Consultative Committee on Ionizing Radiation (CCRI)

Report to the 25th CGPM

BIPM Director
on behalf of CCRI Presidents
Dr Kim Carneiro and Dr Wynand Louw
Scope and Impact

Mission

World-wide harmonization and comparability of ionizing radiation measurements

Impact

• Medical applications: radiodiagnostics, radiotherapy, nuclear medicine
• Radiation protection: Environmental survey
• Nuclear energy and fuel cycle
• Main stakeholders:
 - International Atomic Energy Agency (IAEA)
 - International Commission on Radiation Units (ICRU)
 - International Organization for Medical Physics (IOMP)
 - International Committee on Radionuclide Metrology (ICRM)
 - International Commission on Radiological Protection (ICRP)
• All RMOs: AFRIMETS, APMP, COOMET, EURAMET, SIM

Areas of Work

• **Dosimetry**: X- and γ-rays, charged particles (CCRI(I))
• **Radioactivity**: radionuclide measurements (CCRI(II))
• **Neutron fields**: neutron measurements (CCRI(III))

Some statistical data

- 4 billion x-ray examinations per year
- 35 million medical examinations per year using radionuclides
- 11 million radiation workers
- 8 million radiotherapy treatments/year
- 11000 clinical accelerators
- 2300 60Co sources for therapy
- 2500 HDR/LDR brachytherapy facilities
- 1300 industrial electron accelerators
- > 200 industrial gamma-irradiators

Members

• 28 Members:
 - 14 National Metrology Institutes
 - 11 Designated Institutes
 - 2 International Organizations
 - 1 Personal Member
• 11 Observers
Main Achievements (2011 – 2014)

- Evaluation of DoE for absorbed dose to water (D_w) in clinical accelerator photon beams
 - Approved and implemented. Five results for equivalence

- Brachytherapy comparisons with high-dose rate 192Ir sources
 - Revised and re-started

- Thematic special publications on:
 - neutron metrology
 - uncertainties in radionuclide measurements
 - Metrologia 48, 6 (2011)
 - Under peer review stage

- Tools for comparison analysis
 - Power-moderated mean (PMM) method
 - Measurement Methods Matrix
 - Adopted for KCRV evaluation in CCRI(II)
 - Updated for optimal choice and timing of radionuclide comparisons

- New developments:
 - Extension of SIRTI to new short-lived radionuclides
 - Extension of SIR to β emitters: started
 - Shared use of a single facility: implemented
 - Implemented for 18F (110 min half-life)
 - Pilot study with 3H, 14C, 55Fe and 63Ni: started

81 BIPM calibrations of national standards in gamma and X-ray beams
59 BIPM Key comparisons
3 CCRI Key comparisons + 4 CCRI Supplementary comparisons
SIRTI EXTENSION TO 18F (1.8 h half-life)

- **Extension of SIR to short-lived radionuclides:**
 - previously implemented for 99mTc (6 h half-life) with the SIR Travelling Instrument (SIRTI)
 - **extended in 2014 to 18F** (the most frequent radionuclide used for imaging by Positron Emission Tomography-PET)
 - **BIPM.RI(II)-K4.F-18 comparison** registered in the KCDB

- **Comparisons carried out (all in 2014)**
 - VNIIM, NPL and ENEA
 - All reports at Draft A stage:
 * VNIIM and ENEA: pending on their results of primary measurements of activity
 * NPL: Analysis of results in progress
Stakeholder involvement and Strategic approach

Stakeholders contribute directly to the definition of the CCRI strategic approach:
Table of CCRI strategic actions for 2016-2019

<table>
<thead>
<tr>
<th>ID</th>
<th>Action</th>
<th>Section I</th>
<th>Section II</th>
<th>Section III</th>
<th>BIPM</th>
<th>AFRIMETS</th>
<th>APMP</th>
<th>COOMET</th>
<th>EURAMET</th>
<th>SIM</th>
<th>IAEA</th>
<th>ICRM</th>
<th>ICRU</th>
<th>IOOMP</th>
<th>EFOMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>International traceability in high-energy photon beams</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>High-energy photon dosimetry comparisons - maintain</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Small field dosimetry e.g. for IMRT</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Promoting neutron metrology</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>Promoting absorbed dose standards for radiotherapy</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>Radiobiological data for neutrons</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Extension of the SIR to α-emitters</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Molecular imaging measurement needs</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>Hadron therapy (proton and carbon ion)</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j</td>
<td>Brachytherapy – LDR comparisons</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>Climate change needs for low-level measurements standards and tracers</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>Anthropogenic and natural radionuclides standards for the environment and the industry (NORM, wastes,...)</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>Single atom counting techniques</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>Nano-dosimetry (sub-cellular structures) needs for new radiation qualities and biological quantities</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Only for 137Cs
Measurement Methods Matrix (MMM)

Nr	App.	Nuclide	40K\textsubscript{AP}\textsubscript{R}	40K\textsubscript{AP}\textsubscript{P}	40K\textsubscript{AP}\textsubscript{S}	40K\textsubscript{AP}\textsubscript{S}\textsubscript{H/E}	40K\textsubscript{AP}\textsubscript{S}\textsubscript{S}	40K\textsubscript{AP}\textsubscript{N}\textsubscript{H/E}	40K\textsubscript{AP}\textsubscript{N}\textsubscript{S}	40K\textsubscript{AP}\textsubscript{H/E}	40K\textsubscript{AP}\textsubscript{H}	40K\textsubscript{AP}\textsubscript{H}\textsubscript{E}	40K\textsubscript{AP}\textsubscript{H}\textsubscript{S}	40K\textsubscript{AP}\textsubscript{H}\textsubscript{E}	40K\textsubscript{AP}\textsubscript{H}\textsubscript{S}	40K\textsubscript{AP}\textsubscript{K}\textsubscript{H/E}	40K\textsubscript{AP}\textsubscript{K}\textsubscript{S}	40K\textsubscript{AP}\textsubscript{K}\textsubscript{K}\textsubscript{H/E}	40K\textsubscript{AP}\textsubscript{K}\textsubscript{S}						
1	ENV	H-3	3	2	1	0.6	6	3	2	1	6	3	2	1	6	3	2	1	6	3	2	1	6	3	2
2	RES	Be-7	3	2	1	0.6	6	3	2	1	6	3	2	1	6	3	2	1	6	3	2	1	6	3	2
		Be-10																							
3	MDD	O-11	1																						
4	ENV, RES	C-14	3	1	1																				
5	MDD	P-18	2	1	2																				
6	DCA	Na-22	1	1	0.6																				
7	DCA	Na-24	0.6																						
8	ENV	Ar-26	2																						
9	MDT, RES	P-32	1.5	0.7	1.5																				
10	MDT, RES	P-33	1.5	1	1																				
11	S-35	3	1	1																					
12	ENV, MDD, FOF	C-36	1.5	0.7	1																				
13	ENV	Ar-37	1.5	1	1																				
14	ENV	K-40	0.6																						
15	MDD, WAS, FOF	Ar-41	1.5	1	1																				
16	ENV, WAS, FOF	Ca-41	1.5	1	1																				
17	ENV	K-42	1																						
18	Ca-45	1.5	1																						
Future Challenges

METROLOGICAL CHALLENGES...

Short term (2016-2019)

- Promote the progression from air kerma to absorbed dose to water standards
- Establish a long-term strategy for accelerator dosimetry and brachytherapy
- Extension of the SIRTI to further short-lived isotopes (64Cu, 11C,...)
- Full extension of the SIR to beta- and to alpha-particle emitters
- Revision of neutron CMCs

Medium/Long term (2020-2023)

- Work towards new biologically-based quantities
- Evaluate non-reactor based methods of radionuclide production
- Proton (hadron) dosimetry
- Neutron standards for intense pulsed fields
Thank you for your attention