METROLOGY TO SUPPORT INNOVATION IN MOLECULAR RADIOTHERAPY

Glenn Flux
Head of Radioisotope Physics
Royal Marsden Hospital & Institute of Cancer Research
Sutton UK

glenn.flux@icr.ac.uk
Overview

Current status

- Nuclear Medicine enables imaging of the function of organs and the diagnosis of malignancies

- Molecular radiotherapy uniquely treats cancers systemically with radiotherapeutics

- International standardisation of measurements of radioactivity enables safer, more effective procedures and provides the confidence for international clinical trials

- Molecular radiotherapy is undergoing a revolution – rapid increase in radioactive drugs, treatments, methods of administration. Promises significant benefit in healthcare.

Ongoing developments

- Standards for new radiotherapeutics

- Research into measurements of activity to calculate radiation doses delivered to tumours and organs in individual patients
Nuclear Medicine

Nuclear Medicine uses injected radionuclides that localise in selected tissues.

Diagnostic Nuclear Medicine scans are used to image normal organs or an abnormal growth.

Nuclear Medicine scans show function, for example of heart and kidneys.

Renal imaging and analysis with Tc-99m DTPA

~5,000,000 nuclear medicine scans are performed in Europe each year.

F-18 FDG scan
A large metastatic tumour mass from colon cancer is seen in the liver.
A tracer level of a diagnostic agent can selectively localise in abnormal tissue.

A high level of a therapeutic agent can therefore selectively target abnormal tissue with radiation.

Molecular Radiotherapy (MRT) is the treatment of cancer or benign disease with therapeutic radiopharmaceuticals – high energies, high activities.

Used for the treatment of hyperthyroid conditions, thyroid cancer, bone metastases from prostate cancer, neuroendocrine tumours, neuroblastoma in children, liver tumours...

New treatments for lung tumours and breast cancer

MRT is the only medical treatment that allows imaging of the drug in real time!
‘The therapeutic market is expected to grow 26% annually between 2014 and 2030.’
The radiotherapeutics revolution

Press Release

Louvain-la-Neuve, Belgium and Lalaye, France – November 17, 2015

RADIOThERAPEUTICS ARE DRIVING UP THE NUCLEAR MEDICINE INDUSTRY

In the last few weeks two leading companies proved that radiotherapeutics are becoming a driving force of the nuclear medicine market.

Earlier this month, Bayer published once again strong results for its Xofigo (radionuclide product introduced on the US market in 2013 and used in the treatment of prostate cancer) that is now reaching US$ 210 million for the first nine months of 2015, growing 46% compared to the same period in 2014.

Last week, Advanced Accelerator Applications S.A. (NASDAQ: AAAP)’s stock surged to US$ 25.02 (+56%) in just four days of trading, after the company announced the successful completion of a lead-in trial for its lutetium-177 DOTATATE-based radiopharmaceutical, that is intended for use in the treatment of gastro-enteropancreatic neuroendocrine tumors (GEP-NET). The treatment is currently in III clinical phase and is expected to be on the market by early 2017.

MEDraysintell recently showed in its report “Nuclear Medicine World Market Report 2015” new opportunities lie ahead in nuclear medicine, especially in the radiotherapy area, with new products to reach the market before end of 2020. The global Nuclear Medicine Equipment market is expected to reach US$ 24 billion in 2030, showing an average annual growth of 11%. The diagnostic radiopharmaceutical market is expected to grow, on average by 6% a year, mainly driven by volume but limited impact from new tracers, while the therapeutic radiopharmaceutical market is expected to grow 26% annually between 2014 and 2030.

Novartis to buy French cancer specialist AAA for $3.9 billion

John Miller

ZURICH (Reuters) - Novartis (NOVN.S) has agreed to buy French-based Advanced Accelerator Applications (AAA) (AAAP.O) for $3.9 billion (2.9 billion pounds), giving it a new platform in radiopharmaceuticals and access to a new therapy for the kind of cancer that killed Steve Jobs.
The radiotherapeutics revolution

Press Release

Louvain-la-Neuve, Belgium and Lalaye, France – November 17, 2015

RADIOThERAPEUTICS ARE DRIVING UP THE NUCLEAR MEDICINE MARKET

In the last few weeks two leading companies proved that radiotherapeutics are forces of the nuclear medicine market.

Earlier this month, Bayer published once again strong results for its Xofigo (radionuclide product introduced on the US market in 2013 and used in the treatment of prostate cancer) that is now reaching US$ 210 million for the first nine months of 2015, growing by 38% year on year.

Last week, Advanced Accelerator Applications, Inc. (NASDAQ: AAA) made a major announcement: the company has signed a definitive agreement to be acquired by Novartis AG, one of the world’s leading pharmaceutical companies, for $3.9 billion (2.99 billion pounds) giving it a platform in radiopharmaceuticals and access to a new therapy for the kind of cancer that killed Steve Jobs.

Bayer clinches $2.9 billion deal for Norway's Algeta

Reuters Staff

OSLO/FRANKFURT (Reuters) - German drug firm Bayer (BAYGn.DE) has clinched a $2.9 billion deal to take over Norwegian cancer drug maker Algeta ALGETA.OL after being tendered 92.17 percent of the shares in a cash offer, the companies said on Monday.

Bayer extended the acceptance deadline by two days to Wednesday, February 26, to eliminate any remaining uncertainty.
The radiotherapeutics revolution

MEDraysintell

Press Release

Louvain-la-Neuve, Belgium and Lalaye, France – November 17, 2015

RADIOThERAPeUTICS ARE DRIVING UP THE NUCLEAR MEDICINE REVOLUTION

In the last few weeks two leading companies proved that radiotherapeutics are real forces of the nuclear medicine market.

Earlier this month, Bayer published once again strong results for its Xofigo (radionuclide zoledronic acid) product introduced on the US market in 2013 and used in the treatment of prostate cancer, that is now reaching US$ 210 million for the first nine months of 2015, growing 12% in the first nine months of 2014.

Last week, Advanced Accelerator Applications SA (NASDAQ: AAPP) made an indicative offer to acquire French-based SIRTEX Medical Ltd for US$ 3.9 billion (2.99 billion pounds) giving it a platform in radiopharmaceuticals and access to a new therapy for the kind of cancer that killed Steve Jobs.

Bayer clinches $2.9 billion deal for Norway's Algeta

Reuters Staff

OSLO/FRANKFURT (Reuters) - German drug firm Bayer (BAYGn.DE) clinched a $2.9 billion deal to take over Norwegian cancer drug maker Algeta (ALGET.OL), the companies said on Tuesday.

Algeta shareholders tendered 92.17 percent of the shares in a cash offer, the companies said, and Bayer extended the acceptance deadline by two days to Wednesday, Feb. 26, 2014, to give any remaining uncertainty.

Chinese firm makes last-minute $1.4 billion offer for Australia’s Sirtex, trumps Varian:

Reuters

May 4, 2018 By Reuters News

Chinese private equity firm **CDH Investments** lobbed a last-minute $1.4 billion offer for Australian liver-cancer treatment firm **Sirtex Medical** (SRX.AX), trumping **Varian Medical Systems** (VAR:N) days before the U.S. firm was set to seal a takeover deal.
Growth in radiotherapeutics

Lu-177 PSMA for bone metastases from prostate cancer

Unprecedented opportunities and challenges!
Cancer has been treated with radiotherapeutics for nearly 80 years.

1936 – Dr Karl Compton gives a lunchtime lecture at Harvard medical school:

“What Physics Can Do for Biology & Medicine”

Saul Hertz (endocrinologist) asked if it would be possible to synthesise radioactive iodine

Arthur Roberts (physicist)
Glenn Seaborg (radiochemist)

Led to the first treatment of hyperthyroidism with radioiodine in 1941, and soon after thyroid cancer.

Leo Marinelli devised a system for calculating the absorbed dose delivered.

Led to the birth of nuclear medicine.
Current standardisation: ‘Radioactive chemotherapy’:

Current practice is to treat according to the level of activity administered:

Examples:
- 7400 MBq radioiodine for thyroid therapy
- 7400 MBq I-131 mIBG, Y-90 DOTATATE, Lu-177 DOTATATE for neuroendocrine tumours

Biokinetics vary from patient to patient affecting uptake and retention of the radiotherapeutics. Therefore a large range of absorbed doses are delivered from fixed activities of radiation:

Examples:
- Red marrow from I-131 radioiodine: 38 – 375 mGy/GBq (Bianchi Q J Nucl Med 2013)
- Thyroid remnants from I-131 radioiodine: 7 – 570 Gy (Flux Eur J Nucl Med 2010)

In general, radiation doses to normal organs vary by an order of magnitude
Radiation doses to tumours vary by two orders of magnitude

Current research investigating treatment according to radiation dose. Paradigm shift!
Internal dosimetry

There is ongoing development to standardise the radiation doses delivered to patients. The basic equation for patient dosimetry combines physics & biology:

\[\bar{D} = \bar{\bar{A}} \cdot S \]

\(\bar{D} = \) The mean radiation dose delivered to an organ or tumour
\(\bar{\bar{A}} = \) The total number of radioactive decays in an organ or tumour
\(S = \) The radiation dose delivered for each radioactive decay

The meeting of physics and biology!

The onus on the medical physicist is to measure the number of radioactive decays occurring within a tumour or normal organ.

Obtained from several scans after administration to track the distribution of activity over time.
Standardisation of activity measurements

The CIPM MRA ensures that activity measurements made by the NMIs are standardised internationally (104 signatories from 59 member states covering 159 institutes). The KCDB of measurements is maintained by the BIPM.

This ensures that primary standards of radioactivity are equivalent in different countries and that patients are administered the same activity.

<table>
<thead>
<tr>
<th>Table 2.2 Typical state-of-the-art uncertainties for primary standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclide</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>32P*</td>
</tr>
<tr>
<td>51Cr</td>
</tr>
<tr>
<td>57Co</td>
</tr>
<tr>
<td>67Ga</td>
</tr>
<tr>
<td>89Sr*</td>
</tr>
<tr>
<td>90Y*</td>
</tr>
</tbody>
</table>

* Pure beta emitter
**Low-energy photon

Measurement of physical half-lives
Uncertainties due to:

- Instrumentation
- Operator (target outlining)
- Quantification
Standardisation of quantitative imaging

Nuclear medicine gamma cameras are designed to image small quantities of low energy gamma emitters for *qualitative* diagnosis.

Therapy imaging requires *quantitative* imaging of high energy, high activity radionuclides.

Cameras must be calibrated to convert the counts acquired into absolute measurements of activity and to make corrections for ‘deadtime’ if there is a higher count rate than can be handled.

Not simple, and requires standardisation for multicentre trials
Standardisation of quantitative imaging

Comparison of 90Y and 177Lu measurement capability in UK and European hospitals

Andrew Fenwick*, Michaela Baker, Kelley Ferreira, John Keightley
National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK

HIGHLIGHTS
- 90Y and 177Lu measurement accuracy in UK and European hospitals is presented.
- 40% of participants are able to measure 90Y to within 5%.
- 81% of participants are able to measure 177Lu to within 5%.
- Geometry dependence is identified in radionuclide calibrator measurements of 90Y.

COMMENTARY

SELIMETRY—a multicentre I-131 dosimetry trial: a clinical perspective

1JONATHAN WADSLEY, MRCP, FRCR, MA, 2REBECCA GREGORY, PhD, 2GLENN FLUX, PhD,
3KATE NEWBOLD, MRCP, FRCR, MD, 3YONG DU, FRCP, PhD, 4LAURA MOSS, FRCP, FRCR, LLM, 5ANDREW HALL, MSc,
6LOUISE FLANAGAN, PhD and 6SARAH R BROWN, PhD

1Weston Park Hospital, Sheffield, UK
2Department of Physics, The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton, UK
3Royal Marsden Hospital, London, UK
4Velindre Hospital, Cardiff, Wales
5CTRU, University of Leeds, Leeds, UK

Ongoing initiatives to standardise cameras across European centres:
MRTDosimetry & Medirad
Absorbed dose relationship

- Ra-223 for bone metastases: Relationship between lesion absorbed dose and % change in fluoride-18 uptake

\[r^2 = 0.52 \]

The function of the tumours decreases with increasing radiation dose
Absorbed dose relationship

- Ra-223 for bone metastases: Relationship between lesion absorbed dose and % change in fluoride-18 uptake

Baseline PET predicts the dose and could be used for initial treatment planning – administration could be increased
I-131 mIBG for neuroblastoma

Case study – Vienna, 22 year old female

Neuroblastoma is a cancer of the neuroendocrine system found in children and young adults.

Conventional treatment is 7400 MBq I-131 mIBG

‘Veritas’ protocol (Dr Simon Meller, RMH):
Administer according to a 4 Gy whole-body radiation dose in 2 fractions.
Fraction 1: According to weight
Fraction 2: Modified according to dosimetry

At presentation:
Post CDDP/VP16+ HD CAV, rapid COJEC
Post surgery
Post radiotherapy

Becherer & Ladensten
St Anna’s children’s hospital, Vienna

At presentation
Initial treatment

8.7 GBq (1 Gy WB dose)
+
19.7 GBq (2.3 Gy WB dose)

Slightly under target
(new technique)
Treatment well tolerated and showed response. Therefore a second cycle was given

18.5 GBq (1.7 Gy WB dose)
+
11.1 GBq (1.1 Gy WB dose)
7 months later.
Clear.

Total of 58 GBq activity administered

~ 8 times more activity administered than in the absence of dosimetry

(mostly rapidly eliminated)

Combination of physics & clinical judgement
Conclusions

Accurate and standardised measurement of radionuclides enables radiotherapeutics to be administered worldwide with equivalence.

Emphasis is now on personalised treatments according to radiation dosimetry, as is standard practice for external beam radiotherapy.

Treatment planning protocols are in development.

International collaborations are being set up to standardise quantitative imaging and multicentre, multinational clinical trials are starting.

Cost/benefit of treatments will improve with tailored treatments.

Rapid progress in the field with metrology and the clinic working together to improve existing treatments and to make the next generation of drugs safer and more effective.
Acknowledgements

Radioisotope Physics Group, RMH/ICR

Nuclear Medicine RMH

Patients (participation & involvement)