S4-9: Dependence of maximum pumping frequency on the profile of the quantum-dot potential in quantum dot-based single electron pumps

Authors: Ye-Hwan Ahn1,2, Changki Hong3, Young-Seok Ghee1,4, Yunchul Chung3, Myung-Ho Bae1, and Nam Kim1

Affiliation of authors: 1Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea, 2Department of Physics, Korea University, Seoul 02841, Republic of Korea, 3Department of Physics, Pusan National University, Busan 46241, Republic of Korea, 4Department of Physics, Chonnam National University, Gwangju 61186, Republic of Korea

Speaker: Nam Kim or Ye-Hwan Ahn

Speaker email: namkim(at)kriss.re.kr or muta0719(at)gmail.com

Abstract: Our quantum-dot (QD) electron pump has uniqueness in design that the QD potential shape can be manipulated, especially its potential depth can be controlled by a plunger gate [1]. We find that there exist strong correlations between the potential depth of the QD and the maximum pumping frequency, f_m, when the modulating microwave power is fixed. As the depth of the QD potential was deepened, f_m showed decreasing characteristics while the flatness of the 1st current plateau was increased. We confirmed the same trend for five different devices. We quantitatively analyzed these correlations by using the notion of so called ‘non-adiabatic Coulomb blockade gap energy’, ΔE_{LU} [2]. We found that ΔE_{LU} parameters being under control by a plunger gate is proportional to the pumping frequency f. The flatness parameter of 1st current plateau, δ_2 is also found to be proportional to ΔE_{LU}. Our numerical calculations based on master equations reproduced qualitatively the frequency dependence of ΔE_{LU}, which is consistent with the decay cascade model [3]. Based on its frequency dependence, we could estimate semi-quantitatively the maximum operation frequency f_m at a fixed modulating microwave power. Consequently, we arrive at provisional conclusions that the f_m observed in our experiments is due to the deficiency of the modulating power and in order to get higher pumping frequency we should decrease ΔE_{LU} by sacrificing the flatness parameter δ_2. For more quantitative analysis we need further study.