Stable and accurate measurements to quantify the causes of global climate change

James Butler, Brad Hall, Ken Masarie, et al.

Global Monitoring Division
NOAA Earth System Research Laboratory
Boulder, CO, USA

25th General Conference on Weights and Measures
18-20 November, Versailles
Outline

• A few fundamentals
• Monitoring challenges
• How we do this
• Comparisons
• The future
A Few Fundamentals . . .
Radiative Forcing
IPCC 5th Assessment Report (2014)

<table>
<thead>
<tr>
<th>Emitted compound</th>
<th>Resulting atmospheric drivers</th>
<th>Radiative forcing by emissions and drivers</th>
<th>Level of confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>CO₂</td>
<td>1.68 [1.33 to 2.03]</td>
<td>VH</td>
</tr>
<tr>
<td>CH₄</td>
<td>CO₂ H₂O₂O₃ CH₄</td>
<td>0.97 [0.74 to 1.20]</td>
<td>H</td>
</tr>
<tr>
<td>Halo-carbons</td>
<td>O₃ CFCs HCFCs</td>
<td>0.18 [0.01 to 0.35]</td>
<td>H</td>
</tr>
<tr>
<td>N₂O</td>
<td>N₂O</td>
<td>0.17 [0.13 to 0.21]</td>
<td>VH</td>
</tr>
<tr>
<td>CO</td>
<td>CO₂ CH₄ O₃</td>
<td>0.23 [0.16 to 0.30]</td>
<td>M</td>
</tr>
<tr>
<td>NMVOC</td>
<td>CO₂ CH₄ O₃</td>
<td>0.10 [0.05 to 0.15]</td>
<td>M</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Nitrate CH₄ O₃</td>
<td>-0.15 [-0.34 to 0.03]</td>
<td>M</td>
</tr>
<tr>
<td>Aerosols and precursors</td>
<td>Mineral dust Sulphate Nitrate Organic carbon Black carbon</td>
<td>-0.27 [-0.77 to 0.23]</td>
<td>H</td>
</tr>
<tr>
<td>Natural</td>
<td>Changes in solar irradiance</td>
<td>0.05 [0.00 to 0.10]</td>
<td>M</td>
</tr>
</tbody>
</table>

Total anthropogenic RF relative to 1750

- 2011: 2.29 [1.13 to 3.33] (H)
- 1980: 1.25 [0.64 to 1.86] (H)
- 1950: 0.57 [0.29 to 0.85] (M)

Radiative forcing relative to 1750 (W m⁻²)
Annual Greenhouse Gas Index
(Normalized Radiative Forcing)

• An information tool for the public
 ➢ US Physical Indicator of Climate Change

• Normalizes RF to 1990
 ➢ Kyoto target year

• Long-lived GHGs only
 ➢ No aerosols, ozone, BC, NO_x, SO_x

• CO_2 responsible for 84% of change in RF from long-lived GHGs over past decade

• Increase from minor gases exceeds decrease from CFCs
Atmospheric CO₂ - The Primary Driver of Climate Change

- Atmospheric CO₂ continues to increase every year
 - The trend is largely driven by fossil fuel emissions

- The growth rate increases decadally
 - Variability is largely driven by the Earth System

- The Earth System continues to capture 50% of emissions
 - Despite the increase in emissions
 - Do we understand carbon cycle?

Pre-industrial level of CO₂ was 280 ppm

+ 75 ppm within 50 years

Annual mean growth rate of CO₂ at Mauna Loa

Parts per million
Methane is confounding

- After ~10yr hiatus, CH₄ began increasing again in 2007
- Cause of this increase is uncertain
 - Sources of atmospheric CH₄ are legion
 - Renewed interest in extraction
- The recent trend seems to be largely driven by emissions in the tropics and subtropics
 - The arctic was significant only in 2007
 - Extraction does not seem significant – yet

Pre-industrial CH₄ was 700 ppb
Monitoring Challenges
Sub-continental Information Needed

• Global averages are robust and highly certain
 - 40+ marine boundary layer sites
 - Measurements are all made in the same laboratory
 - Calibrations are traceable to WMO World Standards

• Society needs robust information on “policy-relevant scales”
 - Much more difficult than global average
 - Requires more observations, better analysis, improved modeling
 - Must be globally coherent (thus bias can be a BIG problem)
How to compare sites around the world?

- Analyses must be constrained by atmospheric observations.
- Observations must be sufficiently dense.
- Observations must either be free of bias or the bias must be known.
How does bias impact annual net CO$_2$ surface fluxes?

- North America: 74.8 ± 0.6 (N=8)
- Extratropical Eurasia: -25.1 ± 0.9 (N=8)

- More biospheric uptake if bias is negative.
- Less biospheric uptake if bias is positive.

Bias Run minus CT (TgC yr$^{-1}$)

Introduced CO$_2$ measurement bias at LEF (ppm)
Reducing Bias

- Lots of Observations
- Consistent calibrations over time and space
 - Common, traceable scale
 - Stability and reproducibility
 - Comparability
- Consistent measurements among sites
 - Comparable approaches?
 - Compatible sites
How we do this
WMO Measurement Guidelines

- General requirements for CCLs, WCCs, measurement laboratories
- Specific requirements for
 - Gases (CO₂, CH₄, N₂O, SF₆, O₂/N₂, CO, H₂)
 - Stable Isotopes (C,O,H)
 - ¹⁴CO₂
- Quality Control
- In situ measurements
- Data management and archiving
- Emerging instrumentation
Data Quality Objectives

Data Quality Objective (DQOs): Qualitative and quantitative statements that clarify the objectives of observations, define the appropriate type of data, and specify tolerable levels of uncertainty.

- repeatability
- reproducibility
- calibration transfer

Network Compatibility Goal: Scientifically desirable level of compatibility for well mixed background air.

In a sense, these represent the largest “artificial” gradients in surface mole fraction that would be “tolerable” for inverse modeling.

- Some compatibility goals are not achievable with current methods.

New in GGMT Report 2013 (Beijing): Extended compatibility goals for localized (not global) studies.
Example: For two measurement sites 500 km apart, a mean bias of 0.2 ppm CO$_2$ would result in an error of 50 g C m$^{-2}$ yr$^{-1}$ on inferred fluxes.

Further, an under estimate of the flux in one region will lead to an overestimate somewhere else.

Reproducibility of Primary Standard Curve

Difference between mean 2012/2013 results and WMO-CO2-X2007 scale

mean diff = 0.01 ppm
One primary standard shows evidence of drift.
Primary Standards at the Central Calibration Laboratory

<table>
<thead>
<tr>
<th>Gas</th>
<th>Standard Uncertainty, Single Primary Standard</th>
<th>Compatibility Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>~0.025%, (0.1 μmol/mol)</td>
<td>0.1 μmol/mol (N.H.)</td>
</tr>
<tr>
<td>CH₄</td>
<td>0.13%, (2.5 nmol/mol)</td>
<td>2 nmol/mol</td>
</tr>
<tr>
<td>N₂O</td>
<td>0.12%, (0.4 nmol/mol)</td>
<td>0.1 nmol/mol</td>
</tr>
<tr>
<td>CO</td>
<td>0.3%, (0.3 nmol/mol)</td>
<td>2 nmol/mol</td>
</tr>
<tr>
<td>SF₆</td>
<td>0.5%, (0.04 pmol/mol)</td>
<td>0.02 pmol/mol</td>
</tr>
</tbody>
</table>
Scale Transfer

Primary

Secondary

Tertiary

WMO/GAW needs stable and consistent Tertiary standards
How to estimate reproducibility?

1) Want to know reproducibility under **ideal** and **real world** conditions
 - e.g. with/without dedicated regulators
2) At what level can we identify drift?
3) Provide guidance to users … e.g. are differences significant?

Graph:

- **SF6 Target Tanks (X2014)**
- **SF6 (ppt):**
 - std dev 0.01 ppt
 - std dev 0.006 ppt
Estimate reproducibility from database of tertiary analysis results. Out of 700 cylinders in the SF$_6$ database, 160 have been analyzed more than once.

Take differences: $X_i - X_0$ (total of 282 SF$_6$ data pairs)

std. dev. under ideal conditions (just target tanks) was 0.01 ppt from 2006-2010
For cylinders analyzed more than 1 yr apart, Pressure > 300 psi

1995-2013
N = 2238 pts, 95%ile = 0.17 ppm
Select surveillance cylinders analyzed more than 10 times, with history extending at least 10 years.

Observe drift in positive and negative direction.

Drift range: $+0.0057 \pm 0.0009$ ppm/yr
- -0.0073 ± 0.0018 ppm/yr
No evidence of systematic bias in WMO scale over time scales of decade or less. No significant change of reproducibility over time.
Reproducibility (95%ile)

<table>
<thead>
<tr>
<th>Gas</th>
<th>Reproducibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$</td>
<td>0.06 μmol mol$^{-1}$</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>0.84 nmol mol$^{-1}$</td>
</tr>
<tr>
<td>N$_2$O</td>
<td>0.22 nmol mol$^{-1}$</td>
</tr>
<tr>
<td>CO</td>
<td>0.8 nmol mol$^{-1}$</td>
</tr>
<tr>
<td>SF$_6$</td>
<td>0.03 pmol mol$^{-1}$ (after 2010)</td>
</tr>
</tbody>
</table>

at near-ambient mole fractions
Comparisons
WMO Round Robin Comparison

WMO RR: 5; Circuit: all

Lab minus NOAA (ΔCO₂, ppm)

Created: 2013-11-12

Butler et al.,
20 November 2014
NOAA-hosted website: contributors can view comparisons in various forms, create custom plots

credit: Ken Massarie and Kirk Thoning for tools

site: Alert, Canada

co-located meas. sample exchange
same air (flask exchange): NOAA and CSIRO at Gape Grim, Australia
The Future . . .
Conceptual Cooperative Global Network

Monitoring the Causes of Climate Change
25th BIPM General Conf. 2014

Butler et al.
20 November 2014
Monitoring the Causes of Climate Change
25th BIPM General Conf. 2014

ICOS

Atmospheric measurement sites in the CorboEurope IP (in prep.)

NOAA

TCCON

WMO Global Atmospheric Watch
Monitoring Stations for Carbon Dioxide (CO₂)

ICOS

NOAA

TCCON

WMO Global Atmospheric Watch
Monitoring Stations for Carbon Dioxide (CO₂)

AGAGE

WMO Global Atmospheric Watch
Monitoring Stations for Carbon Dioxide (CO₂)
Coordinating Networks in Developing Countries

- Emerging Networks anchored with WMO/GAW stations
- Using WMO/GAW Standards
- Taking part in GAW QA/QC Activities
- Sharing Data Openly
- Placing Data into World Data Centre for Greenhouse Gases
Monitoring the Causes of Climate Change

Butler et al.
20 November 2014

Satellites

“Carbon Weather”

Questions?

TCCON

Current Network

China

Earth Networks

Brazil

SE Asia