Traceability in laboratory medicine: a driver of accurate results for patients

Graham H Beastall

Joint Committee for Traceability in Laboratory Medicine

gbeastall@googlemail.com
Outline

- Laboratory medicine in healthcare
- Traceability in laboratory medicine
- Joint Committee for Traceability in Laboratory Medicine
- Facing the challenge
Some big numbers

- Global cost of healthcare: \sim8.2 trillion pa
- Global cost of laboratory medicine: \sim200 billion pa
- Global cost of reagents & equipment: \sim62 billion pa
- Global cost of staff and overheads: \sim138 billion
- Global IVD tests: \sim35 billion pa
- Number of different IVD tests: \sim4000

Annual growth of \sim5% for all of above
Pathology and laboratory medicine

Anatomic pathology
 Cytopathology
 Embryology
 Histopathology

Common to all PLM
 Molecular pathology
 Bioinformatics

Laboratory medicine
 Clinical chemistry
 Genetics
 Haematology
 Immunology
 Microbiology
 Transfusion
 Transplantation
 Virology
A high percentage of all clinical decisions are informed by data from pathology & laboratory medicine.
Central role of pathology & laboratory medicine

Pathology & laboratory medicine is part of the multi-disciplinary team at the centre of healthcare.

With this influence comes responsibility to deliver a high quality service.
Laboratory medicine sectors

Morgan Stanley Research Estimates
Laboratory medicine methods

- Some measurands are structurally simple and available in pure form (e.g. glucose)
- Most measurands are complex, often heterogeneous (e.g. viruses)
- Method calibration is a challenge
- >100 diagnostic companies producing IVDs – using ‘own’ calibrators
- Result is often variability between methods for the same measurand
- The same patient specimen can give different results in different methods!

Variability between methods

→ Incorrect patient results

→ Mis-diagnosis / mis-management

→ Poor clinical outcomes

→ Impact on patient safety
Current HbA2 EQA performance

Figure from UK NEQAS with permission
Outline

• Laboratory medicine in healthcare
• Traceability in laboratory medicine
• Joint Committee for Traceability in Laboratory Medicine
• Facing the challenge
Traceable measurement results are compatible
What is traceability in laboratory medicine?

- Metrological traceability is the property of a measurement result, which can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty.
- Traceability requires both (certified) reference materials and the reference measurement procedures (methods) in which they are used.
- For structurally simple measurands (analytes) it is possible to get pure substance primary reference materials. For more complex measurands pure substance may not be available.
- Primary reference measurement procedures are based on physical methods (e.g. ID-MS).

Reference materials (calibrators)
- Primary reference material (pure substance)
- Primary calibrator (SI traceable)
- Secondary calibrator
- Product calibrator

Reference measurement procedures
- Primary reference measurement procedure
- Secondary reference measurement procedure
- Manufacturer selected procedure
- Routine laboratory procedure

Hierarchy
The metrological traceability chain

Definition of measurand: Concentration in SI units

- Primary reference material
- Primary calibrator
- Secondary calibrator
- Manufacturer master calibrator
- Product calibrator
- Patient result
- Primary reference measurement procedure
- Secondary reference measurement procedure
- Manufacturer selected measurement procedure
- Manufacturer standing measurement procedure
- Routine laboratory method

Metrology institute / Reference lab

IVD method manufacturer

Adapted from EN ISO 17511 2003
Requirements for traceability in laboratory medicine

European Union In-Vitro Diagnostic Directive (IVDD): 98/79/EC

“The traceability of values assigned to calibrators and/or control materials must be assured through available reference measurement procedures and/or available reference materials of a higher order.”

EU In-Vitro Diagnostic Device Regulation (IVDR): EU/2017/746

“9.3. Where the performance of devices depends on the use of calibrators and/or control materials, the metrological traceability of values assigned to calibrators and/or control materials shall be assured through suitable reference measurement procedures and/or suitable reference materials of a higher metrological order.”
Outline

• Laboratory medicine in healthcare
• Traceability in laboratory medicine
• Joint Committee for Traceability in Laboratory Medicine
• Facing the challenge
Joint Committee for Traceability in Laboratory Medicine

Formed in 2002 to enable a global response to the IVD Directive

Intergovernmental treaty organisation for measurement standards

International NGO for professionals in laboratory medicine

International NGO for accreditation bodies

Now has 49 members from 19 countries
NMIs, EQA providers, professional bodies, IVD manufacturers
BIPM leads on metrology and provides the Secretariat
What does JCTLM do?

Maintains a global database of:
• Reference materials
• Reference methods
• Reference services
 www.bipm.org/jctlm

Co-ordinates the nomination and review process for database entries
 www.bipm.org/jctlm

Contributes to ISO Working Groups on reference systems, which are responsible for global standards

Provides news and freely available resources on traceability in laboratory medicine:
• Webinars; publication lists
 www.jctlm.org

Hosts a biennial scientific meeting
JCTLM Database: Laboratory medicine and *in vitro* diagnostics

Type an analyte name in part or full, e.g. cholesterol

Refine search by analyte category

Refine search by matrix category

Please select your requirement:
- Higher-order reference materials
- Reference measurement methods/procedures
- Reference measurement services

Reset Search

Bureau International des Poids et Mesures

JCTLM Database

www.bipm.org/jctlm/
JCTLM Database: Entries in 2018

- 289 Certified Reference Materials
- 194 RMPs that represent 80 different analytes in 9 categories
- 176 reference measurement services delivered by 17 reference labs
Higher order reference materials

- NMIs provide higher order reference materials (both pure and matrix materials) to support the IVD industry
- Currently 95% of Certified Reference Materials in the JCTLM database come from NMIs

- BIPM functions as an external quality assessment provider for NMIs:
 - Coordinates Key Comparisons
 - Send samples of pure materials for NMIs to value assign and compare
 - Use own labs to value assign the materials independently.
CCQM-K115: Peptide Primary Reference Material Comparison Series

<table>
<thead>
<tr>
<th>1 kDa</th>
<th>10 kDa</th>
</tr>
</thead>
<tbody>
<tr>
<td>no cross-links</td>
<td>Active large proteins</td>
</tr>
<tr>
<td>low cross-links</td>
<td>PTH (2021)</td>
</tr>
<tr>
<td>high cross-links</td>
<td>hINS</td>
</tr>
<tr>
<td>high modifications</td>
<td>Aβ-42 (2015)</td>
</tr>
<tr>
<td>low modifications</td>
<td>PNA-G-K115.2013/PSS.2</td>
</tr>
<tr>
<td>high modifications</td>
<td>VHLITE</td>
</tr>
<tr>
<td>modifications</td>
<td>ANG I</td>
</tr>
<tr>
<td>high modifications</td>
<td>OXT</td>
</tr>
<tr>
<td>modifications</td>
<td>hHPE-25</td>
</tr>
<tr>
<td>modifications</td>
<td>PNA-G-K115.2013/PSS.2</td>
</tr>
<tr>
<td>modifications</td>
<td>VHLITE</td>
</tr>
</tbody>
</table>

Chronic kidney disease monitoring

Diabetes diagnostic biomarker

Diabetes monitoring biomarker
Outline

• Laboratory medicine in healthcare
• Traceability in laboratory medicine
• Joint Committee for Traceability in Laboratory Medicine
• Facing the challenge
Facing the challenge

The world population of 7.7 billion people is entitled to believe that all methods will give the same result on their specimen.
Define clinical decision values and analytical requirements
Provide reference materials and higher-order reference methods
Lists available materials and methods. Promotes traceability
Raise analytical and clinical quality targets
Use commutable materials to monitor method performance
Produce methods that are traceable to a reference system, when available
Select methods based on quality performance

Stakeholder coordination to address the challenge

Routine lab
EQA provider
IVD method manufacturer
Standards institutes
Accreditation bodies
Global database of reference materials & methods
National metrology institutes
Professional bodies / societies
Internationally recognised expert clinical / laboratory committees