Accurate Results for Patient Care: The Role of Traceability in Laboratory Medicine

Graham RD Jones¹, Dave Armbruster², For the JCTLM Working Group for Traceability: Education and Promotion (WG-TEP)

¹SydPath, St Vincent's Hospital, Sydney, Australia, ²Abbott Diagnostics, Chicago, IL, USA.

Abstract

Clinical laboratories require global metrological standardization to produce equivalent patient test results across space and time. Standardization is required to use evidence based laboratory medicine (EBLM) practice guidelines and eliminate the need for local or method-specific reference intervals, or decision cut-offs with the goal of improving e-healthcare and patient safety. Healthcare providers and patients take for granted all test results are accurate, comparable and interchangeable, and clinical practice guidelines assume results are independent of assay methodology. Due to lack of standardization, currently all results are not equivalent and assay method-specific reference intervals and medical decision points are required. The European Union’s In Vitro Diagnostics Directive (IVDD) mandates metrological traceability for calibrators and traceability controls to promote assay standardization.

The Joint Committee for Traceability in Laboratory Medicine (JCTLM), formed in 2002, promotes standardization in the clinical laboratory. It was founded by the BIPM (Bureau International des Poids et Mesures), the IFCC (International Federation for Clinical Chemistry and Laboratory Medicine), and ILAC (International Laboratory Accreditation Cooperation). JCTLM now has 28 member organizations, including AACC, that commit to traceability in laboratory medicine. JCTLM promotes the use of proven metrological principles to support equivalence of measurements in the clinical laboratory through metrological traceability to appropriate reference materials and methods.

Standardization is achieved when all routine assay results for test are traceable, with an unbroken metrological chain of comparisons, to reference materials and methods of a “higher order,” with a sufficiently small uncertainty such that results may be validly compared.

Results: The JCTLM has developed a database of such higher order reference materials and methods and reference measurement services (http://www.bipm.org/jctlm). Entry in the database is determined by review by experts using ISO standards and approval by the JCTLM Database Working Group and Executive Committee. In 2015 the database contained listings for 295 materials for 162 measurands, 70 methods for 79 analytes and 150 reference measurement services for 39 analytes.

Implementation of traceability requires action by many bodies: national measurement institutes and other organizations that prepare materials and develop methods; reference measurement service laboratories; IVD manufacturers that prepare calibrators/traceability controls for field assays following appropriate traceability chains and provide traceability information to users; clinical laboratories that select and use traceable assays; ECACC that provides confirmed traceability; and guideline committees that base recommendations on traceable results.

To promote these activities the JCTLM formed a Working Group on Traceability: Education and Promotion (WG-TEP) in 2015 to produce and use educational materials demonstrating the value of traceability in laboratory medicine. Its members represent the JCTLM Executive Committee, the wider international membership, and individuals with skills and experience in creating educational materials.

WG-TEP provides key traceability educational material and develops methods for appropriate traceability chains and provides traceability information to users, clinical laboratories that select and use traceable assays. ECACC provides confirmed traceability; and guideline committees that base recommendations on traceable results.

Introduction

It is vital that medical laboratory results are stable over time and place. This can be achieved by having all results traceable to high quality reference materials or methods by appropriate traceability chains (Fig 1). This has not yet been achieved and results for the same measurand often vary between laboratories and can also vary over time.

The Joint Committee for Traceability in Laboratory Medicine (JCTLM) was formed to support the world-wide comparability, reliability, and equivalence of measurement results in laboratory medicine, for the purpose of improving health care and facilitating national and international trade for in vitro diagnostic devices.

A key activity is the listing of appropriate reference materials (RM) reference measurement procedures (RMP) and reference Measurement Services (RMS) on the JCTLM database.

The JCTLM also aims to promote the concept of traceability. A working group, “Traceability, education and promotion” (WG-TEP) was formed in 2015 to support this goal.

Aim

To outline the functions of the JCTLM including the database and WG-TEP.

Database

The JCTLM database (www.bipm.org/jctlm) is a freely available list of certified RM, RMP and RMS (table & figure 2).

Submissions for inclusion in the database are assessed against ISO standards and publicly available procedures (see www.bipm.org/jctlm).

The database provides a reference source for manufacturers, laboratories and other parties seeking the appropriate top of the traceability chain for an analyte (Figure 2).

The database can be used to identify “higher order” materials and methods and meet to the needs of the European Union In Vitro Diagnostics Directive which requires traceability of laboratory medicine tests.

The JCTLM database currently lists:

- 298 RM for 175 measurands
- 180 RMP for 80 measurands
- 146 RMS for 39 measurands.

The number of current listings on the JCTLM database in each category are shown in the table.

Table 1. JCTLM Database Listings - 2016

<table>
<thead>
<tr>
<th>Analyte Category</th>
<th>Number of entries</th>
<th>Number of Analytes</th>
<th>Number of entries</th>
<th>Number of Analytes</th>
<th>Number of entries</th>
<th>Number of Analytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood test</td>
<td>146</td>
<td>198</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Blood gases</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Drugs</td>
<td>32</td>
<td>24</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Electrolytes</td>
<td>36</td>
<td>36</td>
<td>7</td>
<td>18</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Enzymes</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>54</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Metabolites</td>
<td>91</td>
<td>52</td>
<td>47</td>
<td>13</td>
<td>40</td>
<td>19</td>
</tr>
<tr>
<td>Metabolites & Substrates</td>
<td>91</td>
<td>52</td>
<td>47</td>
<td>13</td>
<td>40</td>
<td>19</td>
</tr>
<tr>
<td>Microbial serology</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Non Electrolyte Metals</td>
<td>23</td>
<td>11</td>
<td>30</td>
<td>13</td>
<td>22</td>
<td>10</td>
</tr>
<tr>
<td>Non-peptide Hormones</td>
<td>30</td>
<td>20</td>
<td>21</td>
<td>18</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Nucleic acids</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Vitamins</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Vitamins</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 2. Example Database Search (Creatinine RM) (www.bipm.org/jctlm)

Search Screen

Results of a Search

Conclusions

- The JCTLM database now provides important information for manufacturers and laboratories to establish and confirm traceability for routine methods.
- This work needs to be ongoing to ensure a wider coverage of all the measurands used in laboratory medicine. For example blood gases and serology tests are not currently represented in the database (table 1).
- The JCTLM is continuing with the work of promoting traceability in laboratory medicine.