02	0.29	0.02	0.50
10	-0.38	0.07	0.01	0.19	0.01	0.50	-0.05	0.19	0.01	0.29	0.01	0.50
12.5	-0.48	0.07	0.01	0.19	0.01	0.50	-0.06	0.19	0.01	0.29	0.01	0.50
16	-0.63	0.07	0.01	0.19	0.02	0.50	-0.08	0.19	0.02	0.29	0.03	0.50
20	-0.80	0.07	0.04	0.19	0.02	0.50	-0.09	0.19	0.00	0.29	0.03	0.50
25	-1.03	0.07	0.07	0.19	0.03	0.50	-0.12	0.19	0.02	0.29	0.03	0.50
31.5	-1.37	0.07	0.09	0.19	0.03	0.50	-0.14	0.19	-0.01	0.50	0.05	0.50
40	-1.87	0.07	0.03	0.39	0.05	0.49	_0.19	0.19	0.11	0 49	0.06	0 49

	KC	RV	ME	TAS	NM	IISA	IN ME	TRO	CEI	MAM	NMIA	
actual trequency	XKCRV	UKCRV	d _{i,KCRV}	UI, KCRV	d _{I,KCRV}	ULKCRV	d _{I,KCRV}	U	d _{I,KCRV}	ULKCRV	d _{I, KCRV}	ULKCRV
in Hz	i	n°	in °		in °		in °		in °		in °	
0.1	-0.34	0.04			-0.04	0.40			0.06	0.19	-0.03	0.30
0.125	-0.42	0.04			-0.02	0.40			0.17	0.19	-0.01	0.30
0.16	-0.54	0.04			-0.01	0.40			0.19	0.19	0.00	0.30
0.2	-0.67	0.04	0.09	0.78	-0.01	0.40	-0.01	0.25	0.25	0.20	-0.01	0.30
0.25	-0.85	0.04	0.09	0.78	0.00	0.40	0.01	0.25	0.17	0.50	0.00	0.30
0.315	-1.07	0.04	0.07	0.78	0.00	0.40	0.01	0.25	0.24	0.50	0.00	0.30
0.4	-1.36	0.04	0.06	0.78	0.02	0.40	0.01	0.25	0.30	0.50	0.01	0.30
0.5	-0.03	0.04	0.05	0.78	0.01	0.40	0.01	0.25	-0.31	0.50	0.01	0.30
0.63	-0.03	0.04	0.04	0.78	0.01	0.40	0.01	0.25	-0.39	0.50	0.01	0.30
0.8	-0.04	0.04	0.04	0.78	0.01	0.40	0.01	0.25	-0.52	0.50	0.01	0.30
1	-0.05	0.04	0.03	0.46	0.01	0.40	0.01	0.25	-0.63	0.50	0.02	0.30
1.25	-0.07	0.04	0.04	0.46	0.03	0.40	0.03	0.25	-0.86	0.50	0.03	0.30
1.60	-0.08	0.04	0.04	0.46	0.02	0.40	0.02	0.25	-1.09(*)	0.50(*)	0.03	0.30
2	-0.09	0.04	0.03	0.46	0.02	0.40	0.02	0.25	-1.25(*)	0.50(*)	0.03	0.30
2.50	-0.12	0.04	0.04	0.46	0.03	0.40	0.03	0.25	-1.47(*)	0.50(*)	0.04	0.30
3.15	-0.15	0.04	0.05	0.46	0.04	0.40	0.04	0.25	-1.98(*)	0.50(*)	0.05	0.30
4	-0.19	0.04	0.05	0.46	0.05	0.40	0.05	0.25	-2.51(*)	0.50(*)	0.06	0.30
5	-0.19	0.04	0.01	0.46	0.01	0.40	0.01	0.25	-3.18(*)	0.50(*)	0.03	0.30
6.3	-0.25	0.07	0.02	0.45	0.02	0.39	0.02	0.24	-4.11(*)	0.50(*)	0.05	0.29
8	-0.31	0.07	0.02	0.45	0.02	0.39	0.01	0.24	-5.06(*)	0.50(*)	0.03	0.29
10	-0.38	0.07	0.02	0.39	0.01	0.80	0.00	0.24	-6.33(*)	0.50(*)	0.04	0.29
12.5	-0.48	0.07	0.01	0.39	0.01	0.39	0.00	0.24	-7.89(*)	0.50(*)	0.06	0.29
16	-0.63	0.07	0.03	0.39	0.03	0.50	0.01	0.24	-10.09(*)	0.50(*)	0.08	0.29
20	-0.80	0.07	0.04	0.40	0.01	0.50	-0.04	0.24	-12.61(*)	0.50(*)	0.11	0.29
25	-1.03	0.07	0.04	0.40	-0.01	0.50	-0.03	0.24	-15.66(*)	0.50(*)	0.13	0.29
31.5	-1.37	0.07	0.07	0.40	0.00	0.50	-0.01	0.24	-19.55(*)	0.50(*)	0.15	0.29
40	-1.87	0.07	0.09	0.40	-0.03	0.49	-0.04	0.24	-24.68(*)	0.50(*)	0.19	0.29

	KCRV		NMIJ		KRISS		VN	IIM	A*STAR	
actual frequency	XKCRV	UKCRV	d _{i,kcrv}	UI,KCRV	d _{I,KCRV}	ULKCRV	d _{I, KCRV}	U	d _{I, KCRV}	U
in Hz	ir	۱°	in °		in °		in °		in °	
0.1	-0.34	0.04	0.00	0.02					0.10	0.87
0.125	-0.42	0.04	0.00	0.02					0.11	0.86
0.16	-0.54	0.04	0.00	0.02					-0.03	0.86
0.2	-0.67	0.04	-0.01	0.02					-0.02	0.51
0.25	-0.85	0.04	0.00	0.02					0.01	0.51
0.315	-1.07	0.04	0.00	0.02					-0.01	0.51
0.4	-1.36	0.04	0.01	0.02					0.01	0.31
0.5	-0.03	0.04	0.01	0.03	-0.02	0.09			0.02	0.31
0.63	-0.03	0.04	0.01	0.03	-0.04	0.09			0.02	0.31
0.8	-0.04	0.04	0.01	0.03	-0.05	0.09			0.01	0.31
1	-0.05	0.04	0.01	0.03	-0.05	0.09			0.02	0.35
1.25	-0.07	0.04	0.02	0.03	-0.06	0.09			0.03	0.35
1.60	-0.08	0.04	0.02	0.03	-0.09	0.09			0.03	0.35
2	-0.09	0.04	0.02	0.03	-0.11	0.09			0.02	0.35
2.50	-0.12	0.04	0.03	0.03	-0.13	0.09			0.02	0.35
3.15	-0.15	0.04	0.03	0.03	-0.16	0.09			0.01	0.35
4	-0.19	0.04	0.04	0.03	-0.20	0.09			0.02	0.35
5	-0.19	0.04	0.00	0.02	-0.29(*)	0.09(*)			-0.04	0.35
6.3	-0.25	0.07	0.00	0.07	-0.35(*)	0.12(*)			-0.03	0.34
8	-0.31	0.07	0.01	0.07	-0.45(*)	0.12(*)			-0.03	0.34
10	-0.38	0.07	0.00	0.07	-0.57(*)	0.12(*)			-0.03	0.34
12.5	-0.48	0.07	0.00	0.07	-0.70(*)	0.12(*)			-0.02	0.34
16	-0.63	0.07	0.01	0.07	-0.92(*)	0.12(*)			-0.12	0.34
20	-0.80	0.07	0.00	0.07	-1.12(*)	0.12(*)			-0.04	0.34
25	-1.03	0.07	0.01	0.07	-1.41(*)	0.12(*)			-0.04	0.34
31.5	-1.37	0.07	-0.01	0.07	-1.73(*)	0.12(*)			0.00	0.34
40	-1.87	0.07	0.02	0.07	-2.23(*)	0.12(*)			0.01	0.34

Figure 8.2.1: Deviation of the phase from the KCRV for all frequencies of the comparison with expanded uncertainties $U_{i,\text{KCRV}}$ (k = 2)

9. Conclusion

The first low-frequency CIPM key comparison CCAUV.V-K3 in vibration revealed the current calibration capabilities of the 14 participants of five RMOs.

All but one of the participating laboratories provided their calibration results, which were mostly consistent within their declared expanded uncertainties for magnitude results. Only two participants failed to contribute to the KCRV values calculated for five frequencies out of a total of twenty-seven comparison frequencies.

For phase shift, the situation was notably worse. Three participants could not contribute to the calculation of the KCRV values in a total of sixteen frequencies. Better understanding of their calibration devices and more reasonable evaluation of their calibration uncertainties will provide more accurate and reliable measurement results in the future.

10. Acknowledgment

The authors gratefully acknowledge all the participating institutes for their cooperation and support.

Bibliography

- [1] von Martens, H.-J. et al., Final report on key comparison CCAUV.V-K1, 2003, Metrologia, 40, Tech. Suppl. 09001.
- [2] Guidelines for CIPM key comparisons (Appendix F to the "Mutual recognition of national measurements standards and of measurement certificates issued by national metrology institutes" (MRA)). March 1, 1999.
- [3] Technical Protocol of the CCAUV Key comparison CCAUV.V-K3 (Second version). NIM, Qiao Sun, 2015.
- [4] Guide to the implementation of the CIPM MRA CIPM-MRA-G-01 VERSION 1.2. June, 2013.
- [5] M.G. Cox, The evaluation of key comparison data, Metrologia, 2002, volume 39, p 589-595.
- [6] M.G. Cox, The evaluation of key comparison data: determining a largest consistent subset, Metrologia, 2007, 44, 187-200.

Annex A - Technical protocol (Second version)

Technical Protocol of CIPM Key Comparison CCAUV.V-K3

1 Task and Purpose of the Comparison

According to the rules set up by the CIPM MRA, the consultative committees of the CIPM have the responsibility to establish 'degrees of equivalence' (DoE) between the different measurement standards operated by the national NMIs. This is done by conducting key comparisons (KC) on different levels of the international metrological infrastructure. The previous top level KC in the field of Vibration metrology, CCAUV.V-K1 was completed in the year 2001 in the frequency range from 40 Hz to 5 kHz. The ongoing CCAUV.V-K2 is aimed at frequency range from 10 Hz to 10 kHz.

However, recent developments in technology and improvements at the NMIs have extended the low frequency vibration limit of calibration capabilities down to 0.4 Hz and even to 0.1 Hz and lower. Therefore during the meeting of CCAUV in 2012, the decision was taken to make preparations for a further comparison targeted at a low frequency range.

In the field of vibration, this key comparison is organized in order to compare measurements of sinusoidal linear accelerations in the frequency range from 0.1 Hz to 40 Hz. Moreover, the complex sensitivity calibration and measurement capabilities (CMCs) of the participating laboratories for accelerometer calibration are to be examined and compared. It is the task of the comparison to measure the complex sensitivity of one accelerometer standard set (including a quartz-flexure servo accelerometer of single-ended type and a signal conditioner) at different frequencies with acceleration amplitudes as specified in section 3. The results of this key comparison will, after approval of equivalence, serve as the foundation at low vibration frequency for DoE derived from three existing regional low frequency supplementary comparisons and the registration of 'calibration and measurement capabilities' (CMC) in the framework of the CIPM MRA.

For the calibration of the accelerometer standard set, laser interferometry in compliance with method 3 of the international standard ISO 16063-11:1999 has to be applied, in order to cover the entire frequency range. Specifically, the magnitude of the complex voltage sensitivity shall be given in milli volt per meter per second squared $(mV/(m/s^2))$ and phase shift in degree for the different measurement conditions specified in section 4.

The reported complex sensitivities and associated uncertainties are then supposed to be used for the calculation of the DoE between the participating NMI and the key comparison reference value.

2 Pilot Laboratory

Pilot laboratory for this CIPM Key comparison is

Vibration and Gravity Laboratory Mechanics and Acoustics Metrology Division National Institute of Metrology, P.R. China BeiSanHuanDongLu 18, ChaoYang District, 100013 Beijing, P.R. China

This is the delivery address for the set of artefact and the written and signed reports.

Contact Persons are

SUN Qiao	YANG Lifeng
Tel.: +86 10 64524623	Tel.: +86 10 64524606
e-mail: sunq@nim.ac.cn	e-mail: yanglf@nim.ac.cn
Fax: +86 10	0 64218628

Co-Pilot laboratories for this key comparison are

Laboratoire national de metrologie et d'essais and

National Metrology Institute of South Africa

Contact Persons are

Claire Bartoli	Ian Veldman
e-mail: claire.bartoli@lne.fr	e-mail: csveldman@nmisa.org
Tel.: +33 1 30 69 13 76	Tel.: +27 12 841 4008
Fax: +33 1 30 69 12 34	Fax: +27 86 509 0831

3 Device under Test and Measurement Conditions

For the calibration task of this comparison, one quartz-flexure accelerometer set will be circulated between the participating laboratories. The accelerometer set is one 'single ended' (SE) type, namely SA 704 (SN: *to be confirmed*), with a signal conditioner, namely MSA-I (SN: 02011001).

The accelerometer set is to be calibrated of its complex voltage sensitivity according to those procedures and conditions implemented by the laboratory in conformance with ISO 16063-11 which provides magnitude and phase shift information of the artefact. The complex sensitivities reported shall be for the accelerometer set, including all effects from the signal conditioner.

The frequency range of the measurements was agreed to be from 0.1 Hz to 40 Hz. Specifically, the laboratories are supposed to measure at the following frequencies (all values in Hz).

0.1, 0.125, 0.16, 0.2, 0.25, 0.315, 0.4, 0.5, 0.63, 0.8, 1, 1.25, 1.6, 2, 2.5, 3.15, 4, 5, 6.3, 8, 10, 12.5, 16, 20, 25, 31.5, 40.

The mandatory frequency range is from 0.4 Hz to 40 Hz. The measurement conditions should be kept according to the laboratory's standard conditions for calibration of customers' accelerometers for claiming their best measurement capability or CMC where applicable. This presumes that these conditions comply with those defined by the applicable ISO documentary standards [1,2,3], simultaneously.

Specific conditions for the measurements of this comparison are:

- acceleration amplitudes: a range of 0.05 m/s^2 to 30 m/s^2 is recommended.
- ambient temperature and accelerometer temperature during the calibration: (23 ± 2) °C (actual values to be stated within tolerances of ± 0.3 °C).
- relative humidity: max. 75 % RH

4 Circulation Type, Schedule and Transportation

The transducer set is circulated in two loops with a measurement period of two weeks provided for each participating laboratory and one week for the pilot. At the beginning and the end of the circulation as well as between certain subsequent measurements of participating laboratories, the transducer set is measured at the pilot laboratory in order to fix reference values and to monitor the stability of the transducer set.

The schedule is planned as follows:

		Transportation
Dortiginant	Measurement	to next
Participant	(calendar week)	Participant
		(calendar week)
NIM	35/2014*	36/2014
LNE	37-38/2014	39/2014
РТВ	40-41/2014	42/2014
BKSV-DPLA	43-44/2014	45/2014
GUM	46-47/2014	48/2014
METAS	49-50/2014	3/2015
NIM	4/2015	5/2015
-	6-7/2015	11/2015
NMISA	12-13/2015	14/2015
INMETRO	15-16/2015	17/2015
CENAM	18-19/2015	20/2015
NMIA	21-22/2015	23/2015
NMIJ	24-25/2015	26/2015
KRISS	27-28/2015	29/2015
VNIIM	30-31/2015	32/2015
A*STAR	33-34/2015	35/2015
NIM	36/2015	

* 35/2014 refers to the period from Aug 25th to Aug 31st 2014

The cost of transportation to the next participating laboratory shall be covered by the participating laboratory. The transducer set has to be sent hand-carried with great

caution. In case the transducer set gets damaged or lost during transportation, the participating laboratory for delivery should pay 4 000,- \in to pilot laboratory for the set.

5 Measurement and Analysis Instructions

The participating laboratories have to observe the following instructions:

- The motion of the quartz-flexure accelerometer should be measured on the moving part of horizontal vibration exciter, close to the accelerometer's mounting surface, since the mounting (reference) surface is usually not directly accessible.
- The mounting surface of the accelerometer and the moving part of the exciter must be slightly lubricated before mounting.
- The cable between accelerometer and signal conditioner should be taken from the set delivered to the laboratory.
- It is advised that the measurement results should be compiled from complete measurement series carried out at different days under nominally the same conditions, except that the accelerometer is remounted and the cable re-attached. The standard deviation of the subsequent measurements should be included in the report.

6 Communication of the Results to Pilot Laboratory

Each participating laboratory will submit one printed and signed calibration report for the accelerometer set to the pilot laboratory including the following:

- a description of the calibration systems used for the comparison and the mounting techniques for the accelerometer
- a description of the calibration methods used
- documented record of the ambient conditions during measurements
- the calibration results, including the relative expanded measurement uncertainty, and the applied coverage factor for each value
- a detailed uncertainty budget for the system covering all components of measurement uncertainty (calculated according to GUM [4,5]). Including, among others, information on the type of uncertainty (A or B), assumed distribution function and repeatability component.

In addition, the use of the electronic spreadsheets for reporting is mandatory. The format of spreadsheet will be provided by the pilot in due course. The consistency between the results in electronic form and the printed and signed calibration report is the responsibility of the participating laboratory. The data submitted in the electronic spreadsheet shall be deemed the official results submitted for the comparison.

The results have to be submitted to the pilot laboratory within four weeks after the measurements have been completed.

The pilot laboratory will submit its set of results to the executive secretary of CCAUV in advance to the first measurement of the participating laboratory.

7 Remarks on post processing

Presuming consistency of the results, the key comparison reference value and the degrees of equivalence will be calculated according to the established methods agreed upon already for CCAUV.V-K1.

References

- [1] ISO 16063-1:1998 'Methods for the calibration of vibration and shock transducers --Part 1: Basic concepts
- [2] ISO 16063-11:1999 'Methods for the calibration of vibration and shock transducers-- Part 11: Primary vibration calibration by laser interferometry'
- [3] ISO/IEC 17025:2005 'General requirements for the competence of testing and calibration laboratories'
- [4] ISO/IEC Guide 98-3:2008 'Uncertainty of measurement -- Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)
- [5] ISO/IEC Guide 98-3:2008/Suppl 1:2008 'Propagation of distributions using a Monte Carlo method'

Annex1: Items list and Settings of conditioning amplifier

I. Item list: 1. Accelerometer; 2. Conditioning amplifier; 3. Cable; 4. Power cord; 4. Power adapter; 5. Fixture; 6. ATA Carnet; 7.Technical protocol.

II. Procedure of zero setting of conditioning amplifier:

- 1. Using the knob of 'Zero Coarse' to adjust to the zero first;
- 2. Using the knob of 'Zero Fine' to adjust to the zero precisely;
- 3. Setting the gain to 100 and repeat steps 1 and 2, to get more precise value of zero if necessary.

Frequency	Filter Setup	Gain	Frequency	Filter Setup	Gain
Hz	Hz		Hz	Hz	
0.100	20	100	2.500	off	1
0.125	20	100	3.150	off	1
0.160	20	100	4.000	off	1
0.200	20	100	5.000	off	1
0.250	20	100	6.300	off	1
0.315	20	100	8.000	off	1
0.400	20	100	10.000	off	1
0.500	off	1	12.500	off	1
0.630	off	1	16.000	off	1
0.800	off	1	20.000	off	1
1.000	off	1	25.000	off	1
1.250	off	1	31.500	off	1
1.600	off	1	40.000	off	1
2.000	off	1	-	-	-

III. Other settings:.

"Input selection" switch on the MSA-I conditioning amplifier should be on "Current input".

Annex B : Measurement uncertainty Budget (MUB)

1 - NIM

											Certific	ate No	#REF!
	UNCERTAINTY	BUDGET	M	rix (UBN	•					•	Proced	ure No	AU V/V-0001
	Reference 1	Guide to the Expression	n of Uncert	inly in Meaunement, I	ins used by 21P	W, BC, IFCC	ISQ IUPAC, IUPA	9, OIML - 150 15	NOSO SE	2-61-101 55-51			
Tecoritation	Considiution (modulus) as not ISO 18082-11 motion 2	Ma ke & model:		Chir	na SA-704			.euu		0.1 LH 10	10.00		Me trologist
		Serta I number:			1040			i.		0.1 14 10			YANG Lifeng
	Mathematical Model:							S=1	i/â=û	(2πf) ² d			
\$ym bol	Input quantity (source of Uncertainty)	E stimated Uncertainty		Probability Distribution	*	DI VI SOL	standard Uncertainty	Sensity Coeffici	a ti	standard Uncertainty Contribution UIIV)	Rella bill ty	Degrees of Freedom	Remisrks
3	▼ Standards and Reference Equipment (Uncorrelated) ▼	() (ŧ	(N, R, T, U)	٠	•	(adh	ü	ŧ	, s	%	^	
0 8-	Interferometer output signal disturbance on phase amp litude	100	*	Rectangular 43	2.00	1.73	5.77E-03	-	*	0.006	100	infinite	e g. ofsets, volage am plitte deviations, et g0" Conscied with Meydemant procedure
9 9	Effect of voltage disturbance on phase amplitude measurement	0.02	*	Rectangular 43	2.00	1.73	1.15E-02	0.01	%	0.000	100	infinite	Ad ditive uncometation notice to reduced by 10 yr. W here newscher of teamstee one vibration over 4. Without case
φ. ve	Effect of motion disturbance on phase amplitude measurement	0.01	%	Rectangular 43	2.00	1.73	5.77E-03	1	%	0.006	100	infinite	Relative motion between sensing spot, exiter and accelerometer.
8.0	Effect of phase disturbance on phase amplitude measurement	0.02	*	Rectangular 43	2.00	1.73	1.15E-02	1	*	0.012	100	infinite	Corrected for using Heydemann correction procedure
32 Ø	Residual Interferometric effects on phase amplitude measurement	0.02	%	Rectangular 43	2.00	1.73	1.15E-02	1	%	0.012	100	infinite	Not aware of any
$f_{\rm HI}$	Vibration frequency measurement accuracy	0.0002	%	Rectangular 43	2.00	1.73	1.15E-04	1	%	0.000	100	infinite	ISO 16063-11 lequilement ≤ 0,05 % of reading
Ŷ	Uncertainty on laser way elength measurement	2.50E-11	E	Normal k = 2	2.00	2.00	1.25E-11	9 <u>1</u>	*	0.000	100	infinite	Uncertainty quoted on certificate
0	Accelerometer output voltage measurement (ADC resolution/accuracy)	0.15	*	Rectangular 43	2.00	1.73	8.66E-02	-	*	0.087	100	infinite	Manufacture is specification worse case on 1 V range
ŝ	Filtering effect on sensitivity measurement	0.15	*	Rectangular -\3	2.00	1.73	8.66E-02	-	8	0.087	100	infinite	e-(#f _w) ²
8 0	Charge amplifier gain acouracy	0.00	*	Normal k = 2	2.00	2.00	0.00E+00	1	*	0.000	100	infinite	Condition g amplifier uncertainty
	Resolution of Standard / Equipment (if applicable)										100		
	▼ Unit Under Test / Calibration (Uncorrelated) ▼						NOTE!	ONLY CH	ANGE	BLUE CELLS -	AII OTHEF	STIES (WHITE) ARE PROTECTED
00	Effect of voltage disturbance on accelerometer output voltage measurement	0.002	%	Trbngular √6		1.73	1.156E-03	1	%	0.001	100	infinite	Umo = 14(d/100) ² , Maximum allowed by ISO 16063
0 7	Effect of transverse motion on accelerometer output voltage measurement	0.18	%	Trbngular √6		1.73	1.039E-01	1	%	0.104	100	infinite	Transeverse error for a transverse sensitivity of 1%
0 mms	Residual effects on accelerometer output vollage measurement	0.3	*	tectangular 412		3.00	1.000E-01	1	*	0.100	100	infinite	Tribo-electric effect
0 e	Standard deviation on accelerometer output voltage measurement	0.36	*	tectangular 412		3.00	1.200E-01	۰	*	0.120	100	infinite	ESIDM for sensitivity calulation using 5 cycles minimum
	Resolution of UUT / Equipment (if applicable)										100		
	Data - Type "B" Evaluation Range of the results (Rectangular)			_							10		
		—	_	Normal k = 1			_					4	No of Readings 5
About LIGM	TOTAL CON	IBINED UNCE	RTAIN	~						%			
	Best Measurement Canability (Excluding IIIIT contribution)		00	bined Uncertair	nty (Nom	lal)	Level of	Confidence V		0.124	~,	infinite	Checked and Approved By:
				Expanded Unox	ertainty		95,45 9	6 K=2		0.248	= ¥	2.00	
	,		ð	bined Uncertair	nty (Nom	(jeu	▼ Level of	Confidence		0.225	>	infinite	SUN Qiao
				Expanded Unox	ertainty		95,45%	6 K=2		0.5	= ¥	2.00	

											Certific	ate No	#REF!
	UNCERTAINT T	ISOUDE									Procee	lure No	AU WV-0001
	References	Guide to the Expression	of Uncertain	inty in Measurement, 5	in use by B	PM, IBC, IFCC,	ISQ, IUPAC, IUPA	1 OSI - TWIO's	NBS0 SE	22-61-101 25- 5J			
Description	Cancitity valibration (modulue) as nar ISO 1808-11 mathod 3	marie &		CHI	I SA-70	-		Rama.		04 H2 +	40 44		Me trologist
		Serial number:			1040								YANG Lifeng
	Mathematical Model:							S=l	i/â=û	/(2πf) ² d			
Symbol	inp ut Quantity (Source of Uncertainty)	E stimate d Uncertainty		Probability Distribution	*	DIM sor factor	standard Jncertainty	Se ns it v Coe ffici	₽Ę	standard Uncertainty Contribution U/(y)	Relia bili ty	Degrees of Freedom	Remarks
5	 Standards and Reference Equipment (Uncorrelated) 	n (ixe	닅	(N, R, T, U)	•		(od)n	G	Ħ	%	%	v	
0 9-	interferometer output signal disturbance on phase amplitude	100	*	tectangular 43	2.00	1.73	5.77E-03	÷	*	0.006	100	infinite	e g. ofteta, voltage emplitude deviations, et 90° Conscied with Meydemark procedure
φ./0	Effect of voltage disturbance on phase amplitude measurement	0.01	%	tectangular 3</td <td>2.00</td> <td>1.73</td> <td>5.77E-03</td> <td>0.01</td> <td>%</td> <td>0.000</td> <td>100</td> <td>infinite</td> <td>Additve uncometated notes to reduced by 11%. Where networks carrier ner vibration ovels. Wone care</td>	2.00	1.73	5.77E-03	0.01	%	0.000	100	infinite	Additve uncometated notes to reduced by 11%. Where networks carrier ner vibration ovels. Wone care
φ. «α	Effect of motion disturbance on phase amplitude measurement	0.01	ж В	tectangular 3</td <td>2.00</td> <td>1.73</td> <td>5.77E-03</td> <td>1</td> <td>%</td> <td>0.006</td> <td>100</td> <td>infinite</td> <td>Relative motion between sensing spot, exiter and accelerometer.</td>	2.00	1.73	5.77E-03	1	%	0.006	100	infinite	Relative motion between sensing spot, exiter and accelerometer.
0 PO	Effect of phase distuibance on phase amplitude measurement	10.0	ж Ж	tectangular 43	2.00	1.73	5.77E-03	1	*	0.006	001	infinite	Corrected for using Heydemann correction procedure
8 10 1	Residual interferometric effects on phase amplitude measurement	0.02	ж	tectangular 3</td <td>2.00</td> <td>1.73</td> <td>1.15E-02</td> <td>1</td> <td>%</td> <td>0.012</td> <td>100</td> <td>infinite</td> <td>Notaware of any</td>	2.00	1.73	1.15E-02	1	%	0.012	100	infinite	Notaware of any
$f_{\rm BB}$	Vibration frequency measurement accuracy	0.0002	۳ ۳	tectangular 43	2.00	1.73	1.15E-04	1	*	0.000	100	infinite	ISO 16063-11 requirement < 0,05 % of reading
Au	Uncertainty on laser wavelength measurement	2.50E-11 n	æ	Normal k = 2	2.00	2.00	1.25E-11	100	%	0.000	100	infinite	Uncertainty quoted on certificate
0	Accelerometer output voltage measurement (ADC resolution/accuracy)	0.1	*	te otangular 43	2.00	1.73	5.77E-02	1	*	0.058	100	infinite	Manufacture its specification worse case on 1 V range
°,	Filtering effect on sensitivity measurement	•	æ	tectangular 3</td <td>2.00</td> <td>1.73</td> <td>0.00E+00</td> <td>-</td> <td>*</td> <td>0.000</td> <td>100</td> <td>infinite</td> <td>e-("/1₄₆)²</td>	2.00	1.73	0.00E+00	-	*	0.000	100	infinite	e-("/1 ₄₆) ²
8 0	Charge amplifier gain acouracy	000	*	Normal k - 2	2.00	2.00	0.00E+00	÷	×	0.000	100	infinite	Cond tbng a mplifier uncertainty
					t	t							
	Resolution of Standard / Equipment (if applicable)										90		
	 Unit Under Test / Calibration (Uncorrelated) 						NOTE	ONLY CH	ANGE	BLUE CELLS -	All OTHE	R CELLS	(WHITE) ARE PROTECTED
00	Effect of voltage disturbance on accelerometer output voltage measurement	0.001	. %	Trbngular √6		1.73	5.774E-04	1	%	0.001	001	infinite	Umo = 14(d/100) ² ; Maximum allowed by ISO 16063
- 0 -	Effect of transverse motion on accelerometer output voltage measurement	0.06	%	Trbngular √6		1.73	3.464E-02	-	*	0.035	100	infinite	Transeverse error for a transverse sensitivity of 1%
l max	Residual effects on accelerometer output voltage measurement	0.1	8	ectangular 412		3.00	3.333E-02	1	%	0.033	100	infinite	Tribo-electric effect
0 .	Standard deviation on accelerometer output voltage measurement	0.16	8	ectangular \12		3.00	5.333E-02	1	*	0.053	100	infinite	ESDM for sensitivity calulation using 5 cycles minimum
	Resolution of UUT / Equipment (if applicable)										90		
	Data - Type "B" Evaluation Range of the results (Rectangular)										100		
	#REF!		_	Normal k = 1								4	No of Readings 5
About URIN	TOTAL COM	IBINED UNCER	TAINT	۲		-				8			
	Root Measurement Canability (Evoluding 11117 contribution)		Com	bined Uncertair	nty (Non	(Ieu	Level of	Confidence		0.06.0	-,	infinite	Checked and Approved By:
				Expanded Unos	ertainty		95,45 9	6 K=2		0.120	" *	2.00	
	lan sada sa		Com	bined Uncertair	ity (Non	(jeu	▼ Level of	Confidence		0.093	>	infinie	SUN Qiao
	טווכפו שוווא טו אפמצע פו ופור (וווכותמווא סטר כטוונווטענוטו)			Expanded Unos	ertainty		95,45%	K= 2		0.2	k =	2.00	

		DUNCET	AAA TA								Certif	cate No	AMVS-2663
	UNCENTAINT T										Proce	dure No	AMVS-0001
	Reference	duide to the Gogression	n of Uncertain	ly in Meaunement, b	a und by Bip	M, IBC, IFCC	ISQ, IUPAC, IUPA	b' OINT - 120	E NESÚ SE	2-61-101 55-3)			
Description	Dhace shift collibration as see ISO 18083-11 mothed 2	Make & model:		Chin	a SA-704			Barma.		1110	- 40 H-		Me trologist
		Serial number:			1040								YANG Lifeng
	Mathematical Model:					S	hase=UUTp	hase-Rei	Phase-R	tef _{Delay} -Ato	D _{Plase} -C	SP _{Delay}	
sym bol	Input Quantity (Source of Uncertainty)	Estimated Uncertainty		Probability Nstribution	*	DI Misor factor	standard Uncertainty	Se ns It Coe Thic	wity lent	Standard Uncertainty Contribution UI(y)	Rella bill ţ	Degrae fo Freedor	s Remarks
3	▼ Standards and Reference Equipment (Uncorrelated) ▼	b()	THE I	N, R, T, U)	•		(w)n	ū	ŧ	C	*	>	1
φ ∎o	erferometer output signal disturbance on displacement phase measurement	0.05	egree Re	ectangular 3</td <td>2.00</td> <td>1.73</td> <td>2.89E-02</td> <td>٣</td> <td>Degree</td> <td>0.029</td> <td>10 10</td> <td>infinite</td> <td>e g. offsett, voltage am gi tude devia tiona, en 20° Corrected with Meydem art, grootedure</td>	2.00	1.73	2.89E-02	٣	Degree	0.029	10 10	infinite	e g. offsett, voltage am gi tude devia tiona, en 20° Corrected with Meydem art, grootedure
Ø = VO EC	tect of voltage disturbance on displacement phase measurement	0.05 De	egree Re	ectangular < 3	2.00	1.73	2.89E-02	٢	Degree	0.029	100	infinite	Additive uncoministed noise is network by 10%. When networks of samples can whenligh social Without case = 10%/1000
¢, wo Ef	lect of motion disturbance on displacement phase measurement	0.02 De	egree Re	ectangular 3</td <td>2.00</td> <td>1.73</td> <td>1.15E-02</td> <td>۲</td> <td>Degree</td> <td>0.012</td> <td>100</td> <td>infinite</td> <td>Relative motion between sensing spot, exiter and acceler ometer. Worse case calculated for "fismm double ended accelerometer.</td>	2.00	1.73	1.15E-02	۲	Degree	0.012	100	infinite	Relative motion between sensing spot, exiter and acceler ometer. Worse case calculated for "fismm double ended accelerometer.
©.≠ PO E1	lect of phase disturbance on displacement phase measurement	0.01 De	egree Re	ectangular 43	2.00	1.73	5.77E-03	۲	Degree	0.006	100	infinite	 Corrected for using Heydemann correction procedure
¢,⊧n≊ Rk	is bluai interferometric effects on displacement phase measurement	0.03	egliee Re	ectangular < 3	2.00	1.73	1.73E-02	-	Degree	0.017	100	infinite	Notaware of any
Δφ ₂ Er	vironmental effects on phase shift measurement	0.05	egree Re	ectangular 3</td <td>2.00</td> <td>1.73</td> <td>2.89E-02</td> <td>-</td> <td>Degree</td> <td>0.029</td> <td>0<u>1</u></td> <td>infinite</td> <td>ISO 16063-11 requirement ≤ 0.05 % of reading</td>	2.00	1.73	2.89E-02	-	Degree	0.029	0 <u>1</u>	infinite	ISO 16063-11 requirement ≤ 0.05 % of reading
φ _{αV} Ac	celeinometer output phase measurement (ADC resolution/acouracy)	0.05	v ealle	lormal k = 2	2.00	2.00	2.50E-02	-	Degree	0.025	ġ	infinite	 SAM phase cabulation accuracy
φ _{er} Fl	tering effect on accelerometer output phase measurement	1.0	egree Re	ectangular 3</td <td>2.00</td> <td>1.73</td> <td>5.77E-02</td> <td>-</td> <td>Degree</td> <td>0.058</td> <td>0</td> <td>infinite</td> <td>e e-(1/1₁₋₆)²</td>	2.00	1.73	5.77E-02	-	Degree	0.058	0	infinite	e e-(1/1 ₁₋₆) ²
¢ c.a	large amplifier phase acouracy	010	v aalba	lormal k = 2	2.00	2.00	5.00E-02	÷	Degree	0.050	00 1	infinite	
					T	t							
ñ	solutbn of Standard / Equipment (if applicable)										0 <u>1</u>		
	▼ Unit Under Test / Calibration (Uncorrelated) ▼						NOTE	ONLY C	HANGE	BLUE CELLS	- All OTH	ER CELLS	S (WHITE) ARE PROTECTED
9 a.o Ef	tect of votage disturbance on accelerometer output phase measurement	0.1	aalba	2:-3		2.45	4.082E-02	-	Degree	0.041	₽	infinite	U _{THD} - ½(d/100) ² , Maximum allowed by ISO 16063
φ _{ωτ} ΕΓ	tect of transverse motion on accelerometer output phase measurement	0.06	eallee	2 - 3		2.45	2.449E-02	-	Degree	0.024	ē	infinite	e Transeverse error for a transverse sensitivity of 1%
Ø szaw St.	andard deviation on accelerometer phase shift measurement	0.05 De	egree Re	ctangular \12		3.00	1.667E-02	-	Degree	0.017	100	infinite	ESDM for sensitivity calulation usings cycles minimum
			~	iormal k = 2									
			+		╡	1							
Ĩ.	solution of UUT / Equipment (if applicable)										100		
ő	ta - Type "B" Evaluation Range of the results (Rectangular)										100		
ő	tta - Type "A" Evaluation Exp Std Deviation "s"		~	lormal k = 1								4	No of Readings 5
About URW	TOTAL COI	IBINED UNCER	RTA INTY							6			
			Comb	ined Uncertain	ity (Nom	(lei	Level of	f Confidence		0.097	>	infinite	e Checked and Approved By:
-			"	xpanded Unce	ertainty		95,45 9	6 K=	2	0.194	= ¥	2.00	
	llncertainty of Measurement (Including IIII T contribution)		Comb	ined Uncertain	ity (Nom	(Ial)	Level of	Confidence	بر	0.109	>	infinite	SUN Qiao
	מורכו מוווה הישמים או אויזיוי (וואימים) הישמים ה		ш	xpanded Unce	ertainty		95,45%	= X =	~	0.2	بر ۳	2.00	

2 –LNE

		Description	type	Contribution	0,4	
			_	ncertitude	to 40 Hz	
-					%	
		uncertainty on the measurement of the output of the accelerometer signal				
-	u(ûV)	Output voltage measurement	m	u1 (S)	0,054	
1a	u(sA)	Conditionner gain	ш	u1a (SA)	0,104	
5	u(ûF)	Voltage filtering effects on the amplitude output	m	u2 (S)	0,006	
m	((0,0)	Voltage perturbation on the measure of the ouput voltage	m	u3 (S)	0,006	
4	u(û7)	Effect of transverse acceleration on the output voltage	ш	u4 (S)	0,033	
9	u(STE)	Effect of temperature sensitivity of the accelerometer on the output voltage	8	u12 (S)	0,030	
		uncertainty on the measurement of the phase amplitude amplitude				
9	(Ċ)W¢)n	Effects of the interferometric quadrature output signal disturbance on the phase amplitude measurement	в	u5 (S)	0,029	
7	u(ĝM,F)	Effect of the interferometric signal filtering on the phase amplitude measurement (limitation of the frequency band)		u6 (S)	Included in 16	
æ	ul [®] M, VD [®]	Effect of voltage disturbance on the phase amplitude measurement		u7 (S)	Included in 16	
6	n(@W'Wb)	Effect of motion of the vibration disturbance on the phase amplitude measurement	в	u8 (S)	0,017	
₽	n(đđ, PD)	Residual interferometrics effects on the phase amplitude measurement		(S) 6n	Included in 16	
÷	u(\$A,RE)	Longitudinal and transverse motion of the insulated table of the laser	8	u10 (S)	0,041	
11b	n(âN,LD)	Wavelenght of the laser effect	8	u10b (S)	0,001	
12	n(#FG)	Vibration frequency measurement	в	u11 (S)	0,002	
13		Repeatability	A	u13(S)	0,020	
		Relative standard uncertainty on accelerometer magnitude sensitivity (k=1)			0,15	
		Relative expanded uncertainty on accelerometer magnitude sensitivity (k=2)		Γ	0,30%	

		Description	type	Contribution Incertitude	0,4 Hz to 40 Hz
-					degrees
		uncertainty on the measurement of the output of the accelerometer signal			
-	$u(\phi_{u,v})$	Output phase measurement	8	(d) (D) (D)	0,10
1a	u(sA)	Conditionner gain	8	u1a ÅØ)	0,10
2	u(\$ ",")u	Voltage filtering effects on the output phase	m	(d\\ \appa\) ZN	0,10
ъ	u(\$\$ u,D)	Voltage perturbation on the measure of the ouput phase	m	(<i>d</i> \∇) En	0,10
4	u(\$ ", T)	Effect of transverse acceleration on the output phase	m	(dv⊽) ≯n	0,10
		uncertainty on the measurement of the phase amplitude amplitude			
ŝ	n(مَ *,ح)	Effects of the interferometric quadrature output signal disturbance on the phase amplitude measurement	m	n5 (ΦΦ)	0,10
9	u(ø ^{s,} E)	Effect of the interferometric signal filtering on the phase amplitude measurement (limitation of the frequency band)		(d⁄ \(\not\) \(\not\) 9n	Included In 16
7	(av, s 🍳)u	Effect of voltage disturbance on the phase amplitude measurement		(<i>¢\</i>) ∕ <i>n</i>	Included In 16
60	u(\$\$ s, wa)	Effect of motion of the vibration disturbance on the phase amplitude measurement	ß	u8 (∆ \$)	0,10
6	u(🗳 s,PD)	Residual interferometrics effects on the phase amplitude measurement		(<i>d</i> i⊽) 6n	Included In 16
10	и(Ф́ s,я£)	Longitudinal and transverse motion of the insulated table of the laser	ш	u10 (Δφ)	0,10
111) n(ق ³ 'דם)	Wavelenght of the laser effect	m	(φΔ) d01 u	0,00
11	u(fFG)	Vibration frequency measurement	ш	$u11(\Delta \varphi)$	0,10
12	u(R)	Repetability on the 3 measurements	٨	u12(∆9)	0,10
		Absolute standard uncertainty on accelerometer phase shift (k=1)			0,4

0.5

Absolute expanded uncertainty on accelerometer phase shift (k=2)

3- PTB

						combined frequ	ency ranges		
Disturbing Component	comment	95% value	distribution	factor	0,1 Hz - <0,2 Hz	0,2 Hz - < 0,4 Hz	0,4 Hz - < 10 Hz	10 Hz – 200 Hz	DC
frequency of SAM	deviation of sample clock from generator clock		rectangular	1,732	5,77E-05	5,77E-05	5,77E-05	5,77E-05	
Accelerometer Voltage	sampling of HP3458A	5,00E-04	rectangular	1,732	2,89E-04	2,89E-04	2,89E-04	2,89E-04	2,89E-04
Velocity amplitude	wave length, optical adjustment.	1,16E-05	normal	2	5,80E-06	5,80E-08	5,80E-06	5,80E-08	
harmon. Distortion	mainly 1st harmonic		Steiner	-	7,84E-06	7,84E-06	7,84E-06	7,84E-06	
Humm on Voltage	typical 1mV	5,00E-07	Steiner	-	5,00E-07	5,00E-07	5,00E-07	5,00E-07	
Influence of Noise on Voltage	MC on influence to SAM duration 20ms, Un=1,0mV		normal	1	3,30E-06	3,30E-06	3,30E-06	3,30E-06	
Transverse Motion, Non-planarity	S(transv) = 0,7% a(transv) < 4%		u-type	1,414	1,30E-03	7,00E-04	2,50E-04	2,00E-04	
Base strain sensitivity	S = 0,005m/s² / µ€ € < 0,1 µm/m	0,00005	rectangular	1,732	2,89E-06	2,89E-06	2,89E-06	2,89E-08	
mounting	S = 8e-4/Nm; dM = 0,2 Nm	0,00012	rectangular	1,732	6,93E-05	6,93E-05	6,93E-05	6,93E-05	
Temperature	S=2,5e-4 /K dT = 0,3 K	0,000075	rectangular	1,732	4,33E-05	4,33E-05	4,33E-05	4,33E-05	
Magnetic field	S=1/a *(m/s²)/T B < 0,03mT	0,000003	rectangular	1,732	1,73E-07	1,73E-07	1,73E-07	1,73E-07	
Airborne acoustics	S=0,008 m/s² at 154 dB max sound level 88 dB	8,00E-08	rectangular	1,732	4,62E-08	4,62E-08	4,62E-08	4,62E-08	
Noise on Interferom.	noise level equiv. of 2 nm after demodulation, Monte Carlo		normal	1	1,10E-04	1,10E-04	1,10E-04	1,10E-04	
a-synchronous Measurement	voltage/acceleration/voltage	1,00E-04	rectangular	1,732	5,77E-05	5,77E-05	5,77E-05	5,77E-05	
charge ampl. calibration					2,12E-04	2,12E-04	2,12E-04	2,12E-04	
resid. influences		1,00E-04	normal	1,414	7,07E-05	7,07E-05	7,07E-05	7,07E-05	
exp. std. dev					2,00E-03	1,20E-03	4,00E-04	1,50E-04	
angle deviation to normal	in degree	1,5	rectangular	1,732					5,94E-004
local gravity	from force lab 9,81252 m/s2	1,00E-005	normal	1					1,00E-005
rel. std. uncertainty	in %				0,24	0,14	0,06	0,047	0,066
rel. comb. exp. Uncertainty (k=2)	in %				0,48	0,29	0,12	0,094	0,132
stated rel. comb. exp. Uncertainty	in %				0,50	0,30	0,20	0,100	0,200

					combined free	uency ranges
Disturbing Component	comment	95% value	distribution	factor	0,1 Hz - <0,4 Hz	0,4 Hz – 200 Hz
Channel a-synchronisity	all frequencies	< 10 ns	normal	2	1,80E-03	1,80E-02
Humm (50 Hz)	Monte Carlo, multiples of 20ms are evaluated	equivalent displacement amp. 4 µm	normal	-	8,00E-03	8,00E-03
Noise on accelerometer Voltage output	Monte Carlo, SNR=500	< 2mV @ 1V	normal	- F	8,00E-02	1,00E-02
Transverse/Rocking motion	1 % transv. Sensitivity @ 10% transv. Excitation	rel. Phase 0 2pi	U-type (by MC)	-	7,00E-04	7,00E-04
delay of Laser Vibrom. + Mixer + Filter	absolut correction 1,54µs applied	uncert. of correction 60 ns	rectang.	1,73	4,97E-06	2,49E-03
Noise on heterodyne interferometer channel	noise level equiv. of 2 nm after demodulation, Monte Carlo	< 2nm	normal	-	1,43E-04	1,43E-04
Motion disturbance	drift, relative motion evaluation as velocity and period by period	estimated < 0,02°	normal	2	1,00E-02	1,00E-02
exp. Std. deviation		typical < 0,02°	normal	~	8,00E-03	4,00E-03
std. uncertainty	in 1°				0,081	0,025
exp. Uncertainty (k=2)	in 1°				0,168	0,049
stated exp. Uncertainty	in 1°				0,2	0,2

4- BKSV-DPLA

L	┞											
	Number ing	unget or uncertaintes wagnitues) 3629 Quadrature system with air bear ing shaker APS129	Uncertainty Contributio	Relative expanded uncertainty or	Probability	Factor	tion		u, i (y)			
	following	Notes:	c.	bounds	distribution							
	150 1605-11	Cal. Mode: Voltage		of estimated error	model		0.10 Hz	0.2 Hz	>1 Hz	>2 Hz	> 10 Hz	20 Hz
	Table A.5	All values are 1 sigma values		components			to <0.2 Hz	to 1 Hz	to 2 Hz	to 10 Hz 1	to 20 Hz +	:0 40 Hz
- 14	Quantity	Description		[%]		. 4	æ	*	æ	æ	æ	æ
-	(ng/n	Output voltage Measurement	u1 (S)	0.044		0.5	0.063	0.042	0.023	0. 024	0.025	0. 033
8	u(d,c.)	Voltage filtering effect on accelerometer output amplitude measurement (frequency hand limitation)	u2 (S)	0.010	Rectangular	0.577	0,006	0.006	0.006	0, 006	0.006	0.006
s	4(2)c)	Effect of voltage disturbance on accelerometer output voltage measurement (c.g. hum and moise)	u3 (S)	0.010	Rectangular	0.577	0. 006	0.006	0.006	0. 006	0. 006	0.006
4	4(JT)	Effect of transverse, racking and bending accleration on accelerometer output voltage measurement (transverse sensitivity)	u4 (S)	0.200	Special	0. 235702	0. 009	0.009	0.009	0. 009	0.141	0. 189
4	(cs)n	Calibration factor for Teforence charge amplifier	uda (S)	000 '0	2) 2)	0.5	0.000	0.000	0.000	0.000	0.000	0.00
ŋ	u(ຕູ້ແຄ)	meanwrement (e.g. offisets, voltage amplitude deviation, deviation from 50° nominal amgle difference)	u5 (S)	0.050	Rectangular	0.577	0. 029	0. 029	0.029	0. 029	0.029	0. 029
9	u(ĝue)	Interferometer zignal filtering effect an phase applitude measuranem (frequency band limitation)	u6 (S)	Included in 5								
4	ນ(ຜູ້ພາດ)	Effect of voltage disturbance on phase amplitude neuroneant (s. g. random noise in the photoelectric acauring chains)	u7 (S)	Included in 5								
••	u(ĝune)	notion between the socelerometer reforence surface and the spot sensed by the interferometers)	u8 (S)	0.100	Rectangular	0.236	0.024	0.024	0.024	0. 024	0.024	0. 024
6	(ຜານຜູ້)ຫ	Effect of phuse disturbance on phuse amplitude measurement (c.g. phuse moise of the interferometer signals)	(S) 6n	Included in 5								
10	(ສະຫຍູ່ ງກ	Maridual interferenctric effects on phase applitude neasurenest (interferencter function)	u10 (S)	Included in 5								
11	u(f m)	Vibratian frequency measurement (frequency generator and indicatar)	u11 (S)	0.0025	Rectangular	1. 1547	0.003	0.003	0.003	0. 003	0.003	0.003
12 a	u (Sac)	Maidual effects on sensitivity scarsecent (e.g. random effect in report neasurements: experimental atamóned deviation of arithmetic neas)	u12a (S)	0. 089442719	Rectangular	0. 57735	0. 052	0.052	0.052	0. 052	0.052	0. 052
12 b	u (Saga)	Effect an voltage -Influence from curve on APS air bearing bar caused by growity	u12b (S)		Correlated	1	0.080	0.040	0.010	0.008	0.001	0.001
	urel(S 2)	Uncertainty for accelerometer sensitivity S2		Standard	uncertainty	(k = 1)	0. 191	0.137	0.098	0.097	0.179	0.224
		Uncertainty for accelerometer sensitivity S2		98% conf. level	uncertainty	(k = 2)	0.382	0.274	0.196	0. 193	0.358	0.448
		Uncertainty for accelerometer sensitivity S2			Reported unc	ertainty	0 5	0.4	0.4	0.4	0.4	0.5

CCAUV.V-K3

		3629 Quadrature system with air					Contributio				
	Numbering	bearing shaker APS129	unc.	Expanded	Probability	Hactor	5		u, 1 (Y)		
	and the	Notae:	Contributio	uncertainty or hounds	distributio						
			:	of	:						
	ISO 16063-11	Cal. Mode: Voltage		estimated	model		> 0.1 Hz	> 0.3 Hz	> 5 Hz	> 10 Hz	> 25 Hz
	Table A.4	All values are 1 sigma values		components			to 0.3 Hz	to 5 Hz	to 10 Hz	to 25 Hz	to 40 Hz
i	Quantity	Description		[degrees]		xi	[degrees]	[degrees]	[degrees]	[degrees]	degrees
1	م ر س(, ۷)	Accelerometer output phase measurement (waveform recorder; e.g. ADCresolution)	(S) 1n	0.200	Rectangular	0.577	0.115	0. 115	0.115	0.115	0. 115
8	р. u(, , с)	Voltage filtering effect on accelerometer output phase measurement (frequency band limitation)	u2 (S)	Included in 1	Rectangular	0.577					
3	ور. س(, ت)	Effect of voltage disturbance on accelerometer output voltage phase measurement (e.g. hum and moise)	n3 (S)	0.010	Rectangular	0.577	0.006	0. 006	0.006	0.006	0. 006
4	چ. س(, ד)	Effect of transverse, rocking and bending acceleration on accelerometer output voitage phase measurement (transverse sensitivity)	u4 (S)	0.060	Special	0.23570226	0.014	0. 014	0.014	0.014	0. 177
4a	رم، م) سرچی	Calibration factor for Meference charge amplifier phase response	u4a (S)	0.000	Rectangular	0.577	00 000	0.000	0.000	0.000	0. 000
ŝ	u(¢, °)	Effect of interferometer quadrature output signal disturbance on displacement phase amplitude	u5 (S)	0.010	Rectangular	0.577	0.006	0. 006	0.006	0.006	0.006
9	ه. ال م	Interferometer signal filtering effect om displacement phase amplitude measurement (frequency band limitation)	(S) 9n	Included in 5							
7	u(°. ,o)	amplitude measurement (e.g. random moise in the photoelectric measuring chains)	u7 (S)	5 5							
8	u(°.,)	amplitude measurement (e.g. drift; relative motion between the accelerometer reference surface and the	u8 (S)	0.057	Rectangular	0.577	0.033	0. 033	0.033	0.033	0. 033
6	ھ, س(مہر)س	amplitude measurement (e.g. phase moise of the interferometer signals)	(S) 6n	5 Included in							
10	а, u(, as)	Mesidual interferometric effects on displacement phase amplitude measurement (interferometer function)	u10 (S)	0.010	Rectangular	0.577	0.006	0. 006	0.006	0.006	0. 006
11	$\Delta \varphi_{u(n_{sc})}$	random effect in repeat measurements; experimental standard deviation of arithmetic mean)	u12 (S)	0.050	Rectangular	0.577	0.058	0. 058	0.029	0.029	0. 029
	u(Δφ)	sensitivity 🗠		ŝ	andard uncert	sinty (k = 1)	0.134	0 134	0.125	0 125	0.216
		Uncertainty for accelerometer $^{\Delta}$	B	95% conf.	.level uncert	ainty (k=2)	0.209	0.269	0.249	0,249	0.432
		Uncertainty for accelerometer Δ	۵		Repor	ted unc er tainty	0.3	0.3	0.3	0.3	Q.5

5- GUM

					Uncert	ainty contrib	ution at freq	uencies
i	Source of uncertainty	Probability distribution	Uncertainty type	Divisor	0,2 Hz	> 0,315 Hz	> 0,8 Hz	> 4 Hz
			.914		0,315 Hz	0,8 Hz	4 Hz	40 Hz
1	Accelerometer output voltage measurement	normal	В	2	0,03	0,03	0,03	0,03
2	Frequency of vibration signal	rectangular	В	1,732	0,001	0,001	0,001	0,001
3	Reference vibration velocity	normal	в	2	0,001	0,001	0,001	0,001
4	Magnitude of amplifier gain (G) in selected measuring channel	normal	В	2	0,02	0,02	0,02	0,02
5	Frequency response of G	normal	В	2	0,1	0,1	0,1	0,05
б	Transverse motion	rectangular	В	1,732	0	0	0,03	0,03
7	Harmonics	rectangular	В	1,732	0,01	0,01	0,01	0,01
8	Mains hum	rectangular	В	1,732	0,01	0,01	0,01	D,0,01
9	Noise	normal	В	1,732	0,001	0,001	0,001	0,001
10	Base strain	rectangular	В	1,732	0,001	0,001	0,001	0,001
11	Geometrical location of measurement	normal	В	1,732	0,005	0,005	0,005	0,005
12	Sensor mounting	rectangular	В	1,732	0,001	0,001	0,001	0,001
13	Cable layout	rectangular	В	1,732	0,025	0,015	0,01	0,01
14	Relative motion	rectangular	В	1,732	0,06	0,04	0,02	0,02
15	Temperature fluctuation	rectangular	В	1,732	0,0015	0,0015	0,0015	0,0015
16	Linearity deviations	rectangular	В	1,732	0,001	0,001	0,001	0,001
17	Instability of vibration signal	rectangular	В	1,732	0,001	0,001	0,001	0,001
18	Influence of magnetic fields	rectangular	В	1,732	0,1	0,1	0,05	0,05
19	Residual effects	rectangular	В	1,732	0,4	0,2	0,1	0,1
20	Standard deviation of arithmetic mean (rounded up)	normal	А	1	0,01	0,01	0,01	0,01
Tot	al relative measurement un	certainty			0,4311	0,2519	0,1598	0,1343
Exp	anded measurement uncert	ainty $(k = 2)$, roun	ded		0,9 %	0,5 %	0,4 %	0,3 %

		Drobability	Lincortainte		Uncerta	ainty contrib frequencies	ution at
i	Source of uncertainty	distribution	type	Divisor	0,2 Hz	> 0,315 Hz	> 0,8 Hz
					0,315 Hz	0,8 Hz	40 Hz
1	Accelerometer output voltage measurement	normal	В	2	0,05	0,05	0,05
2	Frequency of vibration signal	rectangular	В	1,732	0	0	0
3	Reference vibration velocity	normal	В	2	0,01	0,01	0,01
4	Magnitude of amplifier gain (G) in selected measuring channel	normal	В	2	0,01	0,01	0,01
5	Frequency response of G	normal	В	2	0,05	0,05	0,05
б	Transverse motion	rectangular	В	1,732	0	0	0,1
7	Harmonics	rectangular	В	1,732	0,01	0,01	0,01
8	Mains hum	rectangular	В	1,732	0,01	0,01	0,01
9	Noise	normal	В	1,732	0,01	0,01	0,01
10	Base strain	rectangular	В	1,732	0,01	0,01	0,01
11	Geometrical location of measurement	normal	В	1,732	0,001	0,001	0,001
12	Sensor mounting	rectangular	В	1,732	0,001	0,001	0,001
13	Cable layout	rectangular	В	1,732	0,02	0,01	0,01
14	Relative motion	rectangular	В	1,732	0,05	0,02	0,01
15	Temperature fluctuation	rectangular	В	1,732	0,01	0,01	0,01
16	Linearity deviations	rectangular	В	1,732	0,01	0,01	0,01
17	Instability of vibration signal	rectangular	В	1,732	0	0	0
18	Influence of magnetic fields	rectangular	В	1,732	0,1	0,1	0,05
19	Residual effects	rectangular	В	1,732	0,4	0,2	0,2
20	Standard deviation of arithmetic mean (rounded up)	normal	А	1	0,001	0,001	0,001
Tot	al measurement uncertainty	1			0,4227 °	0,2373 °	0,2419 °
Exp	anded measurement uncert	tainty $(k = 2)$, round	ded		0,90 °	0,50 °	0,50 °

6- METAS

	Individual contribution	utions t	o the	measurem	ent uncertai	nty (magnit	(apr			
Pos.	Contribution	Distr.	Type				Frequen	cy / Hz		
	Xj			w (x _j)	0,2 - < 1	1 - <2	2 - < 5	5 - < 10	10 - <20	20 - 63
-	Curvature of beam	Norm	в	w (S _S)	2.50E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
2	V oltage measurement	Norm	В	W (U)	3.00E-04	3.00E-04	3.00E-04	3.00E-04	3.00E-04	3.00E-04
3	Frequency	Rect	в	W(W)	1.00E-05	1.00E-05	1.00E-05	1.00E-05	1.00E-05	1.00E-05
4	Amplifier gain	Norm	В	w (G)	2.00E-04	2.00E-04	2.00E-04	2.00E-04	2.00E-04	2.00E-04
9	Amplifter frequency response	Norm	В	W (KF)	1.00E-03	1.00E-03	1.00E-03	5.00E-04	5.00E-04	5.00E-04
9	Transverse motion	Rect	В	$W (K_T)$	7.00E-05	7.00E-05	7.00E-05	7.00E-05	7.00E-05	1.40E-04
7	Harmonic excitation	Rect	В	$W (K_D)$	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
8	Hum	Rect	в	W (K _H)	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04
6	Noise	Norm	В	$W(K_N)$	1.00E-05	1.00E-05	1.00E-05	1.00E-05	1.00E-05	1.00E-05
10	Measuring position dependence	Rect	В	w (K _G ∟)	1.00E-05	1.00E-05	1.00E-05	1.00E-05	1.50E-03	1.50E-03
11	Mounting of transducer	Rect	в	W (K _{MT})	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.00E-05
12	Mounting of cable	Rect	В	$W(K_{MC})$	1.00E-03	1.00E-03	1.00E-03	1.00E-03	9.00E-04	7.00E-04
13	Relative motion	Rect	В	$W (K_{REL})$	5.00E-04	2.00E-04	1.00E-04	1.00E-04	1.00E-05	1.00E-05
14	Temperature stability	Rect	в	w (K _{TK})	1.50E-05	1.50E-05	1.50E-05	1.50E-05	1.50E-05	1.50E-05
15	Linearity	Rect	в	w (K∟)	1.00E-05	1.00E-05	1.00E-05	1.00E-05	1.00E-05	1.00E-05
16	Long term stability	Rect	в	w (K)	1.00E-05	1.00E-05	1.00E-05	1.00E-05	1.00E-05	1.00E-05
17	Residual contributions	Rect	В	W (K _{RES})	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04
	Relative measurement uncertainty				1.57E-03	1.48E-03	1.47E-03	1.19E-03	1.86E-03	1.78E-03
	Expanded uncertainty (I∈2)				3.14E-03	2.96E-03	2.94E-03	2.38E-03	3.72E-03	3.56E-03
	Expanded uncertainty (k=2)			%	0.31	0.30	0.29	0.24	0.37	0.36

Pos.	Bestimmungs- / Einflussgröße	Distr.	Type	MU-Tem		Frequer	ncy / Hz	
	Phi j			u (<i>Phi</i> _j)	0,2 - < 1	1 - <10	10 - <20	20 - 63
-	Curvature of beam	Norm	в	u (Phi _S)	1.00E-02	0.00E+00	0.00E+00	0.00E+00
2	Voltage measurement	Norm	в	u (Phi _R)	5.00E-02	5.00E-02	5.00E-02	5.00E-02
3	Frequency	Rect	в	u (Phi _w)	0.00E+00	0.00E+00	0.00E+00	0.00E+00
4	Amplifier gain	Norm	в	u (Phi _G)	1.00E-01	1.00E-01	1.00E-01	1.00E-01
9	Amplifier frequency response	Norm	В	u (Phi _F)	1.00E-01	1.00E-01	1.00E-01	1.00E-01
9	Transverse motion	Rect	в	u (Phi _T)	0.00E+00	0.00E+00	0.00E+00	7.00E-02
7	Hamonic excitation	Rect	в	u (Phi _D)	0.00E+00	0.00E+00	0.00E+00	0.00E+00
8	Hum	Rect	В	u (Phi _H)	1.00E-02	1.00E-02	1.00E-02	1.00E-02
6	Noise	Norm	В	u (Phi _N)	1.00E-02	1.00E-02	1.00E-02	1.00E-02
10	Measuring position dependence	Rect	В	u (Phi _{GL})	1.00E-02	1.00E-02	1.00E-01	1.00E-01
11	Mounting of transducer	Rect	В	u (Phi _{MT})	0.00E+00	0.00E+00	0.00E+00	0.00E+00
12	Mounting of cable	Rect	В	u (Phi _{MC})	3.00E-01	1.40E-01	7.00E-02	5.00E-02
13	Relative motion	Rect	В	u (Phi _{REL})	2.00E-01	1.00E-01	5.00E-02	5.00E-02
14	Temperature stability	Rect	В	u (Phi _{TK})	1.00E-02	1.00E-02	1.00E-02	1.00E-02
15	Linearity	Rect	В	u (Phi)	1.00E-02	1.00E-02	1.00E-02	1.00E-02
16	Long term stability	Rect	В	u (Phi ₁)	0.00E+00	0.00E+00	0.00E+00	0.00E+00
17	Residual contributions	Rect	В	u (Phi _{RES})	1.00E-02	1.00E-02	1.00E-02	1.00E-02
	absolute measurement uncertainty				3.91E-01	2.30E-01	2.01E-01	2.07E-01
	Ex panded uncertainty (k=2)				7.83E-01	4.59E-01	4.02E-01	4.14E-01
	Expanded uncertainty (k=2)			0	0.78	0.46	0.40	0.41

CCAUV.V-K3

7- NMISA

L	CALCULATION OF THE OWNER OWNER OF THE OWNER O	autoria -		and and							Certific	ate No	AV/VS-3217
	UNCENTAINT	BUDDET	LAN I	MIN (UDW							Proced	ure No	AV/VS-0001
	Patrice	Make A	of Linearia	Linear and A line	acted by Riffield	HC, PCC, 1	ALL CARE AND	6-04-1440	2010/00/11 12	10161-0-0			Matroboom
Description	 Sensitivity calibration (modulus) as per ISO 16063-11 method 3 	Serial Serial number						Range		0.1 Hz to	4 0/4 Hz		lan Veldman
	Nathematical Nodel:		- 0	語		14		S=6	0-81	(2ml) ² d			
Symbol	impat Osemity (Source of Uncerning)	Estimated		Probability	*	view 1	Randard	Sentily Coefficie	25	Standard Uncertainty Contribution UTM	Relation	Cegress of Freedom	Herents
9	▼ Standards and Reference Equipment (Uncorrelated) ▼	000	te	N. R. T. U)			extn	G	and i	*		1	
D.B.	Intertexcenter outpet signal distutance on phase ampliade	10'0		econolise v2	3,00	2	6,77E-00	+	*	6,008	100	infinite	ng offens, solnge anjoinde downers, or M ¹ Dereveni with Paylencest preserve
10/10	Effect of votage distribution on phase ampliade measurement	0,01	×	ectargater v2	2,00	12	6,77E-60	0.01	*	0:000	t00	infinite	access a root speet room is reacced by 1/m. When a root root with a reaction provide speet when room man
	Effect of motion distuitiance on phase amplitude measurement	0.2	N N	ectingular v3	2,00	P.	1.1582-01	1	*	0,115	001	infinite	
12.8	Effect of phase disorbance on phase amplitude measurement	10'0	×	edurgular (3	2,00	R.	0.77E-00	1		0,006	100	infinte	Contected for using Heydemann considion procedure
10.1	Residual Interteconentic effects on phase amplitude neasuromont	0.01	*	ecargolar G	2.00	2	5.77E-08	-		000/0	100	infinite	Not aware of any
- Free	Vitration frequency moustment accuracy	0.06	*	eavour a	2.00	2	0.66E-42		*	6(00)9	100	infinite	150 16563-11 requirement: \$ 0,05 % of reading
*	Uncertainty on team wavelength measurement	2,505,11 0	5	Normali's = 3	2,000	007	1,266-11	100	*	000	100	infinite	Uncertainty sected on certificate
NN.	Acceleratives output voltage measurement (ADC neodeter/lecourse))	0,15	a .	edangular ()	2,00	2	0.666-00	-	1	0,087	100	infinite	Manufacturer's specification weeps case on 1 V range
10	Fillering effect on sensitivity reasonances	11.0	×	edargular (3	2.00	E,	0,368.422	-		0,064	100	infinite	-01.01
0.00	Conditioning antitiker gain accuracy	000	*	Marreal N = 2	2,500	8	00+3001	1	,	0000	100	intinte	NIA Caltrated as a unit
						-							
	Resolution of Standard / Equipment (F approach)				F	-					100		
	▼ Unit Under Test / Calibration (Uncorrelated) ▼				C.		NOTEL	OMLY CH	ANGE B	LINE CELLS -	AU OTHEY	CELLS	WHITE) ARE PROTECTED
do	Effect of voltage distribution on acceleration output voltage measurement	0,005		Triangular via	-	10	1907E-00		1	0,000	100	infinite	Uno = Hill 1007, Maxmun allowed by SO 19563
10	Effect of transverse rootan on applierameter output votage measurement	0,1		friengular vit	-	30.0	,774E-00	-		0.060	100	infinitio	Transeverse error for a transverse semilitrity of 1%
4 400	Presidual effects on accelerometer output voltage measurement	0,1		vormal k = 3	28	000	000E.00	+	*	0.060	100	irfatia	Tribo electric office:
n.	Standard deviation on acceleromotic output votage measurement	6.2	N NC	etnat k = 2,676	-	00	10:0005-01	. 1	+	0.200	100	infinitio	ESDM for sensitivity calcilation uning 5 cycles minimum
0 ave	Sagnal to notes ratio	10			-	÷ R	7205-01		,	0.172	100	infinito	cristics of signal to hoose name of savay. This servering configured is taken as 1 as the recentering is consider.
	Pesolution of UUT / Equipment (Tapplicable)										100		
	Date - Type 'B' Evelution Range of the needs (Fectangular)				_	-					300		
	Date - Type 'A' Eveluation Exp Std Dev of the Mean (ESDM)			dorrred A. = 1	-	-			1			•	No of Readings 6
Admin Little	TOTAL CON	MDINED UNCER	TANKT							*			
	Rest Measurement Canability (Eveloption III IT contribution		E oo	kined Uncertain	ty (Norma	~	V Lawol of	Carifornia V		0,161	V	infinite	Checked and Approved By:
			-	spended Unce	rtwirty	-	85,45 %	K = 2		0,322	÷	2,00	111
			Comt	ined Uncertain	A ONOTTING		V Level of	Confidence		416.0	Var	infinite	lette
	nucertainty or measurement memory or i contraction			Sipanded Lince	rainty	_	20,45	K=2		0,6	•	2,00	

L											Certifics	the No	AWV8-3217
	UNCERTAINT	BUDGEL	MA	NHU (UBM							Proced	Ine No	AV/VS-0001
	Artimeter .	op Thomas Ist the Coprand	and the	Provincial of Spring	In the local dy (II)	M. BC PC	ANT DWAT THE D	P. DIAL 1801	101 100	10001-010			
	at any other second and the second seco	Make &									-		Metrologiet
oduzer.	sensarry constance (noostee) as per lact tector freedor 3	Serial						adum)	_	EZHIND	24 04		tan Veldman
	Mathematical Model:							S	0/8=6	p2(1m2)/			語い書
t'unto	lepert Guardery (Searce of Uncertainty)	Estimate		Probability Distribution	*	Civitesr factor	Standard Uncertainty	Sensity	-	Standard Uncertainty Contribution UI(0)	Halability	Degroos of Freedom	Remarks
	* Standards and Reference Equipment (Uncorrelated) *	600	UNH	PA, R, T, UI			000	5	Nek			•	
U.B.	Interferorester output signal distribution of phase amplitude	0.61		Rectorquiry ()	2.00	周	6,276-03	1	*	000/0	100	Infinite	 and and institution postation of an constant with institution postation
-	Effect of voltage distribution on phase amplitude measurement	D,01		Rectorgular of	2.00	1.73	5/7E-03	10/d1		00010	100	infinite	Addition accordance from a recover by Tay.
13m	Effect of motion disturbance on phase amplitude measurement	1/0		Rectorgular O	2,00	1,73	5,776-02	1.1	*	0,068	100	infinite	and states with Summer suscepts international
246	Effect of phase distributes on phase amplitude measurement.	Diet		Peckergular S	2,00	122	6,77E.03	1	*	90070	100	infinite	Careeded for using Heydenamn correction procedure
-	Reacted meterceshic effects on phase anglitude measurement	1001		Reporting A	2,000	81(1	6/76-03		*	0.006	100	infinito	Not aware of any
Pin .	Vitration texpurey measurement accuracy	0.06		Remercyan G	2,00	1,73	2,896.02	+	8	0.009	100	Infinite	GIO 19363-11 requirement a 0.05 % of reading
2	Unontainty on laser warekength measurement	2,506-11	s	Normal N = 2	2,00	2,00	1,256-11	1005		0.000	100	infinitio	Uncertainty quoted on certificates
dv	Accelerometer autour votage measurement (ADC resolution/accuracy)	0,15		Rectangular C	2,00	5	0,668-02	1	~	0,007	100	Infinition	Manufacturers specification works case on 1 V range
1.5	Fillering effection serekturly measurement	0,11		Rectingular (1	2,00	5	6.358-02	- 1	8	0.064	1001	where	*-N1-4
30	Constituenting anything gain accuracy	0/00		Pitomed is + 2	2,00	2,00	0.006±400,0	1	*	0.000	100	interio	NA Calibrated as a unit
	Readution of Standard / Equipment (Papplicable)								-		100		
	V Unit Under Test / Calibration (Unsorrelated) V		T			1	NOTE	OWLYCH	KANGE	BUINE CELLS	AU OTHER	CELLS	(WWTE) ARE PROTECTED
du	Effect of voltage distutance on accelerometer output voltage measurement	0,005		Triwrguter v6		173	2,007E-00		*	0,000	100	inferte	Uses + V(\$1000 ¹), Maximum allowed by 200 10053
41	Effect of handware rection on applicativation output visitage measurement	1.0		Triangular vB		1,73	5,774E-02	1	"	0,056	100	infinitio	Transevense error for a transverse severalisty of 1%.
and a	Peedual effects on accelerometer output voltage measurement	0.1		Normal N = 3		2.60	6,000E-02			0,060	100	infinitio	Tribo-electric effect
0.4	Standard deviation on accelerometer output vollage measurement	0.1	*	Morrial k = 3		2,00	5,0006-40		,	0.060	100	infinitio	ESDM for senativity calculate using 5 cycles minimum
	Prevolution of UVT / Equipment (1 applicable)										100	-	
	Dota - Type "S" Evoluation Range of the results (Pectangular)								.,		100		
	PREF1			Nonrul $k = 1$									No of Readings 10
April 1 April 1	TOTAL OC	DWINED UNC	URT AUN	TY						*			
į	Barnet Management Annahultur (Brack alter All 1977 and 1977	-	8	shined Uncertai	nty (Nor	(inu)	T Level o	f Carfidence		0,126	1. No.	infinito	Checked and Approved By:
	nesi weasurement capating (<u>contraining</u> tot contributio	ſ'n		Espanded Unc	Among		25,45	K=2		0,252	• *	2,00	1
			8	strined Uncertail	nty (Non	191	T Level of	Confidence		0,156		infinite	1 mil
	Uncertainty of Measurement (including UUT contribution			Expanded Unc	ortainty	8	96,453	6 K=2		0,3	- 4	2,00	ch have

INDEXIAN	Metodisedist	Ian Veldman		Renarka		tig sifteti, velegerenjikele stretetor, op Br	MERCIP ACCOUNTED THE A PERCENT IN VIOL	Possibles recipies harance sectory upor, andse and accessionales. Possible same and altered for 10mm decide around accessionales.	Comoted for using Haydemann correction procedure	Pict aware of any	15O 10003-11 repotement # 0.05 % of reading	SAM phase catalation accuracy	1017				WATELARE BAOTECTER	In transmittee to the second second second	Transmission and fix a busicess second of our parts	CIOM for sendin fy cellation using 6 order reterant					No of Deadhorts 5		Checked and Approved By:	. /	all	and .
DAL DAT			SPDeer	Degrees of Freedom	-	Interior	infritio	intria	infinitio	infinite	infinite	infinite	infinite	infinite			CHUR	indicate.	infinite	Infinite					+		infinite	2.00	in the state	
name -	1	0,4 Hz.	0	Reliability	,	100	100	100	100	100	200	100	100	100		901	NI OTHER	1000	999	100			100	100	T	1	Ver	- H -		
0.00110109-00		0,1 Hz to <	efower-AtoD	Standard Uncertainty Contribution UTAN	4	80/6	600'0	0,009	0.068	210.0	0,017	0.900	0000	0,000			THE CEVES -	0.668	0.025	0.025						c	0,127	0,274	0.420	
VIEW JORNO			Prase-R	Alan	Une	Degree	Degree	Degree	Degree	Cogree	Degree	Degree	Degree	DNDTER			NAMOP B		Depter	Degree										ŝ.,
0.096-100		Range	-Re	Sensit	G	-	- 1	-	-			-	-	-			CALLY CY	-	-	-							Confidences	X-3	Confidence	
LIGO, UMC, UMV			"TUU-	Blandard Uncertainty	(pdn	5,778-400	2.69E-42	2,696-42	5,776-02	1,158-02	1,738-02	1,00E-01	0,00E+00	0.006+90			NOTEL	6.776C.00	2.0076-00	2.5006-42							 Level al C 	85,455 %	V Level of C	
PM 80. F00			ŝ	Division		22	EL's	1,73	1,22	1,73	1.75	2,01	1,73	2/00	T	t	1	1.78	1.73	2.00	F						te		9	
incred to 0				*		2.00	2,00	2,00	2/00	2,00	2/00	2,00	2,00	2,00		F		F	t						-		thy (Norm	yhiany	the (Maxen	
Louisvery of Army	33		11	Probability Distribution	(N. R. T. U)	Rectargation (1)	Netargoler G	Rocangular (2	Pockangular 13	Rectangular /8	Rectangular V3	Normal k = 2	Rectinguise V3	Notrul k = 2				Triancular viz	Transition 48	Normal k = 3	Notrel k = 2				Nparrol A = 1	7	bined Uncertain	Expanded Unce	bined Uncertain	Parameters house
ALC: N'LIVES				28	unit	Crepne	Creation	Degroo	Degree	Degree	Degree	ONDER	Copree	Dogram				Depres	Owgree	Ongree						BITAINT	Com		Com	
COMIN IN SUMMER	Make &	Serial rearber:		Estimate	(ad	0.1	90'6	0.06	0,1	0,027	0,03	02	4	00/0				0,1	0,06	0,05						REINED UNC				
Celeboard Contract Co	Breast while respective as not (B/) tenests at medical to	P DOLLARU 11-PERMIS (PE) and the inferiorant wave operation	Mathematical Model:	Input Quantity (Source of Unsertainty)	 Standards and Reference Equipment (Uncorrelated) Y 	Montechniker output legnal distrutance on displacement phase measurement	Effect of voltage distributes on displacement phase measurement	Effect of motion distribution on displacement phase measurement	Effect of phase distribution on dispacement phase measurement	Reactual interfexaments effects on displacement phase measurement	Environmental effects on phase abili moosureneer	Acceleration output phase measurement (ADC resolution/accelery)	Filtering officed on accommentation output phase measurement	Charge antidiar plase accuracy		Neocholee of Standard / Explorment (if applicable)	▼ Unit Under Test / Calibration (Uncorrelated) ▼	Cifect of vortage disturbance on accelerometer output phase measurement	Check of transverse motion on accelerometer output phase measurement	Standard deviation on appliance phase shift measurement			factorization of the state of a state of the	Data - Type 'B' Dvaluation Range of the results Photasigular)	bita - Tipse 'A' Evaluation Exp Std Devision 's'	TOTAL CON	Best Measurement Capability (Excluding UUT contribution)			Uncertainty of Measurement (Including UUT contribution)
	Description			Symbol	3	Dri d	P. 40	Fi.M	14 M		1 AT	Par	9.46	POA				Cable Cal		Tous of		1		a		Acrus villes				

		New Const									Proce	Bure No	4000-SV/VA
	Contemport of the second s	I DATE IN THE ROOM	an of Linear	And A Gamman and	AD IN COLUMN	N, 400, #D1	C 401 LIVIC LIN	all we have	1400 1000	0-41-11-10-0			
Description	Phase shift calibration as per ISD 16003-11 method 3	inter i				1		Terros		0.4 Ho	1 801 54 P		Menologiet
		turber .											lan Veldmen
	Mathematical Madel.					Ś	TUU-MAN	Party and]	Telcoury-Ato	00	SPower	
Symbol	Input Quinnity (Source of Unitertainty)	Estimated Uncertaint		Protection Distribution	4	and a	Sundard Uncertainty	Sensi	hety Stere	Standard Uncertainty Contribution UIIM	Reliability	Degrass of Freedor	and a second
	▼ Standards and Reference Equipment (Uncorrelated) ▼	000	trut	N.R.T.U)			0000	a	Unit	c	*	•	
0.40	Werkerunsker output signal disartiance on dispersence (maio measurement	0.1 0	ļ	Technolular G	2.00	6214	S.77E-02		Degree	0.068	1001	interior	all officer voltage angles in continue, on the
9 . 10	Effect of voltage detertance on deplecement phase measurement	0.85 0	00.00	Notangular (1	2,00	1,73	2,896.02	1	Ooper	0,009	100	infinition	AND A DOCUMENT OF A DOCUMENT OF A DOCUMENT
OF ND	Effect of motion distribution on thiplacement phase measurement	0 550	00.00	tocking day 15	2,00	R.	2,896.02		Dugwa	0,029	100	infinito	Relative restory by were anothing application and applications
8+10	Ethect of places deluctances on department phase measurement	0 50/0	- and	Rectangular VS	Z,00	5	20-368/2	t	Duyua	0,029	100	infinite	Corrected for using Hoydomates connection peopedare
PA IN	Pandaaliminterpretity officts on displayeners phase measurement	0,02 D	and a	tectorguar vit	2,00	1,75	1.15E-02		Degree	D/012	90	infinite	Not aware of any
3.94	Environmental official on phase shift mesouroment	0 60'S	ND18	tectory day of	2,00	1.73	1,736-02	-	Degree	0.017	100	infinte	ISO 16063-11 repairment # 0.06 % of reading
Nu.s	Acceleration adput phase measurement (ACC resolution/accuracy)	0 120	and a	Normal k = 2	2,00	2,000	9,00E-00	-	Degree	0,050	100	infinite	BAM phase catoriation accuracy
Fut.	Planting aftect on accelerormeter output phase measurement	0	100	techniquer (3	3,00	1,72	0.005100	1	Degree	0.000	100	infinite	This filters acceled
P.0.4	Chargo angéler pitaso occriscy	0.00 0	00.00	Normal & v. 2	2,00	5/00	6/00E+00.	+	Degree	0,000	100	infinite	Callward
				1		T							
						T							
	Neestdoon of Standard / Equipment (7 applicable)										100		
	▼ Unit Under Test / Calibration (Uncorrelated) ▼						NOTEI	CINE Y C	HANGE !!	BLUE CELLS	AN OTHE	A CELLS	AWATE ARE PROTECTED
946	Effoct of voltage datactures on accelerometer todue prese measurement	0,1 1,0	9900	Frangular 16	F	12	5,774E-02	+	Degrad	D.058	1005	infinite	IL
1.1	Effect of transverse motion an accelerometer output phose measurement	401 S0/0	and a	Fitabgalar de	f	1.73	2.5676-02	-	Dearen	0.029	100	Infinite	Transmission articles in humanismus considered by
Ture.	Standard deviation on accelerometer phase shift reasonances	0 90/8	ł	Normal k = 3	t	500	2.500E-02	-	Degree	0.025	100	infinite	ESDM for semiflety deviation (also 5 (order original
				Normal k = 2	F	T							new called a second and a second s
	Responden of UUT / Equipment (Faqueable)		1								100		
	Data - Types 'B' Excitation Range of Too tasks of buckspeaker				-						100		
	Deta - Type W. Evenantion Eup St/ Deviation 's'			Harred A - T	-	-						+	Rid of Personna S
Hour UDA	TOTAL CON	ADINED UNCER	TAUNT							0			
	Best Measurement Capability (Excluding UUT contribution)		Sea	ined Uncertain	ty groms	00	 Lined of 	Carlidense		0.094	Ver	infinite	Checked and Approvad Bg:
				Supanded Unce	duinty		85,45 %	÷		0,187	å	2,00	1.1
	Uncertainty of Magentament (including 1117 contribution)		Corre	ried Uncertain	ty (Plarmi		* Level of	Confidence		0.118	V.a	Intro	July 1
	Internetional and Buildwinith strategies and the feature internet		ľ	ALC: NO AND	Contraction of the local distribution of the				Ī	1		Contraction of the local distribution of the	. A AD

8- INMETRO

Unc ISO	ertainty budge 16063-11:1999	t - Absolute Interferometric calibration of an acceler - Table A.3 & A.5	ation measuring set		s/M% (s/M%Volv	0,060
	VOLTAGE	E SENSITIVITY - MAGNITUDE			(ernive) in	0,024
	ACCELERATI	ON MEASURING SET - SERVO-ACCELEROMETER 4	SIGNAL CONDITIONER			Relative expanded uncertainty or bounds of estimated error components (%)
						frequency (Hz)
	Standard			Probability		
1	component y(x ,)	Source of uncertainty	description	model	Factor x,	0,2 to 40
1	$u(\hat{u}_V)$	accelerometer output voltage measurement (ADC resolution + DAO range linearity)	calibrations of DAQ	rectangular	0,58	0.05
2	$u(\hat{u}_{1})$	voltage filtering effect on accelerometer output amplitude	No analog filtering applied	rectangular	0,58	0.02
		effect of voltage disturbance on accelerometer output	effect on sensitivity by simulated noise on	normal /k_1)		0,02
3	n(n ^D)	vokage measurement	interferometer and accel channels	nonnai (k=1)	1	0,05
4	$u(\hat{u}_T)$	effect of transverse, rocking and bending acceleration on accelerometer voltage measurement (transverse sensitivity)	The residual effect on sensitivity is estimated by the error to a LS fit, which is to be less than	rectangular	0,58	0,03
		effect of interferometer quadrature output signal disturbance on phase amplitude measurement (e.g. offsets,	Ellipse fit correction implemented.			
5	п(Ф _{М Q})	voltage amplitude deviation, deviation from 90° nominal angle difference)	Residual effect already included in / = 3	rectangular	0,58	0.02
6	$u(\mathcal{P}_{\mathrm{M},\mathrm{P}})$	interferometer signal filtering effect on phase amplitude measurement (frequency band limitation)	No analog filtering applied.	rectangular	0,58	0,02
7	$u(\Phi_{M,VD})$	effect of voltage disturbance on phase amplitude measurement	Estimated to be less than	rectangular	0,58	0,03
8	$u(\Phi_{M,MD})$	effect of motion disturbance on phase amplitude measurement	Estimated to be less than	rectangular	0,58	0.05
9	$u(\Phi_{M,PD})$	effect of phase disturbance on phase amplitude measurement	Estimated to be less than	rectangular	0,58	0.05
10	$u(\Phi_{N,RE})$	residual interferometric effects on phase amplitude measurement	Estimated to be less than	normal (sqrt(N))	0,30	0.05
11	$u(f_{FG})$	vibration frequency measurement (frequency generator and indicator)	Estimated to be less than (standard limit)	normal (k=2)	0,5	0.0001
12	и (S _{RE})	residual effects on sensitivity measurement (e.g. random effect in repeat measurements; experimental standard deviation of arithmetic mean)	measured (for N=6, std dev of the mean)	normal (sqrt(N))	0,41	0.06
13	w(λ cal)	laser wavelength calibration	calibration of laser + bandwidth (1200 MHz)	normal (k=2)	0,5	0.0002
14	$u(\hat{\lambda}_{E})$	environmental effects on laser wavelength . Estimated to be less than (dT = 4'- 3 C, dP = 4'- 70 hPa, dU = 4'- 20 %)	Estimated to be less than (Temp range from 21 to 25 degrees)	rectangular	0,58	0.0007
15	u(A cal)	ampilier gain calibration	calibration of amplifier BK 2650 with constant charge input	normal (k=2)	0,5	0.05
16	и (е _{т. А})	reference amplifiers tracking (deviations in gain for different amplification settings)	Not applicable. Amplifier used at a fixed			0.00
17	$u(e_{1,f,A})$	deviation from constant amplitude-frequency characteristic of reference amplifier	Not applicable. Amplifier calibrated at all frequencies			0.00
18	$u\left(e_{1,f,P}\right)$	deviation from constant amplitude-frequency characteristic of reference accelerometer	Not applicable. Results reported with the input acceleration			0.00
19	$u(e_{1,a,A})$	amplifulde effect on gain of reference amplifier	Estimated to be less than (amplitude range up to 100 m/s ²)	rectangular	0,58	0.02
20	$u(e_{1,a,p})$	amplitude effect on sensitivity (magnitude) of reference	Estimated to be less than (amplitude	rectangular	0,58	0.02
21	H(e.,)	instability of reference amplifier gain, and effect of source	range up to roo invs)	rectangular	0.58	0,02
22	H(e10)	Instability of sensitivity (magnitude) of reference	Estimated to be less than	rectangular	0.58	0,03
23	H(Cr.)	accelerometer	Estimated to be less than (dT =+/- 1 oC	rectangular	0.58	0,02
-		environmental effects on gain of reference amplifier environmental effects on sensitivity (magnitude) of	during one complete calibration) Estimated to be less than (dT =+/- 1 °C		0,00	0,06
24	и (¢ ңр)	reference accelerometer	during calibration, St = 0.02%/°C)	rectangular	0,58	0,02
25	$u(S_{RF})$	safety factor (reproducibility)	Estimated to be less than	rectangular	0.58	0.10

						frequency (Hz)
,	Standard uncertainty	Source of upgethink:	decatalian	Probability distribution	Control of	0.015.40
1	u(û _V)	accelerometer output voltage measurement (ADC resolution + DAC range linearty)	calibrations of DAQ	rectangular	0,58	0.03
2	$u(\hat{u}_{p})$	voltage filtering effect on accelerometer output amplitude measurement	No analog tiltering applied	rectangular	0,58	0.01
3	$u(\hat{u}_D)$	effect of voltage disturbance on accelerometer output voltage measurement	effect on sensitivity by simulated noise on interferometer and accel channels	normal (k=1)	1	0,05
4	$u\left(\hat{u}_{T}\right)$	effect of transverse, rocking and bending acceleration on accelerometer voltage measurement (transverse sensitivity)	The residual effect on sensitivity is estimated by the error to a LS tit, which is to be less than	rectangular	0,58	0.02
5	$u(\Phi_{M,Q})$	effect of interferometer quadrature output signal disturbance on phase amplitude measurement (e.g. offsets, voltage amplitude deviation, deviation from 90° nominal angle difference)	Ellipse fit correction implemented. Residual effect already included in / = 3	rectangular	0,58	0.01
6	$u\left(\mathcal{P}_{\mathbf{M},\mathbf{F}}\right)$	interferometer signal filtering effect on phase amplitude measurement (frequency band limitation)	No analog tiltering applied.	rectangular	0,58	0,01
7	$\pi(\Phi_{M,VD})$	effect of voltage disturbance on phase amplitude measurement	Estimated to be less than	rectangular	0,58	0,02
8	$u(\varPhi_{\rm M,ND})$	effect of motion disturbance on phase amplitude measurement	Estimated to be less than	rectangular	0,58	0,03
9	$u(\Phi_{\rm M,PD})$	effect of phase disturbance on phase amplitude measurement	Estimated to be less than	rectangular	0,58	0,03
10	$u(\mathcal{P}_{\rm M, RE})$	residual interferometric effects on phase amplitude measurement	Estimated to be less than	normal (sqrt(N))	0,30	0,02
11	$u(f_{FG})$	vibration frequency measurement (frequency generator and indicator)	Estimated to be less than (standard limit)	normal (k=2)	0,5	0,00
12	$u(S_{RE})$	residual effects on sensitivity measurement (e.g. random effect in repeat measurements; experimental standard deviation of arithmetic mean)	measured (for N=6, std dev of the mean)	normal (sqrt(N))	0,41	0,02
13	ıı(λical)	laser wavelength calibration	calibration of laser + bandwidth (1200 MHz)	normal (k=2)	0,5	0,0001
14	$u(\hat{\lambda}_{\mathrm{B}})$	environmental effects on laser wavelength . Estimated to be less than (dT = +/- 3 C, dP = +/- 70 hPa, dU = +/- 20 %)	Estimated to be less than (Temp range from 21 to 25 degrees)	rectangular	0,58	0.0004
15	u(A cal)	amplifier gain calibration	calibration of amplifier BK 2650 with constant charge input	normal (k=2)	0,5	0,03
16	и (е _{т. А})	reference amplifiers tracking (deviations in gain for different amplification settings)	Not applicable. Amplifier used at a fixed gain setting			0,00
17	$u(e_{1,f,A})$	deviation from constant amplitude-frequency characteristic of reference amplifier	Not applicable. Amplifier calibrated at all frequencies			0,00
18	$u\left(e_{1,f,P}\right)$	deviation from constant amplitude-frequency characteristic of reference accelerometer	Not applicable. Results reported with the input acceleration			0,00
19	$u(e_{1,a,A})$	amplitude effect on gain of reference amplifier	Estimated to be less than (amplitude range up to 100 m/s ²)	rectangular	0,58	0,01
20	$u\left(e_{1,a,p}\right)$	amplitude effect on sensitivity (magnitude) of reference accelerometer	Estimated to be less than (amplitude range up to 100 m/s ²)	rectangular	0,58	0,01
21	н (е ц.)	instability of reference amplifier gain, and effect of source impedance on gain	Estimated to be less than	rectangular	0,58	0,02
22	$u(e_{1P})$	instability of sensitivity (magnitude) of reference accelerometer	Estimated to be less than	rectangular	0,58	0,01
23	$u(e_{\rm EA})$	environmental effects on gain of reference amplifier	Estimated to be less than (dT =+/- 1 oC during one complete calibration)	rectangular	0,58	0,03
24	u (e _{E,P})	environmental effects on sensitivity (magnitude) of reference accelerometer	Estimated to be less than (dT = +/- 1 °C during calibration, St = 0.02%/°C)	rectangular	0,58	0,01
25	$u(S_{SF})$	safety factor (reproducibility)	Estimated to be less than	rectangular	0,58	0,06
	u . (S .)/S . %	Estimated relative combi	ned standard uncertainty (%) for accele	rometer sensil	tivitv (k=1)	0.11
	U(S.)S.%	Estimated relat	ive expanded uncertainty (%) for accele	rometer sensi	tivity (k=2)	0,23

 $U(S_2)/S_2\%$

frequency (Hz) 0,2 to 40 0,25

Reported relative expanded Uncertainty for accelerometer sensitivity magnitude (k-2)

67 / 79

Unce	ertainty budg	jet - Absolute Interferometric calibration of an accel	eration measuring set			
					s shlu	0,005
	VOLTAG	E SENSITIVITY - PHASE SHIFT			ar yn	0,002
	TOLIAG	E GENOMMAN PHAGE SHIFT				Expanded uncertainty or bounds of
		TION MEASURING SET - SERVO ACCELEROMETEI	B + SIGNAL CONDITIONER			estimated error components (%)
	AUGELENA	TION MEASONING SET = SENVO-ACCELENCIMETER	A + SIGNAL CONDITIONER			frequency (Hz)
	Standard					
	uncertainty			distribution	Factor	
i	a(x ₁)	Source of uncertainty	description	model	X,	0,2 to 40 Hz
1	$u(\Phi_{uV})$	accelerometer output phase measurement	calibrations of DAQ	normal (k=1)	1	0,05
2	$\mu(\Phi_{ij,F})$	voltage fillering effect on accelerometer output phase measurement	No analog filtering applied. Special digital filter has negligible effect.	rectangular	0,58	0,02
0		effect of voltage disturbance on output phase	effect on sensitivity by simulated noise on	normal (k=1)	1	0.05
3	$\mu(\Psi_{u,D})$	measurement (e.g hum and noise) effect of transverse, rocking and bending acceleration on	Interferometer and accel channels	rectangular	0.50	0,08
		accelerometer output phase measurement (transverse	by the error to a LS fit, which is to be less	rectangular	0,50	
4	и (Ф _{Ц.Т})	sensitivity)	than			0,05
		effect of interferometer quadrature output signal				
		disturbance on displacement phase measurement (e.g. offsets, voltage amplitude deviation, deviation from 90	Ellipse fit correction implemented. Residual	rectangular	0,58	
5	n(d) - =)	degrees nominal angle difference)	enect already included in 7 = 3		,	0.02
	#(* <u>\$</u> Q)	interferometer signal fillering effect on displacement phase		rectangular	0.58	0102
6	$u(\Phi_{SF})$	measurement (frequency band limitation)	No analog filtering applied.		0,00	0.02
		effect of voltage disturbance on displacement phase		rectangular	0,58	
		measurement (e.g. random noise in the photoelectric	Estimated to be less than			
7	и(Ф _{\$VD})	measuring chains)				0,03
		effect of motion disturbance on displacement phase		rectangular	0,58	
		accelerometer reference surface and the spot sensed by	Estimated to be less than			
8	$\mu(\Phi_{sMD})$	the interferometer)				0,05
		effect of phase disturbance on displacement phase		rectangular	0,58	
	n (d)	measurement (e.g. phase noise of the interferometer	Estimated to be less than			0.05
9	#(* <u>\$</u> PD)	signals) residual interferometric effects on displacement phase		normai (sort/N)	0.30	0,05
10	$\mu(\Phi_{sRE})$	measurement	Estimated to be less than		0,00	0,05
_		residual effects on phase shift measurement (e.g.		normal (sqrt(N))	0,41	
		random effect in repeat measurements; experimental	measured (for N=6, std dev of the mean)			
11	$\mu(\Delta \Phi_{RE})$	standard deviation of antrimetic mean)				0,002
12	$\mu(\Delta \Phi_{A,ent})$	amplifier phase shift calibration	calibration of amplifier BK 2650 with constant	normai (k=2)	0,5	0.05
	H (A A A A A A A A A A A A A A A A A A	reference amplifier tracking (deviations in phase for	Not applicable. A single calibrated setting is	rectangular	0,58	
13	$u(e_{T,A})$	different amplification settings)	used.	÷	-,	0,0002
		deviations from linear phase-frequency characteristic of reference amplifier.	Not applicable. A single calibrated setting is	rectangular	0,58	0.0007
14	#(€ _{T, \$A})	deviations from linear phase fragmency characteristic of	used. Effect included in the standard deviation of	normal (k=2)	0.5	0,0007
15	#(λ cal)	reference accelerometer	the mean	1011101 ((v=2)	0,0	0,05
16	$\mu(e_{1,a,A})$	amplitude effect on phase shift of reference amplifier	Estimated to be less than	rectangular	0,58	0,02
			Estimated to be less than (amplitude range	rectangular	0,58	
17	$u(e_{1,a,p})$	amplitude effect on phase shift of reference accelerometer	up to 100 m/s")			0,02
18	4(0)	source impedance on phase shift	Estimated to be less than	rectangular	0,58	0.03
19	u(e 1p)	instability of reference accelerometer phase shift	Estimated to be less than	rectangular	0,58	0.02
-	(1 (C (A))		Estimated to be less than (dT =+/- 1 oC	rectangular	0,58	
20	$\mu(e_{BA})$	environmental effects on phase shift of reference amplifier	during one complete calibration)			0,06
~		environmental effects on phase shift of reference	Estimated to be less than (dT =+/- 1 °C during	rectangular	0,58	0.00
22	# (e HP)	autorei on retel	calibration, St = 0.02%/"C)	rectangular	0.58	0,02
22	$\mu(\Delta \Psi_{SF})$	salety factor (reproducibility)	csumaled to be less than	roomigual	0,00	0,10

	VOLTAG	E SENSITIVITY - PHASE SHIFT				Uncertainty contribution # rel (v) (*)
						frequency (Hz)
	Standard					
	uncertainty			Probability	Fostor	
,	component	Course of uncertainty	decorption	model	Factor	0.2 to 40.14
1	H(X _)	Source of uncertainty	description	normal (k-1)	X.	0,2 to 40 Hz
1	$\mu(\Phi_{\mu V})$	acceleronie en culput priase measurement	calibrations of LAQ	nonmar (k=1)		0,05
2	$u(\Phi_{u,F})$	voltage linering effect on accelerometer output phase measurement	No analog ritering applied. Special digital filter has negligible effect.	rectangular	0,58	0,01
3	$u(\Phi_{u,D})$	effect of voltage disturbance on output phase measurement (e.g hum and noise)	effect on sensitivity by simulated noise on Interferometer and accel channels	normal (k=1)	1	0,05
		effect of transverse, rocking and bending acceleration on	The residual effect on sensitivity is estimated	rectangular	0,58	
4	и (Ф., т)	accelerometer output phase measurement (transverse	by the error to a LS fit, which is to be less			0.03
-	#(*41)	effect of interferometer quedrature output signal	ulan			6100
		disturbance on displacement phase measurement (e.g.	Filinse fit correction implemented. Residual			
		offsets, voltage amplitude deviation, deviation from 90	effect already included in / = 3	rectangular	0,58	
5	µ(Φ ≤ Q)	degrees nominal angle difference)	,			0,01
		interferometer signal fillering effect on displacement phase	his apples filtering applied	rectangular	0,58	
6	$u(\Phi_{\xi,F})$	measurement (frequency band limitation)	no analog ritering applied.	_	-	0,01
		effect of voltage disturbance on displacement phase		rectangular	0,58	
-		measurement (e.g. random noise in the photoelectric	Estimated to be less than			0.00
/	#(\$*\$VD)	measuring chains)				0,02
		messurement (e.g. drift: relative motion between		rectangular	0,58	
		accelerometer reference surface and the shot sensed by	Estimated to be less than			
8	$\mu(\Phi_{sMD})$	the interferometer)				0.03
\vdash		effect of phase disturbance on displacement phase		rectangular	0.58	
		measurement (e.g. phase noise of the interferometer	Estimated to be less than		-,	
9	и(Ф _{5 РО})	signals)				0,03
10	и(Ф ₅ , де)	residual interferometric effects on displacement phase measurement	Estimated to be less than	normal (sqrt(N))	0,30	0,02
		residual effects on phase shift measurement (e.g.		normal (sqrt(N))	0,41	
		random effect in repeat measurements; experimental	measured (for N=6, std dev of the mean)		,	
11	$\mu(\Delta \Phi_{RE})$	standard deviation of arithmetic mean)				0,00
10		amplifier phase shift calibration	calibration of amplifier BK 2650 with constant	normal (k=2)	0,5	
12	$\mu(\Delta \Phi A, cal)$	anipinel prase sint calibration	charge input			0,03
10		different amplifienties cettings)	Not applicable. A single calibrated setting is	rectangular	0,58	0.00
13	$\mu(e_{TA})$	deviations from linear phase from upper characteristic of	useu.	recipionalitar	0.50	0,00
14	11 (reference amplifier	Not applicable. A single calibrated setting is used	rectangular	0,56	0.00
<u> </u>	*******	deviations from linear phase-frequency characteristic of	Effect included in the standard deviation of	normal (k=2)	0.5	-100
15	μ(λ cal)	reference accelerometer	the mean	, - ,	0,0	0,03
16	u(e1 e.t)	amplitude effect on phase shift of reference amplifier	Estimated to be less than	rectangular	0,58	0,01
	- 1 1 1		Estimated to be less than (amplitude range	rectangular	0,58	
17	$\mu(e_{1,a,p})$	amplitude effect on phase shift of reference accelerometer	up to 100 m/s ²)		,	0,01
Н		instability of reference amplifier phase shift, and effect of		rectangular	0,58	
18	$\mu(e_{1A})$	source impedance on phase shift	Estimated to be less than	-		0,02
19	u (e 1,p)	instability of reference accelerometer phase shift	Estimated to be less than	rectangular	0,58	0,01
			Estimated to be less than (dT =+/- 1 oC	rectangular	0,58	
20	и (е в. л)	environmental effects on phase shift of reference amplifier	during one complete calibration)			0,04
		environmental effects on phase shift of reference	Estimated to be less than (dT =+/- 1 °C during	rectangular	0,58	
21	# (e 11, p)	accelerometer	calibration, St = 0.02%/°C)			0,01
22	$\mu(\Delta \Phi_{SF})$	safety factor (reproducibility)	Estimated to be less than	rectangular	0,58	0,06
	$u_c(\Delta \Phi)$	Estimated co	mbined standard uncertainty (*) for acceler	ometer phase	shift (k=1)	0,12
	$U(\Delta \Phi)$	Est	shift (k=2)	0,25		

frequency (Hz) 0,2 to 40 1 25

Reported expanded uncertainty (%) for accelerometer phase shift (k-2)

9- CENAM

Magnitude sensitivity

Magnitude Sensitivity (0.1 Hz to <0.2 Hz)

No.	Description	Distribution	Percent (%)
1	Accelerometer output voltage measurement	normal	1.60E-03
2	harmonic distortion (e.g. 1st and 3rd harmonics)	rectangular	1.33E-03
3	Residual interferometric effects on displacement measurement (e.g. temporal coherence of laser, lack of linear response of photodiodes)	normal	9.41E-04
4	Deviations from straight motion (e.g. due to air bearing, rocking motion, transverse motion)	normal	9.96E-04
5	filtering effect on displacement measurement (frequency band limitation)	rectangular	9.96E-04
6	effect of laser wavelenght drift (e.g. length of coherence)	rectangular	9.41E-04
7	amplifier gain calibration (e.g. offset, mains supply, stability of gain amplification)	rectangular	9.41E-04
8	vibration frequency measurement (e.g. frequency generator and counter)	normal	1.11E-03
9	Effect of displacement quantization on displacement measurement	rectangular	1.16E-03
10	Residual effects on sensitivity measurement	rectangular	9.96E-04
	Relative standard uncertainty (k=1)		0.35%
	Relative expanded uncertainty (k=2)		0.7%

Magnitude Sensitivity (0.2 Hz to <0.5 Hz)

No.	Description	Distribution	Percent (%)
1	Accelerometer output voltage measurement	normal	1.15E-03
2	harmonic distortion (e.g. 1st and 3rd harmonics)	rectangular	9.49E-04
3	Residual interferometric effects on displacement measurement (e.g. temporal coherence of laser, lack of linear response of photodiodes)	normal	6.72E-04
4	Deviations from straight motion (e.g. due to air bearing, rocking motion, transverse motion)	normal	7.12E-04
5	filtering effect on displacement measurement (frequency band limitation)	rectangular	7.12E-04
6	effect of laser wavelenght drift (e.g. length of coherence)	rectangular	6.72E-04
7	amplifier gain calibration (e.g. offset, mains supply, stability of gain amplification)	rectangular	6.72E-04
8	vibration frequency measurement (e.g. frequency generator and counter)	normal	7.91E-04
9	Effect of displacement quantization on displacement measurement	rectangular	8.30E-04
10	Residual effects on sensitivity measurement	rectangular	7.12E-04
	Relative standard uncertainty (k=1)		0.25%
	Relative expanded uncertainty (k=2)		0.5%

Magnitude Sensitivity (0.5 Hz to 40 Hz)

No.	Description	Distribution	Percent (%)
1	Accelerometer output voltage measurement	normal	6.88E-04
2	harmonic distortion (e.g. 1st and 3rd harmonics)	rectangular	5.69E-04
3	Residual interferometric effects on displacement measurement (e.g. temporal coherence of laser, lack of linear response of photodiodes)	normal	4.03E-04
4	Deviations from straight motion (e.g. due to air bearing, rocking motion, transverse motion)	normal	4.27E-04
5	filtering effect on displacement measurement (frequency band limitation)	rectangular	4.27E-04
6	effect of laser wavelenght drift (e.g. length of coherence)	rectangular	4.03E-04
7	amplifier gain calibration (e.g. offset, mains supply, stability of gain amplification)	rectangular	4.03E-04
8	vibration frequency measurement (e.g. frequency generator and counter)	normal	4.74E-04
9	Effect of displacement quantization on displacement measurement	rectangular	4.98E-04
10	Residual effects on sensitivity measurement	rectangular	4.27E-04
	Relative standard uncertainty (k=1)		0.15%
	Relative expanded uncertainty (k=2)		0.3%

Phase Sensitivity (0.1 Hz to <0.25 Hz)

No.	Description	Distribution	Degrees (°)
1	Accelerometer output voltage measurement	normal	4.43E-02
2	harmonic distortion (e.g. 1st and 3rd harmonics)	rectangular	3.64E-02
3	Residual interferometric effects on displacement measurement (e.g. temporal coherence of laser, lack of linear response of photodiodes)	normal	2.72E-02
4	Deviations from straight motion (e.g. due to air bearing, rocking motion, transverse motion)	normal	2.85E-02
5	filtering effect on displacement measurement (frequency band limitation)	rectangular	2.85E-02
6	effect of laser wavelenght drift (e.g. length of coherence)	rectangular	2.69E-02
7	amplifier gain calibration (e.g. offset, mains supply, stability of gain amplification)	rectangular	2.69E-02
8	vibration frequency measurement (e.g. frequency generator and counter)	normal	3.16E-02
9	Effect of displacement quantization on displacement measurement	rectangular	3.32E-02
10	Residual effects on sensitivity measurement	rectangular	2.85E-02
	Relative standard uncertainty (k=1)		0.1°
	Relative expanded uncertainty (k=2)		0.2°

Phase Sensitivity (0.25 Hz to 40 Hz)

	- · ·		- (0)
NO.	Description	Distribution	Degrees (°)
1	Accelerometer output voltage measurement	normal	1.11E-01
2	harmonic distortion (e.g. 1st and 3rd harmonics)	rectangular	9.09E-02
3	Residual interferometric effects on displacement measurement (e.g. temporal coherence		6.80E-02
	of laser, lack of linear response of photodiodes)	normal	0.002 02
4	Deviations from straight motion (e.g. due to air bearing, rocking motion, transverse motion)	normal	7.12E-02
5	filtering effect on displacement measurement (frequency band limitation)	rectangular	7.12E-02
6	effect of laser wavelenght drift (e.g. length of coherence)	rectangular	6.72E-02
7	amplifier gain calibration (e.g. offset, mains supply, stability of gain amplification)	rectangular	6.72E-02
8	vibration frequency measurement (e.g. frequency generator and counter)	normal	7.91E-02
9	Effect of displacement quantization on displacement measurement	rectangular	8.30E-02
10	Residual effects on sensitivity measurement	rectangular	7.12E-02
	Relative standard uncertainty (k=1)		0.25°
	Relative expanded uncertainty (k=2)		0.5°

10- NMIA

Source of Uncertainty	Symbol	U or semi-range (maximum)	Probability distribution model	k factor	Sensitivity coefficient	Relative contribution, u;	dof
		%				%	
Accelerometer output voltage measurement (voltmeter)	u	0.086	normal	2.00	1	0.0432	30
Voltage filtering effect on accelerometer output amplitude measurement	u2	0.000	rectangular	1.73	1	0.0000	10
Effect of voltage disturbance on accelerometer output voltage measurement	us	0.010	rectangular	1.73	I	0.0059	10
Effect of transverse, rocking and bending acceleration on accelerometer output voltage measurement	ua	0.050	rectangular	1.73	an a	0.0291	30
Effect of interferometer quadrature output signal disturbance on phase amplitude measurements	u5	0.030	normal	2.00	I.	0.0150	10
Interferometer signal filtering effect on phase amplitude measurement	u _d	0.000	rectangular	1.73	E	0.0000	30
Effect of voltage disturbance on phase amplitude measurement	U 2	0.010	rectangular	1.73	1	0.0058	30
Effect of motion disturbance on phase amplitude measurements (e.g. total distortion, relative motion between accelerometer reference surface and spot sensed by interferometer)	u _s	0.030	rectangular	1.73	1	0.0170	10
Effect of phase disturbance on phase amplitude measurement (e.g. phase noise of interferometer signal)	uş	0.000	rectangular	1.73	1	0.0000	30
Interferometer effects on phase amplitude measurements	u _{in}	0.004	rectangular	1.73	1	0.0022	30
Vibration frequency measurement (frequency generator & indicator counter)	u _{ll}	0.001	rectangular	1.73	E	0.0006	30
Residual effects on sensitivity measurements e.g. random effect in repeat measurements, ESDM.	u ₁₂	0.1	normal	2.00	1	0.0500	26
Effect of shaker modes	Ш13	0.000	rectangular	1.73	1	0.0000	10
Rounding error	u ₁₄	0.005	sectangular	1.73	1	0.0029	100
Combined uncertainty squared, u_t^2						0.0058	
Combined uncertainty, ue						0.0762	
Effective degrees of freedom						86	
Coverage or k factor						1.99	
Expanded uncertainty, U _o						0.152	
Stated expanded uncertainty (%) (round up of U _c)						0.2	
Source of Uncertainty	Symbol	U or semi-range (maximum)	Probability distribution model	k factor	Sensitivity coefficient	Relative contribution	dof
--	------------------	------------------------------	--------------------------------------	-------------	-------------------------	-----------------------	-----
		deg.				deg.	
Digitiser voltage resolution	u _{1,1}	0.05400	rectangular	1.73	1	0.031	30
Digitiser Phase Resolution	u _{1,2}	0.14400	rectangular	1.73	1	0.083	30
Digitiser pre-trigger resolution	u _{1,3}	0.00144	rectangular	1.73	1	0.001	30
Uncertainty associated with pre- digitisation phase delay (homodyne interferometer)	u _{1.4}	0.00043	rectangular	1.73	1	0.000	30
Voltage filtering effect on accelerometer output phase measurement	u ₂	0.00000	rectangular	1.73	1	0.000	10
Effect of voltage disturbance on accelerometer output phase measurement	u ₃	0.03440	normal	2.00	1	0.017	10
Effect of transverse, rocking, and bending acceleration on accelerometer output phase measurement	u4	0.02950	rectangular	1.73	1	0.017	30
Effect of interferometer quadrature output signal disturbance on displacement phase measurement	ü _{s i}	0.01660	rectangular	1.73	1	0.010	10
FFT Tone detect residual uncertainty	u _{5.2}	0.00570	rectangular	1.73	1	0.003	10
Interferometer signal filtering effect on displacement phase measurement	u ₆	0.00000	rectangular	1.73	1	0.000	30
Effect on voltage disturbance on displacement phase measurement	u7	0.00570	rectangular	1.73	1	0.003	30
Effect of motion disturbance on displacement phase measurement	u _N	0.00017	rectangular	1.73	1	0.000	10
Effect of phase disturbance on displacement phase measurements	u9	0.00001	rectangular	1.73	1	0.000	30
Residual interferometric effects on displacement phase measurement	u ₁₀	0.00220	rectangular	1.73	1	0.001	30
Residual effects on phase shift measurements -Typical expected TYPE A repeat uncertainty	u ₁₁	0.10000	normal	2.00	1	0.050	5
Rounding error	u ₁₂	0.05000	rectangular	1.73	1	0.029	30
uncertainty squared, ue2 (deg.2)						0.0119	
uncertainty, uc (deg.)						0.109	
Effective degrees of freedom						48.8	
Coverage or k factor						2.01	
Expanded uncertainty (deg.), Uc						0.22	
Stated expanded uncertainty (deg.) (round up of U _r)						0.3	

11- NMIJ

Magnitude sensitivity

	Uncertainty component	Comment	Typ	.0	Hz - 25 Hz	> 25 Hz in %	Distribution	Factor	0.1 Hz - 25 Hz	> 25 Hz in %
Interferometer	- [†] Laser Wavelength	CIPM recommendation value	u1 B		1.5E-04	1.5E-04	Normal	1.00	1.5E-04	1.5E-04
	Relative Motion of Interferometer	Measured with monitoring accelerometer attached to the interferometer	u2 B		3.3E-02	5.5E-02	Normal	1.00	3.3E-02	5.5E-02
	Cosine Error	Maximum 0.1°	u3 B		8.7E-05	8.7E-05	Rectangular	0.58	5.0E-05	5.0E-05
Accelerometer	Digitizer correction coefficient	Estimated from 10 calibration results	4 A		4.9E-04	4.9E-04	Normal	1.00	4.9E-04	4.9E-04
	Calibration of voltage standard	From calibration certificate	u5 B		6.1E-03	6.1E-03	Normal	1.00	6.1E-03	6.1E-03
	Transverse, rocking motion	1 % transverse sensitivity	u6 B		7.1E-04	5.6E-03	Normal	1.00	7.1E-04	5.6E-03
Other effects	Temperature fluctuation	0.02%/°C tempreture coefficient, ± 0.5℃	u7 B		1.0E-02	1.0E-02	Normal	1.00	1.0E-02	1.0E-02
	Nonlinearity	Effect on sensitivity: 0.01 %	81 81		1.0E-02	1.0E-02	Normal	1.00	1.0E-02	1.0E-02
	Correction of gravity effect	Influence from curve on air bearing bar caused by gravity	B B		8.6E-07	4.4E-08	Rectangular	0.58	5.0E-07	2.5E-08
	Quantization error, fitting error, effect of digital filtering, noise, and distortion	Estimated by Monte Carlo simulation	u10 B		1.6E-03	1.0E-02	Normal	1.00	1.6E-03	1.0E-02
	Reproducability	Estimated from 10 measurements	u11 A		1.9E-03	2.0E-03	Normal	1.00	1.9E-03	2.0E-03
					Rela	tive standar	d uncertainty [%	(k = 1)	0.036	0.058
					Relativ	/e expander	d uncertainty [%	(k = 2)	0.073	0.117
					State	d relative e	xpanded uncerta	inty [%]	0.15	0.2

Unce	rtainty Component	Comment	-	Cype C).1 Hz - 5 Hz in 1°	> 5 Hz in 1°	Distribution	Factor	0.1 Hz - 5 Hz in 1°	> 5 Hz in 1°
	Delay of Laser Interferometer	Maximum 0.1 micro seconds	L1	m	3.8E-05	6.6E-04	Rectangular	0.58	2.18E-05	3.81E-04
erometer	Relative Motion of Interferometer	Measured with monitoring accelerometer attached to the interferometer	u2 I		2.4E-04	3.2E-02	Normal	1.00	2.37E-04	3.15E-02
erometer	Transverse motion	1 % transverse sensitivity	u3 E	m	1.7E-04	1.8E-03	Normal	1.00	1.66E-04	1.85E-03
	Channel asynchronousity	Maximum 0.5 micro seconds	u4 I	m .	1.9E-04	3.3E-03	Rectangular	0.58	1.09E-04	1.91E-03
r effects	Quantization error, fitting error, effect of digital filtering, noise, and distortion	Estimated by Monte Carlo Simulation	u5 B		2.6E-03	5.2E-03	Normal	1.00	2.60E-03	5.22E-03
	Reproducability	Estimated from 10 measurements	n6	1	7.6E-03	4.2E-03	Normal	1.00	7.64E-03	4.23E-03
					Relative	e standard u	ncertainty [°]	(k = 1)	0.008	0.032
					Relative e	expanded un	ncertainty [°]	(k = 2)	0.016	0.065
					Stated n	elative expa	nded uncerta	ainty [°]	0.05	0.1

12- KRISS

Magnitude sensitivity

Uncertainty components	Description	Relative standard uncertainty: u _r	Probability distribution	Sensitivity coefficient: c	Contributed amount: c·u _r	Degree of freedom			
$u_r(f)$	Relative uncertainty of frequency readings	0.75E-12	Uniform	2	1.5E-12	80			
$u_{r,S}(R_{M}I_M)$	Relative std. uncertainty of the magnitude of the complex sensitivity	6.74E-06	Normal	1	6.74E-06	360			
<i>u_r</i> (<i>s</i>)	Relative std. uncertainty of the magnitude of the linear displacement	2.22E-07	-	1	2.22E-07				
u _{r.QE}	Relative std. uncertainty of RLE quantization error	2.04E-07	Uniform	1	2.04E-07	-			
$u_{r,SDE}$	Relative std. uncertainty of RLE sub-division error	7.15E-08	Normal	1	7.15E-08	-			
UWIS	RLE wavelength stability	5.0E-08	-	1	5.0E-08	-			
u _{r,ENL}	Relative std. uncertainty of RLE electric noise level	1.01E-08	Uniform	1	1.01E-08	80			
$u_r(V)$	Relative std. uncertainty of the magnitude of the voltage output	7.54E-05	-	1	7.54E-05				
u_{rVS}	Relative std. uncertainty of voltage calibration source	5.0E-05	Normal	1	5.0E-05	00			
$u_{r,GE}$	Relative std. uncertainty of ADC gain error	5.65E-05	Normal	1	5.65E-05	-			
u _{r,QEV}	Relative std. uncertainty of ADC quantization error	4.67E-13	Uniform	1	4.67E-13	80			
$u_{r,EN}$	Relative std. uncertainty of ADC electric noise level	1.53E-06	Normal	1	1.53E-06	-			
$u_r(S_{RE})$	Relative std. uncertainty of the magnitude repeatability of complex sensitivity	1.0E-04	Normal	1	1.0E-04				
$u_{r,c}(S_a)$	Combined uncertainty	1.254E-4	-	1	1.254E-4				
T/C)	Expanded uncertainty: Calculated (k = 2, L.C. = 95 %)	2.51E-04	-	1	2.51E-04				
$U_r(S_a)$	Expanded uncertainty: Stated (k = 2, L.C. = 95 %)	-	-	-	1.00E-3				

			<u> </u>			
Uncertainty components	Description	Standard uncertainty: u	Probability distribution	Sensitivity coefficient: c	Contributed amount: c·u	Degree of freedom
$u_{\Delta\varphi}(R_M,I_M)$	Standard uncertainty of the phase shift of the complex sensitivity	5.07E-04°	Normal	1	5.07E-04°	360
$u_{\Delta\varphi}(s)$	Standard uncertainty of the phase shift of the linear displacement	3.60E-04°	Normal	1	3.60E-04°	
$C_{AU \times u_{r}}(s)$	Effect of relative std. uncertainty of the magnitude of linear displacement measurement	2.22E-07	Normal	180/π	1.27E-05°	
$u_{\Delta a, RLE}$	Data age of RLE unit	6.25E-07 s	Uniform	360f	3.60E-04°	œ
$u_{\Delta \varphi, PC}$	Time delay of position counter	1.00E-08 s	Uniform	360f	5.76E-06°	œ
$u_{\Delta\varphi}(V)$	Relative uncertainty of the phase shift of the voltage output	4.32E-03°	Normal	1	4.32E-03°	
$c_{AU \times u_r}(V)$	Effect of relative std. uncertainty of the magnitude of voltage output measurement	7.54E-05	-	180/π	4.32E-03°	
U _{ДФ} AD	Std uncertainty of phase shift of calibrated AD converter	0			0	
и _{Дя,CL}	Time delay caused by the length difference of two cables of the RLE output and the transducer output	2.0E-09 s	Normal	360f	1.15E-06°	-
$u_{\Delta \varphi}(S_{RE})$	Relative std. uncertainty of the phase repeatability of complex sensitivity	5.0E-03°	Normal	1	5.0E-03°	
$u_{\Delta a,c}(S_a)$	Combined uncertainty	6.64E-03°	-	1	6.64E-03°	
U (S)	Expanded uncertainty: Calculated (k = 2, L.C. = 95 %)	1.33E-2°	-	1	1.33E-2°	
$U_{\Delta \varphi}(\mathcal{S}_a)$	Expanded uncertainty: Stated (k = 2, L.C. = 95 %)	-	-	-	0.10°	

14- ASTAR

Magnitude sensitivity

			1000			1.1.1.1				Cells	und.									00000			-			-	_	- 1	_		_
40 Hz	%	3.00E-02	1.00E-02	1.00E-02	1.00E-02	3.00E-02		1.41E-03	4.00E-02	5.00E-03	1.00E-03		2.00E-02	5.00E-02		1.00E-03	1.00E-03	8.00E-03	1.00E-03	0.00E+00	5.00E-02	1.50E-03	1.11E-01	2.12E-03	1.47E-01	2.00	10	1.23E-03	0.15	2.06E+09	2.00
25 Hz - 31.5 Hz	%	3.00E-02	1.00E-02	1.00E-02	1.00E-02	3.00E-02		1.41E-03	4.00E-02	5.00E-03	1.00E-03		2.00E-02	5.00E-02		1.00E-03	1.00E-03	8.00E-03	1.00E-03	0.00E+00	5.00E-02	1.50E-03	1.24E-01	2.12E-03	1.56E-01	3	10	6.99E-03	0.16	2.52E+06	2 00
20 Hz	%	3.00E-02	1.00E-02	1.00E-02	1.00E-02	3.00E-02	00 111 1	1.41E-03	6.43E-02	5.00E-03	1.00E-03		2.00E-02	5.00E-02		1.00E-03	1.00E-03	8.00E-03	1.00E-03	0.00E+00	5.00E-02	1.50E-03	1.22E-01	2.12E-03	1.63E-01		10	5.24E-03	0.16	9.39E+06	2 00
16 Hz	%	3.00E-02	1.00E-02	1.00E-02	1.00E-02	3.00E-02	00 111 1	1.41E-03	8.83E-02	5.00E-03	1.00E-03		2.00E-02	5.00E-02		1.00E-03	1.00E-03	8.00E-03	1.00E-03	0.00E+00	5.00E-02	1.50E-03	1.25E-01	2.12E-03	1.76E-01		10	2.62E-03	0.18	2.04E+08	0000
12.5 Hz	%	3.00E-02	1.00E-02	1.00E-02	1.00E-02	3.00E-02	00 111 1	1.41E-03	4.00E-02	5.00E-03	1.00E-03		2.00E-02	5.00E-02		1.00E-03	1.00E-03	8.00E-03	1.00E-03	0.00E+00	5.00E-02	1.50E-03	1.27E-01	2.12E-03	1.59E-01		10	9.01E-03	0.16	9.82E+05	000
10 Hz	%	3.00E-02	1.00E-02	1.00E-02	1.00E-02	3.00E-02	00 111 1	1.41E-03	5.44E-02	5.00E-03	1.00E-03	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2.00E-02	5.00E-02		1.00E-03	1.00E-03	8.00E-03	1.00E-03	0.00E+00	5.00E-02	1.50E-03	1.27E-01	2.12E-03	1.63E-01		10	1.68E-02	0.16	9.16E+04	0000
5 Hz - 8 Hz	%	3.00E-02	1.00E-02	1.00E-02	1.00E-02	3.00E-02	00 1 1 1	1.41E-03	4.00E-02	5.00E-03	1.00E-03		2.00E-02	5.00E-02		1.00E-03	1.00E-03	8.00E-03	1.00E-03	0.00E+00	5.00E-02	1.50E-03	1.25E-01	2.12E-03	1.57E-01	3.00	10	6.40E-03	0.16	3.66E+06	000
2.5 Hz - 4 Hz	%	3.00E-02	1.00E-02	1.00E-02	1.00E-02	3.00E-02	00 L	1.41E-03	4.00E-02	5.00E-03	1.00E-03		2.00E-02	5.00E-02		1.00E-03	1.00E-03	8.00E-03	1.00E-03	0.00E+00	5.00E-02	1.50E-03	1.16E-01	2.12E-03	1.51E-01		10	4.75E-03	0.15	1.02E+07	000
1 Hz - 2 Hz	%	3.00E-02	1.00E-02	1.00E-02	1.00E-02	3.00E-02		1.41E-03	4.00E-02	5.00E-03	1.00E-03		2.00E-02	5.00E-02	A CONTRACTOR OF A CONTRACTOR O	1.00E-03	1.00E-03	8.00E-03	1.00E-03	0.00E+00	5.00E-02	1.50E-03	1.11E-01	2.12E-03	1.47E-01		10	1.33E-03	0.15	1.50E+09	
0.4 Hz - 0.8 Hz	%	3.00E-02	1.00E-02	1.00E-02	1.00E-02	0.00E+00		1.41E-03	0.00E+00	5.00E-03	1.00E-03		2.00E-02	5.00E-02		1.00E-03	1.00E-03	1.30E-02	1.00E-03	0.00E+00	5.00E-02	1.50E-03	1.08E-01	2.12E-03	1.36E-01		10	7.08E-03	0.14	1.36E+06	1
0.2 Hz - 0.315 Hz	%	3 00F-02	1.00E-02	1.00E-02	5.00E-02	0.00E+00		1.41E-03	0.00E+00	5.00E-03	1.00E-03		2.00E-02	1.00E-01		1.00E-03	1.00E-03	2.10E-02	1.00E-03	7.50E-02	1.00E-01	1.50E-03	1.00E-01	2.12E-03	2.00E-01		10	2.56E-02	0.20	3.88E+04	Sec. Sec.
0.16 Hz	%	3 00F-02	1.00E-02	1.00E-02	1.00E-01	0.00E+00		1.41E-03	0.00E+00	5.00E-03	1.00E-03		2.00E-02	1.00E-01		1.00E-03	1.00E-03	3.60E-02	1.00E-03	1.40E-01	1.00E-01	1.50E-03	1.00E-01	2.12E-03	2.50E-01		10	3.90E-02	0.25	1.77E+04	(and a set
0.125 Hz	%	3 00F-02	1.00E-02	1.00E-02	1.00E-01	0.00E+00	1	1.41E-03	0.00E+00	5.00E-03	1.00E-03		2.00E-02	1.00E-01		1.00E-03	1.00E-03	3.60E-02	1.00E-03	1.40E-01	1.00E-01	1.50E-03	1.00E-01	2.12E-03	2.50E-01		10	7.71E-02	0.26	1.32E+03	
0.1 Hz	%	3 00F-02	1 00F-02	1.00E-02	1.00E-01	0.00E+00		1.41E-03	0.00E+00	5.00E-03	1.00E-03		2.00E-02	1.00E-01		1.00E-03	1.00E-03	3.60E-02	1.00E-03	1.40E-01	1.00E-01	1.50E-03	1.00E-01	2.12E-03	2.50E-01		10	1.29E-01	0.28	2.27E+02	1000
Probability distribution	model	Normal	Rectandular	Rectangular	Normal	Rectangular		Normal	Rectangular	Normal	Rectangular		Normal	Normal		Rectangular	Rectangular	Rectangular	Rectangular	Rectangular	Rectangular	Rectangular	Rectangular	Rectangular	Type B Total	Type A	neasurement	d uncertainty	d uncertainty	e of freedom	
Magnitude:	Uncertainty components	Output voltage measurement	Harmonics	Hum	Noise	Transverse motion	Acceleration determination	Reference laser	Relative motion between laser and shaker	Geometrical location of laser spot	Angular frequency	Reference amplifier	Amplifier gain	Frequency response	Residual effect	Base strain	Sensor mounting	Cable layout	Non-linearity	Effect of sagging guide bars	Exciter magnetic field	Temperature variation	Other environmental effects	Report resolution			Number of n	Standar	Combine	Effective degre	12