FINAL REPORT ON THE KEY COMPARISON EUROMET.AUV.A-K3

June 2006

CCAUV Approved September 2006

ISTITUTO NAZIONALE DI RICERCA METROLOGICA & The danish primary laboratory for acoustics

> Knud Rasmussen Danish Primary Laboratory for Acoustics Kgs. Lyngby Denmark

> > Tel +45 4525 3937 Fax +45 4588 0577 Email: kr@oersted.dtu.dk

Claudio Guglielmone INRiM Strada delle Cacce 91, Torino Italy Tel +39 011 39319626 Fax +39 011 3919621 Email: guglielm@inrim.it

Contents

Introduction	3
1. Participants	3
2. Measurement phase	3
3. Stability of the standards	4
4. Results from the laboratories	7
4.1 Results	7
4.2 Correction for frequency realignment	11
4.3 Correction for sensitivity drift	12
4.4 Corrected results	13
5. Microphone acoustical impedance	15
6. Analysis of the results	16
6.1 Linking EUROMET.AUV-K3 to CCAUV.A-K3	16
6.2 Drift of the standards	17
7. Degrees of equivalence	19
8. References	25
Appendix, List of contacts	26

Introduction

The need for a comparison of laboratory standard microphones type LS2aP was agreed during the EUROMET TC AUV "Sound in air" SC and contact persons meeting in Warsaw, held in May 2002. The goal of the comparison is to complement on a regional scale the CCAUV.A-K3 comparison, in order to be able to demonstrate the equivalence of acoustical pressure standards of European NMIs. The EUROMET TC AUV presented a project N° 674 for the comparison and it was agreed that IEN would be the pilot laboratory with technical assistance given by DPLA. A Technical Protocol was distributed in September 2003 and measurements started in November 2003. Draft A was prepared in January 2005 and finally approved in May 2005 at TC AUV EUROMET meeting in Torino. The CCAUV approved this final report and the degrees of equivalence in September 2006.

1. Participants

The following laboratories participated in the comparison:

BEV, Austria	Metas, Switzerland
CEM, Spain	Mikes, Finland
CMI, Czech Republic	NMi, The Netherlands (1)
DPLA, Denmark	SP, Sweden
IEN, Italy	
(now INRIM)	
Contact details are in Appendix	

(1) Due to problems in the measuring instruments, NMi withdrew from the comparison

2. Measurements phase

Two LS2aP microphones have been circulated for this comparison. They are Brüel & Kjær type 4180 microphones serial numbers 1395456 and 1627783. One of the microphones (SN 1395456) changed its sensitivity during a return trip to DPLA and then remained stable in the new sensitivity condition until the end of the comparison. The timetable has been followed without problems but an equipment failure prevented one of the laboratories from performing the measurements in time. The same laboratory was allowed to calibrate the circulating standards at the end of the scheduled period. Unfortunately, new management policies prevented the laboratory to redo the measurements. The laboratory was therefore excluded from the comparison.

A more general problem arose form the interpretation of the technical protocol: many laboratories used the exact frequencies and not the standardised nominal octave and third octave frequency values of ISO 266, as required by the protocol. It must be said that the protocol itself could have been more explicit for the frequency selection, and this experience will be useful for the development of new protocols. The frequency mismatch between results of different laboratories creates a problem for obtaining a reference value (for DRAFT A report only) and comparing the results. Fortunately the pilot laboratory calibrated the standards at many more frequencies than those required by the protocol, and some interpolation can be performed. During the elaboration of the Draft A Report, it was decided to interpolate the data at exact frequencies. A similar approach had been adopted for the corresponding CCAUV comparison.

3. Stability of the standards

The standard laboratory microphones used in this comparison are two of the four used in the corresponding CCAUV.A.K-3 comparison, and in the CCAUV comparison they were estimated stable. In this EUROMET comparison one of the microphones drifted in a measurable way.

The change in the sensitivity of microphone 4180 SN 1395456 occurred during the return trip from CEM laboratory. In figure 1 the difference in sensitivity is shown versus frequency. The change was computed on the mean of the calibrations at DPLA before (3 measurements) and after (4 measurements) the change.

Sensitivity Level Drift vs Frequency SN 1395456

Figure 1. Change in sensitivity of standard microphone SN 1395456 as a function of frequency.

In figure 2, the drift is shown as a function of time at two frequencies. Only the data of the pilot laboratory are reported.

Change in sensitivity of standard microphone SN 1395456

Figure 2. Change in sensitivity of standard microphone SN 1395456 as a function of time

The graph suggests that a sudden change in sensitivity has happened during the circulation, and that the minor variations before March 15 and after the "jump" are normally related to laboratory repeatability and reversible instabilities of the standard.

The difference to the behaviour of microphone SN 1627783, reported in figure 3, is evident. This kind of instability is typical of condenser microphones, and reflects a permanent change in some mechanical characteristic of the device (most likely diaphragm tension or distance between it and backplate), triggered by a mechanical or thermal shock. The microphone may then be stable in the new condition, and it is the case that occurred here. The data of this "unstable" standard can therefore be used, but the approaches used in polynomial approximation of the drift, typical for generalise least squares estimations and suitable for standards like masses, are problematic here. A reasonable proposal is to use the data from the pilot lab, and use the difference shown in figure 1 to correct the data of all measurements after the jump in sensitivity. In the analysis of the results the validity of this approach will be evaluated.

Change in sensitivity of standard microphone SN 1627783

Figure 3. Change in sensitivity of standard microphone SN 1627783 as a function of time

4. Results from the laboratories

4.1 Results

In the following tables the results of all laboratories and the declared uncertainties are reported. The DPLA results are the first measurements, for model **4180 SN 1395456** a sensitivity change has been detected.

	DPLA		IEN			BEV			CMI		
Frequency	Pressure Sensitivity Level	U95									
Hz	dB re 1 V/Pa	dB									
31.5	-38.725	0.08	31.5	-38.69	0.08	31.5	-38,720	0.03	31.62	-38.92	0.08
63	-38.736	0.04	63	-38.71	0.05	63	-38,736	0.03	63.1	-38.82	0.06
125	-38.752	0.03	125	-38.73	0.05	125	-38,750	0.02	125.89	-38.82	0.06
250	-38.767	0.03	250	-38.74	0.05	250	-38,763	0.02	251.19	-38.81	0.06
500	-38.774	0.03	500	-38.75	0.05	500	-38,771	0.02	501.19	-38.81	0.06
1000	-38.775	0.03	1000	-38.76	0.05	1000	-38,772	0.02	1000	-38.81	0.06
2000	-38.751	0.03	2000	-38.74	0.05	2000	-38,748	0.02	1995.26	-38.79	0.06
4000	-38.645	0.03	4000	-38.63	0.05	4000	-38,642	0.02	3981.07	-38.69	0.06
6300	-38.447	0.03	6300	-38.44	0.05	6300	-38,444	0.03	6309.57	-38.51	0.07
8000	-38.273	0.03	8000	-38.27	0.05	8000	-38,254	0.04	7943.28	-38.36	0.08
10000	-38.078	0.03	10000	-38.07	0.08	10000	-38,071	0.04	10000	-38.17	0.09
12500	-37.939	0.04	12500	-37.94	0.1	12500	-37,915	0.05	12589.25	-38.06	0.1
16000	-38.213	0.05	16000	-38.2	0.1	16000	-38,197	0.08	15848.92	-38.29	0.1
20000	-39.425	0.08	20000	-39.44	0.15	20000	-39,394	0.10	19952.63	-39.45	0.17
25000	-41.721	0.14	25000	-41.68	0.2	25000	-41,700	0.14	25118.87	-41.68	0.25
31500	-44.462										

Table I. Results for circulating standard microphone 4180 SN 1627783 first part

	Metas			CEM			Mikes			SP	
Frequency	Pressure Sensitivity Level	U95	Frequency	Pressure Sensitivity Level	U95	Frequency	Pressure Sensitivity Level	U95	Frequency	Pressure Sensitivity Level	U95
Hz	dB re 1 V/Pa	dB	Hz	dB re 1 V/Pa	dB	Hz	dB re 1 V/Pa	dB	Hz	dB re 1 V/Pa	dB
31.62	-38.684	0.046	31.62	-38.744	0.05	31.5	-38.78	0.579	31.5	-38.713	0.1
63.1	-38.708	0.046	63.1	-38.757	0.04	63	-38.744	0.0284	63	-38.720	0.08
125.89	-38.727	0.038	125.89	-38.77	0.04	125	-38.746	0.0258	125	-38.732	0.05
251.19	-38.743	0.036	251.19	-38.782	0.04	250	-38.76	0.0258	250	-38.744	0.05
501.19	-38.755	0.036	501.19	-38.79	0.04	500	-38.766	0.0283	500	-38.752	0.05
1000	-38.759	0.036	1000	-38.792	0.04	1000	-38.769	0.03	1000	-38.751	0.05
1995.26	-38.739	0.036	1995.26	-38.769	0.04	2000	-38.749	0.0442	2000	-38.729	0.05
3981.07	-38.636	0.034	3981.07	-38.665	0.04	4000	-38.644	0.0432	4000	-38.623	0.05
6309.57	-38.443	0.032	6309.57	-38.47	0.04	6300	-38.446	0.0437	6300	-38.427	0.06
7943.28	-38.278	0.036	7943.28	-38.305	0.04	8000	-38.275	0.0448	8000	-38.256	0.06
10000	-38.077	0.041	10000	-38.105	0.04	10000	-38.075	0.0505	10000	-38.060	0.08
12589.25	-37.941	0.045	12589.25	-37.97	0.04	12500	-37.948	0.0554	12500	-37.928	0.1
15848.92	-38.186	0.047	15848.92	-38.218	0.05	16000	-38.207	0.0633	16000	-38.226	0.12
19952.63	-39.404	0.063	19952.63	-39.481	0.08	20000	-39.351	0.0754	20000	-39.426	0.2
25118.87	-41.794	0.0163	25118.87	-41.716	0.14	25000			25000	-41.727	0.3

Table II. Results for circulating standard microphone **4180 SN 1627783** second part

	DPLA		IEN			BEV			CMI		
Frequency	Pressure Sensitivity Level	U95									
Hz	dB re 1 V/Pa	dB									
31.5	-38.367	0.08	31.5	-38.33	0.08	31.5	-38.347	0.03	31.62	-38.39	0.08
63	-38.397	0.04	63	-38.37	0.05	63	-38.380	0.03	63.1	-38.42	0.06
125	-38.427	0.03	125	-38.4	0.05	125	-38.409	0.02	125.89	-38.45	0.06
250	-38.450	0.03	250	-38.43	0.05	250	-38.434	0.02	251.19	-38.48	0.06
500	-38.471	0.03	500	-38.45	0.05	500	-38.454	0.02	501.19	-38.5	0.06
1000	-38.482	0.03	1000	-38.47	0.05	1000	-38.466	0.02	1000	-38.51	0.06
2000	-38.465	0.03	2000	-38.45	0.05	2000	-38.447	0.02	1995.26	-38.5	0.06
4000	-38.340	0.03	4000	-38.33	0.05	4000	-38.324	0.02	3981.07	-38.38	0.06
6300	-38.087	0.03	6300	-38.08	0.05	6300	-38.073	0.03	6309.57	-38.14	0.07
8000	-37.856	0.03	8000	-37.85	0.05	8000	-37.825	0.04	7943.28	-37.93	0.08
10000	-37.575	0.03	10000	-37.57	0.08	10000	-37.561	0.04	10000	-37.66	0.09
12500	-37.334	0.04	12500	-37.34	0.1	12500	-37.318	0.05	12589.25	-37.44	0.1
16000	-37.595	0.05	16000	-37.59	0.1	16000	-37.593	0.08	15848.92	-37.66	0.1
20000	-39.059	0.08	20000	-39.09	0.15	20000	-39.062	0.09	19952.63	-39.11	0.17
25000	-41.779	0.14	25000	-41.78	0.2	25000	-41.821	0.13	25118.87	-41.85	0.25
31500	-44.701										

Table III. Results for circulating standard microphone $\mathbf{4180}\ \mathbf{SN}\ \mathbf{1395456}$ first part

	Metas			CEM			Mikes			SP	
Frequency	Pressure Sensitivity Level	U95	Frequency	Pressure Sensitivity Level	U95	Frequency	Pressure Sensitivity Level	U95	Frequency	Pressure Sensitivity Level	U95
Hz	dB re 1 V/Pa	dB	Hz	dB re 1 V/Pa	dB	Hz	dB re 1 V/Pa	dB	Hz	dB re 1 V/Pa	dB
31.62	-38.332	0.046	31.62	-38.365	0.05	31.5	-38.325	0.0579	31.5	-38.335	0.1
63.1	-38.371	0.046	63.1	-38.395	0.04	63	-38.348	0.0284	63	-38.353	0.08
125.89	-38.402	0.038	125.89	-38.424	0.04	125	-38.377	0.0258	125	-38.377	0.05
251.19	-38.43	0.036	251.19	-38.449	0.04	250	-38.404	0.0259	250	-38.402	0.05
501.19	-38.453	0.036	501.19	-38.47	0.04	500	-38.426	0.0284	500	-38.423	0.05
1000	-38.468	0.036	1000	-38.482	0.04	1000	-38.437	0.03	1000	-38.433	0.05
1995.26	-38.452	0.036	1995.26	-38.466	0.04	2000	-38.419	0.0443	2000	-38.418	0.05
3981.07	-38.331	0.034	3981.07	-38.344	0.04	4000	-38.295	0.0443	4000	-38.294	0.05
6309.57	-38.079	0.032	6309.57	-38.093	0.04	6300	-38.04	0.0444	6300	-38.043	0.06
7943.28	-37.856	0.036	7943.28	-37.87	0.04	8000	-37.806	0.0464	8000	-37.813	0.06
10000	-37.564	0.041	10000	-37.582	0.04	10000	-37.52	0.0535	10000	-37.533	0.08
12589.25	-37.322	0.045	12589.25	-37.348	0.04	12500	-37.293	0.059	12500	-37.308	0.1
15848.92	-37.544	0.047	15848.92	-37.579	0.05	16000	-37.543	0.0638	16000	-37.608	0.12
19952.63	-39.011	0.063	19952.63	-39.123	0.08	20000	-38.946	0.0734	20000	-39.125	0.2
25118.87	-41.851	0.0163	25118.87	-41.901	0.14	25000)		25000	-41.948	0.3

Table IV. Results for circulating standard microphone **4180 SN 1395456** second part

4.2 Correction for frequency realignment

The results of CMI, Metas and CEM must be interpolated to nominal frequencies in order to be used for linking this comparison to the CCAUV one. In the following table the corrections and an estimate of the additional uncertainty due to the standard deviation associated with the determination of the slopes used for the linear interpolation, are reported. It should be noted that the units for uncertainties are thousandth of dB. Some additional uncertainty should be accounted for at higher frequencies (20 kHz and 25 kHz) due to the possibly limited validity of a linear interpolation in that frequency range of the pressure response. The additional uncertainty pertaining to the frequency realignment is negligible compared to the combined uncertainty and will not be accounted for in the following analysis.

The correction *C* is defined as follows:

$$C = [f_{nom} - f_{exact}] \cdot slope \quad [dB]$$
where:
$$slope = [(DPLA \ sensitivity \ at \ f_{nom} + 1/12 \ octave) - (DPLA \ sensitivity \ at \ f_{nom} - 1/12 \ octave)]/$$

$$[(f_{nom} + 1/12 \ octave - (f_{nom} - 1/12 \ octave)]$$

 f_{nom} = nominal frequency [Hz] f_{exact} = exact frequency [Hz]

From exac Frequenc Hz	ct y	To nominal frequency Hz	Correction to nominal frequencies for SN 1627783, dB	additional uncertainty dB 10 ⁻³	Correction to nominal frequencies for SN 1395456, dB	additional uncertainty dB 10 ⁻³
31	.62	31.5	0.00007	0.04	0.00019	0.06
6	63.1	63	0.00004	0.03	0.00007	0.03
125	5.89	125	0.00018	0.01	0.00022	0.01
251	.19	250	0.00004	0.07	0.00019	0.07
501	.19	500	0.00002	0.02	0.00005	0.02
1(000	1000	0.00000	0.00	0.00000	0.00
1995	5.26	2000	0.00016	0.01	0.00016	0.01
3981	.07	4000	0.00132	0.02	0.00166	0.02
6309).57	6300	-0.00094	0.01	-0.00125	0.01
7943	8.28	8000	0.00573	0.08	0.00800	0.08
100	000	10000	0.00000	0.00	0.00000	0.00
12589	.25	12500	-0.00109	0.07	-0.00395	0.07
15848	8.92	16000	-0.02705	0.23	-0.03212	0.23
19952	2.63	20000	-0.01897	0.22	-0.02361	0.22
25118	8.87	25000	0.05568	0.33	0.06316	0.33

Table V. Corrections for frequency realignment

	CI	MI	Me	tas	CE	EM
	SN	SN	SN	SN	SN	SN
Nominal	1395456	1627783	1395456	1627783	1395456	1627783
	dB re					
Hz	1V / Pa					
31.5	-38.390	-38.920	-38.332	-38.684	-38.365	-38.744
63	-38.420	-38.820	-38.371	-38.708	-38.395	-38.757
125	-38.450	-38.820	-38.402	-38.727	-38.424	-38.770
250	-38.480	-38.810	-38.430	-38.743	-38.449	-38.782
500	-38.500	-38.810	-38.453	-38.755	-38.470	-38.790
1000	-38.510	-38.810	-38.468	-38.759	-38.482	-38.792
2000	-38.500	-38.790	-38.452	-38.739	-38.466	-38.769
4000	-38.378	-38.689	-38.329	-38.635	-38.342	-38.664
6300	-38.141	-38.511	-38.080	-38.444	-38.094	-38.471
8000	-37.922	-38.354	-37.848	-38.272	-37.862	-38.299
10000	-37.660	-38.170	-37.564	-38.077	-37.582	-38.105
12500	-37.444	-38.061	-37.326	-37.942	-37.352	-37.971
16000	-37.692	-38.317	-37.576	-38.213	-37.611	-38.245
20000	-39.134	-39.469	-39.035	-39.423	-39.147	-39.500
25000	-41.787	-41.624	-41.788	-41.738	-41.838	-41.660

Table VI. Corrected values for CMI, Metas and CEM.

4.3 Correction for sensitivity drift

The drift of microphone B&K 4180 SN 1395456 has been calculated according to the data in table VII. The mean of four measurements of the pilot laboratory before the sensitivity shift, and of three measurements after the shift have been used to evaluate the difference. The standard deviation of the results of the pilot laboratory is reported, and it is reasonable to assume that no additional uncertainty for this correction needs to be applied.

Frequency Hz	Drift dB	SD of Pilot Laboratory, dB
31.5	0.027	0.00074
63	0.026	0.00230
125	0.027	0.00121
250	0.027	0.00172
500	0.027	0.00110
1000	0.026	0.00125
2000	0.026	0.00110
4000	0.025	0.00161
6300	0.023	0.00167
8000	0.023	0.00273
10000	0.020	0.00299
12500	0.014	0.00409
16000	0.007	0.01462
20000	-0.004	0.00733
25000	0.006	0.00356
31500	0.012	0.00074

Table VII. Values for the correction of the change of sensitivity of microphone B&K 4180 SN 1395456

The correction of the drift has been applied to the results of Mikes and SP, the two laboratories that received the microphones after the sensitivity shift occurred.

4.4 Corrected results

In table VIII the results for microphone SN 1627783, corrected to nominal frequencies, are reported.

			Sensitivity	levels, dB 1	e 1V / Pa			
1627783	DPLA	IEN	BEV	CMI	Metas	CEM	Mikes	SP
Date	15-ott	05-nov	20-nov	03-dic	15-gen	01-mar	29-mar	28-apr
	dB re	dB re	dB re	dB re	dB re	dB re	dB re	dB re
Hz	1 V/Pa	1 V/Pa	1 V/Pa	1 V/Pa	1 V/Pa	1 V/Pa	1 V/Pa	1 V/Pa
31.5	-38.725	-38.690	-38.720	-38.920	-38.684	-38.744	-38.780	-38.713
63	-38.736	-38.710	-38.736	-38.820	-38.708	-38.757	-38.744	-38.720
125	-38.752	-38.730	-38.750	-38.820	-38.727	-38.770	-38.746	-38.732
250	-38.767	-38.740	-38.763	-38.810	-38.743	-38.782	-38.760	-38.744
500	-38.774	-38.750	-38.771	-38.810	-38.755	-38.790	-38.766	-38.752
1000	-38.775	-38.760	-38.772	-38.810	-38.759	-38.792	-38.769	-38.751
2000	-38.751	-38.740	-38.748	-38.790	-38.739	-38.769	-38.749	-38.729
4000	-38.645	-38.630	-38.642	-38.689	-38.635	-38.664	-38.644	-38.623
6300	-38.447	-38.440	-38.444	-38.511	-38.444	-38.471	-38.446	-38.427
8000	-38.273	-38.270	-38.254	-38.354	-38.272	-38.299	-38.275	-38.256
10000	-38.078	-38.070	-38.071	-38.170	-38.077	-38.105	-38.075	-38.060
12500	-37.939	-37.940	-37.915	-38.061	-37.942	-37.971	-37.948	-37.928
16000	-38.213	-38.200	-38.197	-38.317	-38.213	-38.245	-38.207	-38.226
20000	-39.425	-39.440	-39.394	-39.469	-39.423	-39.500	-39.351	-39.426
25000	-41.721	-41.680	-41.700	-41.624	-41.738	-41.660		-41.727

Table VIII. Laboratory results for microphone SN 1627783 corrected to nominal frequencies. Sensitivity levels, dB re 1V / Pa In table IX, the results for microphone SN 1395456, corrected to nominal frequencies, and for sensitivity level drift (Mikes and SP laboratories only) are reported.

1395456	DPLA	IEN	BEV	CMI	Metas	CEM	Mikes	SP
Date	15-ott	05-nov	20-nov	03-dic	15-gen	01-mar	29-mar	28-apr
	dB re							
Hz	1 V/Pa							
31.5	-38.367	-38.330	-38.347	-38.390	-38.332	-38.365	-38.352	-38.362
63	-38.397	-38.370	-38.380	-38.420	-38.371	-38.395	-38.374	-38.379
125	-38.427	-38.400	-38.409	-38.450	-38.402	-38.424	-38.404	-38.404
250	-38.450	-38.430	-38.434	-38.480	-38.430	-38.449	-38.431	-38.429
500	-38.471	-38.450	-38.454	-38.500	-38.453	-38.470	-38.453	-38.450
1000	-38.482	-38.470	-38.466	-38.510	-38.468	-38.482	-38.463	-38.459
2000	-38.465	-38.450	-38.447	-38.500	-38.452	-38.466	-38.445	-38.444
4000	-38.340	-38.330	-38.324	-38.378	-38.329	-38.342	-38.320	-38.319
6300	-38.087	-38.080	-38.073	-38.141	-38.080	-38.094	-38.063	-38.066
8000	-37.856	-37.850	-37.825	-37.922	-37.848	-37.862	-37.829	-37.836
10000	-37.575	-37.570	-37.561	-37.660	-37.564	-37.582	-37.540	-37.553
12500	-37.334	-37.340	-37.318	-37.444	-37.326	-37.352	-37.307	-37.322
16000	-37.595	-37.590	-37.593	-37.692	-37.576	-37.611	-37.550	-37.615
20000	-39.059	-39.090	-39.062	-39.134	-39.035	-39.147	-38.942	-39.121
25000	-41.779	-41.780	-41.821	-41.787	-41.788	-41.838		-41.954

Table IX. Laboratory results for microphone SN 1395456 corrected to nominal frequencies and for sensitivity level drift . Sensitivity levels, dB re 1V / Pa

5. Microphone acoustical impedance

Microphone parameters used in the calculations are reported in table X. A rather good agreement is shown, but the comparison was not intended to examine this aspect of microphone calibration and the data are reported for information only.

4180 SN 1627783											
		DPLA	CMI	CEM	BEV	Metas	SP	Mikes	IEN	Mean	SD
Front cavity volume	mm ³	31.7	30.657	31.2	32	31.91	31.6	30.06	31.7	31.353	0.6772
Cavity depth	mm	0.469	0.46	0.455	0.46	0.49	0.471	0.45473	0.46	0.465	0.0117
Equivalent Volume	mm ³	8.5	9.3	8.6	9	8.55	9.19	9	8.8	8.868	0.3019
Resonance frequency	kHz	22.7	22.5	22	22.5	22.21	22	20.184	21.2	21.912	0.8375
Loss factor		1.05	1.15	1.05	1.05	1.06	1.05	1.08	1.07	1.070	0.0342
4180 SN 1395456											
Front cavity volume	mm ³	34.6	33.503	34.9	35.5	34.32	35.5	34.55	34.73	34.700	0.6470
Cavity depth	mm	0.514	0.504	0.508	0.505	0.477	0.504	0.50005	0.507	0.502	0.0110
Equivalent Volume	mm ³	9.3	9.3	8.4	9.2	9.7	9.19	9.4	9.4	9.236	0.3741
Resonance frequency	kHz	21.2	22.5	22	21	22.18	22	19.161	20.6	21.330	1.0923
Loss factor		0.98	1.15	1.05	1	1.06	1.05	1.0096	1.03	1.041	0.0520

Table X . Results of the measurements of microphone electro mechanical parameters.

6. Analysis of the results

6.1 Linking EUROMET.AUV.A-K3 to CCAUV.A-K3

A regional comparison should not try to calculate a key comparison reference value (KCRV), unless for internal purposes [1]. In Draft A Report for EUROMET.AUV.A-K3 comparison, such an attempt was made and the un-weighted mean and the median were used as estimators [2].

The method chosen for calculating the degrees of equivalence of the laboratories in this report is the generalized least square method, as suggested in point 9 of reference [1]. This choice has two main reasons:

- 1) There are two travelling standards, one likely drifting;
- 2) A method based on the generalized least squares approach has been applied in the analysis of the corresponding CCAUV.A-K3 comparison.

The approach used in this analysis of the results is the method proposed by reference [3] for linking international comparisons. But as noted in paragraph 3, the drift, or more appropriately "jump", in sensitivity of one of the standards, has been dealt with in a different way.

The model used in reference [3] can be expressed in the form:

$$\mathbf{y} = \mathbf{X}\mathbf{\beta} + \mathbf{e}$$

where:

 $\mathbf{y} = (y_1, \dots, y_g)^T$ is a column vector of the results

X is the design matrix $g \times h$

 $\boldsymbol{\beta} = (\beta i \dots \beta_b)^t$ is a column vector of the unknowns

 $\mathbf{e} = (e_1 \dots e_g)$ is a vector of random errors or disturbances.

Each row of X, except the last, represents one of the comparison measurements (EUROMET or CCAUV, 28 + 1 in the present case), and there is a corresponding result in the vector y. The last row of X and the last value of y are related to the constraint.

In reference [3] it is shown that the approximation $\hat{\beta}$ of best linear unbiased estimate $\hat{\beta}$ can be expressed as:

$$\hat{\boldsymbol{\beta}} = \hat{\mathbf{C}} \mathbf{X}^{\mathrm{T}} \boldsymbol{\Phi}^{-1} \mathbf{y}$$
⁽²⁾

where $\hat{\mathbf{C}}$ is the uncertainty matrix defined as:

$$\hat{\mathbf{C}} = (\mathbf{X}^{\mathrm{T}} \boldsymbol{\Phi}^{-1} \mathbf{X})^{-1}$$
(3)

The matrix $\hat{\Phi}$ is a symmetric $g \times g$ matrix, whose diagonal elements are the variances associated with each measurement result (standard uncertainty squared). Off diagonal elements allow for correlation between measurements, in our case, following the analysis of the CCAUV.A-K3 comparison, a correlation coefficient of 0,7 was chosen for measurements made by the same laboratory, while measurements of different laboratories were considered essentially uncorrelated.

In the following, standard 1 will designate microphone B&K 4180 SN 1627783, and standard 2 microphone B&K 4180 SN 1395456.

The result vector **y** is formed as follows:

y1...y8 are the measurements results on travelling standard 1 in EUROMET.AUV-K3;

y9...y16 are the measurements results on travelling standard 2 in EUROMET.AUV-K3;

y₁₇ is the deviation of DPLA from KCRV as determined in CCAUV.A-K3;

y₁₈ is the constraint, difference from KCRV is forced to 0.

The design matrix **X** has the form:

(1)

	1	0	0	0	0	0	0	0	1	0	0	
	0	1	0	0	0	0	0	0	1	0	0	
	0	0	1	0	0	0	0	0	1	0	0	
	0	0	0	1	0	0	0	0	1	0	0	
	0	0	0	0	1	0	0	0	1	0	0	
	0	0	0	0	0	1	0	0	1	0	0	
	0	0	0	0	0	0	1	0	1	0	0	
	0	0	0	0	0	0	0	1	1	0	0	
v _	1	0	0	0	0	0	0	0	0	1	0	
Λ-	0	1	0	0	0	0	0	0	0	1	0	
	0	0	1	0	0	0	0	0	0	1	0	
	0	0	0	1	0	0	0	0	0	1	0	
	0	0	0	0	1	0	0	0	0	1	0	
	0	0	0	0	0	1	0	0	0	1	0	
	0	0	0	0	0	0	1	0	0	1	0	
	0	0	0	0	0	0	0	1	0	1	0	
	1	0	0	0	0	0	0	0	0	0	1	
	0	0	0	0	0	0	0	0	0	0	1	

Columns 1 to 8 are relative to the eight laboratories that took part in the comparison, columns 9 and 10 are for the two standards, in any case no local reference value is needed. Column 11 is for the link.

Rows 1 to 8 are relative to the 8 measurements on standard 1, rows 9 to 16 are relative to measurements on standard 2. The last two rows are for the link (deviation of linking laboratory from CCAUV KCRV) and for the constraint.

One the laboratories did not provide a result at 25 kHz, therefore at 25 kHz \mathbf{X} has 10 columns instead of 11 and 16 rows instead of 18.

The degrees of equivalence are calculated from $\hat{\beta}$ and \hat{C} . The deviations are obtained from $\beta_1 \dots \beta_8$ and the uncertainty U_i of the deviations are:

$$U_i = k \sqrt{\hat{\mathbf{C}}_{ii}} \tag{4}$$

where *k* is the coverage factor, it has been assumed k=2.

6.2 Drift of the standards

The change of the sensitivity of one of the microphones was clearly visible in a preliminary analysis of the data.

An attempt has been made to model the drift of the standards with a polynomial model, according to reference [3].

The sensitivity s of the microphone i is expressed as a function of time t as:

$$s_i(t) = s_i + a_i t + b_i t^2 + c_i t^3$$
(5)

In the design matrix X three columns for standard 1, with t, t^2 and t^3 and three columns for standard 2 are added, on the rows relative to the respective measurements. The time t reflects the measurements date, as the

spacing of the measurements in this comparison is not constant. The analysis included all measurements from the pilot laboratory only, for a total of 14 results and \mathbf{X} in this case has 16 rows.

In figures 4 and 5 the behaviour of the two standard microphones, calculated according to (5), without any a priori correction for the drift is reported.

Figure 4. Drift of microphone B&K 4180 SN 1627783 during the comparison: polynomial fit.

Figure 5. Drift of microphone B&K 4180 SN 1395456 during the comparison: polynomial fit, no correction applied to data.

In figure 6, the data for microphone B&K 4180 SN 1395456, calculated on the measurement data corrected for the shift in sensitivity as described in 4.3, is reported.

Figure 6. Drift of microphone B&K 4180 SN 1395456 during the comparison: polynomial fit, correction applied to data.

The comparison of figure 5 and figure 6 shows that the applied correction as reported in figure 6 seems to work well, while the polynomial fit in figure 5 is not able to follow the shift in sensitivity accurately. It is in fact reasonable to assume that, given the typical behaviour of standard laboratory microphones, the sensitivity change is essentially a step function, and a polynomial function of degree 3 is not able to follow it accurately.

7. Degrees of equivalence

The degrees of equivalence have been calculated from (2) and (3) for deviations and their uncertainties respectively. The data from CCAUV.A.K3 Draft B report [4] have been used for the calculations. In particular, the deviations of the linking laboratory, DPLA, and their uncertainty from the KCRV were used in the calculations.

In table XI the deviations of the measurements, directly derived from β after solving equation (2) are reported. The same data is reported in graphical form in figure 7.

In table XII are reported the uncertainties of the deviations of table XI, derived from the diagonal elements of \hat{C} with a coverage factor of 2.

The inter laboratory degrees of equivalence are reported for the frequencies of 250 Hz and 1000 Hz in tables XIII to XVI. The data are calculated from $\hat{\beta}$. The deviation $D_{i,j}$ of laboratory *i* from laboratory *j* is:

$$D_{i,j} = \beta_i - \beta_j \tag{4}$$

and its uncertainty $U_{i,i}$ is again obtained from $\hat{\mathbf{C}}$ using the formula:

$$U_{i,j} = k \sqrt{C_{ii} + C_{jj} - 2C_{ij}}$$
(5)

where *k* is the coverage factor, it has been assumed k = 2.

	DPLA	IEN	BEV	CMI	Metas	CEM	Mikes	SP
Hz				Deviatio	ons, dB		·	
31.5	-0.005	0.031	0.007	-0.114	0.033	-0.013	-0.025	0.003
63	-0.002	0.024	0.006	-0.056	0.025	-0.012	0.005	0.015
125	-0.003	0.022	0.007	-0.048	0.023	-0.010	0.012	0.019
250	-0.004	0.020	0.006	-0.040	0.018	-0.011	0.009	0.018
500	-0.004	0.019	0.006	-0.036	0.015	-0.011	0.009	0.018
1000	-0.004	0.010	0.006	-0.035	0.011	-0.012	0.009	0.020
2000	-0.004	0.010	0.007	-0.040	0.009	-0.013	0.008	0.018
4000	-0.003	0.009	0.006	-0.044	0.007	-0.014	0.007	0.018
6300	0.001	0.007	0.009	-0.059	0.005	-0.015	0.013	0.021
8000	-0.002	0.002	0.023	-0.076	0.002	-0.018	0.010	0.016
10000	-0.003	0.004	0.008	-0.091	0.003	-0.020	0.017	0.018
12500	0.000	-0.004	0.020	-0.116	0.002	-0.025	0.009	0.012
16000	0.010	0.018	0.018	-0.091	0.019	-0.015	0.035	-0.007
20000	0.015	-0.008	0.029	-0.044	0.028	-0.066	0.110	-0.017
25000	-0.002	0.018	-0.013	0.042	-0.015	-0.001	-	-0.093

Table XI. Degrees of equivalence per laboratory and per frequency: deviations, expressed in dB.

	DPLA	IEN	BEV	CMI	Metas	CEM	Mikes	SP	
Hz		Uncertainty, dB							
31.5	0.082	0.093	0.063	0.093	0.071	0.073	0.078	0.108	
63	0.042	0.055	0.041	0.063	0.052	0.047	0.040	0.080	
125	0.032	0.052	0.030	0.060	0.042	0.044	0.033	0.052	
250	0.032	0.052	0.030	0.060	0.041	0.044	0.033	0.052	
500	0.032	0.052	0.030	0.060	0.041	0.044	0.035	0.052	
1000	0.032	0.052	0.030	0.060	0.041	0.044	0.036	0.052	
2000	0.032	0.052	0.030	0.060	0.041	0.044	0.047	0.052	
4000	0.032	0.052	0.030	0.060	0.039	0.044	0.046	0.052	
6300	0.033	0.052	0.037	0.069	0.038	0.044	0.047	0.060	
8000	0.033	0.052	0.044	0.078	0.041	0.044	0.048	0.060	
10000	0.034	0.078	0.045	0.087	0.046	0.045	0.053	0.078	
12500	0.044	0.098	0.057	0.098	0.053	0.049	0.061	0.098	
16000	0.055	0.101	0.085	0.101	0.060	0.062	0.071	0.118	
20000	0.088	0.153	0.113	0.170	0.087	0.098	0.095	0.195	
25000	0.152	0.215	0.170	0.256	0.111	0.170	-	0.298	

Table XII. Degrees of equivalence per laboratory and per frequency: uncertainties of the deviations, expressed in dB.

Figure 7. Deviations from KCRV as a function of frequency.

				0	1		·	
250 Hz	DPLA	IEN	BEV	CMI	Metas	CEM	Mikes	SP
DPLA	-	-0.024	-0.010	0.036	-0.022	0.007	-0.013	-0.022
IEN	0.024	-	0.014	0.060	0.001	0.030	0.011	0.002
BEV	0.010	-0.014	-	0.046	-0.012	0.017	-0.003	-0.012
CMI	-0.036	-0.060	-0.046	-	-0.058	-0.030	-0.049	-0.058
Metas	0.022	-0.001	0.012	0.058	-	0.029	0.009	0.000
CEM	-0.007	-0.030	-0.017	0.030	-0.029	-	-0.020	-0.029
Mikes	0.013	-0.011	0.003	0.049	-0.009	0.020	-	-0.009
SP	0.022	-0.002	0.012	0.058	0.000	0.029	0.009	-

Table XIII. Inter laboratory degrees of equivalence at 250 Hz, deviations dB

Table XIV. Inter laboratory degrees of equivalence at 250 Hz, uncertainty dB

250 Hz	DPLA	IEN	BEV	CMI	Metas	CEM	Mikes	SP
DPLA	-	0.054	0.033	0.062	0.043	0.046	0.036	0.054
IEN	0.054	-	0.050	0.072	0.057	0.059	0.052	0.065
BEV	0.033	0.050	-	0.058	0.038	0.041	0.030	0.050
CMI	0.062	0.072	0.058	-	0.065	0.066	0.060	0.072
Metas	0.043	0.057	0.038	0.065	-	0.050	0.041	0.057
CEM	0.046	0.059	0.041	0.066	0.050	-	0.044	0.059
Mikes	0.036	0.052	0.030	0.060	0.041	0.044	-	0.052
SP	0.054	0.065	0.050	0.072	0.057	0.059	0.052	-

Table XV. Inter laboratory degrees of equivalence at 1000 Hz, deviations dB

1 kHz	DPLA	IEN	BEV	CMI	Metas	CEM	Mikes	SP
DPLA	-	-0.014	-0.010	0.031	-0.015	0.008	-0.013	-0.024
IEN	0.014	-	0.004	0.045	-0.001	0.022	0.001	-0.010
BEV	0.010	-0.004	-	0.041	-0.006	0.018	-0.003	-0.014
CMI	-0.031	-0.045	-0.041	-	-0.047	-0.023	-0.044	-0.055
Metas	0.015	0.001	0.006	0.047	-	0.023	0.002	-0.009
CEM	-0.008	-0.022	-0.018	0.023	-0.023	-	-0.021	-0.032
Mikes	0.013	-0.001	0.003	0.044	-0.002	0.021	-	-0.011
SP	0.024	0.010	0.014	0.055	0.009	0.032	0.011	-

Table XVI. Inter laboratory degrees of equivalence at 1000 Hz, uncertainties dB

1 kHz	DPLA	IEN	BEV	CMI	Metas	CEM	Mikes	SP
DPLA	-	0.054	0.033	0.062	0.043	0.046	0.039	0.054
IEN	0.054	-	0.050	0.072	0.057	0.059	0.054	0.065
BEV	0.033	0.050	-	0.058	0.038	0.041	0.033	0.050
CMI	0.062	0.072	0.058	-	0.065	0.066	0.062	0.072
Metas	0.043	0.057	0.038	0.065	-	0.050	0.043	0.057
CEM	0.046	0.059	0.041	0.066	0.050	-	0.046	0.059
Mikes	0.039	0.054	0.033	0.062	0.043	0.046	-	0.054
SP	0.054	0.065	0.050	0.072	0.057	0.059	0.054	-

8. References

[1] Brief guidelines for linking RMO key comparisons to the CIPM KCRV. CCAUV/04-27, BIPM 26 May 2004

[2] DRAFT A REPORT EUROMET.AUV.A-K3, January 2005

[3] C.M. Sutton. Analysis and linking of international measurement comparison. Metrologia 41 (2004) 272-277.

[4] V. Cutanda Henriquez, K. Rasmussen. Report on the Key Comparison CCAUV.A-K3 Draft B. January 2006

Appendix List of contact persons

BEV: Merita Sinojmeri BEV Department: Acoustics, frequency, time	IEN: Claudio Guglielmone Istituto Elettrotecnico Nazionale (IEN) Galileo Ferraris
Arltgasse 35 1160 Wien Austria	Strada Delle Cacce 91 I-10135 Torino Italy
Tel: +43 1 49110 390 Fax: +43 1 49208 875 E-mail: m.sinojmeri@metrologie.at	Tel:+390 11 3919 626Fax:+390 11 346 384E-mail:guglielm@ien.it
CEM:	METAS:
Centro Espanol de Metrologia (CEM) Department: Laboratorio de Acustica Calle Del Alfar 2 28760 Tres Cantos Madrid Spain	At time of the comparison: Fabienne Berthod Swiss Federal Office of Metrology & Accreditation (METAS) Lindenweg 50 3003 Bern-Wabern Switzerland
Bus:+34 91 807 4825Bus Fax:+34 91 807 4807E-mail:ccasal@cem.es	Tel: +41 31 32 34 750 Fax: +41 31 32 33 210 E-mail: fabienne.berthod@metas.ch
	Now : Dr. Christian Hof
	Tel: + 41 31 32 34 750 Fax: +41 31 32 33 210 E-mail: christian.hof@metas.ch
CMI: Michal Bartos	MIKES: Kari Qiasalo
Czech Metrology Institute (CMI)	Centre for Metrology and Accreditation (MIKES)
15072 Praha 5 The Czech Republic	P.O. Box 9 (Tekniikantie 1) 02151 Espoo Finland
Tel: +420 2 5731 46 90 Fax: +420 2 5732 80 77	Tel: +358 010 6054 423
E-mail: <u>mbartos@cmi.cz</u>	Fax: + 358 010 6054 498 E-mail: kari.ojasalo@mikes.fi
DPLA: Knud Pacmussan	NMI: Baul yan Kan
Danish Primary Laboratory of Acoustics	Nederlands Meetinstituut (NMi)
Acoustic Technology Oersted Institute, DTU	Postbus 654 Schoemakerstraat 97
Building 352	2600 AR Delft The Netherlands
Denmark	
Tel: +45 4525 3937	Tel: + 31 152 691 673 Fax: + 31 152 612 971
Fax: +45 4588 0577 Empil: br@corsted.dtu.dt	E-mail: <u>pvankan@nmi.nl</u>
Eman, N. WOEISICU, UU, UK	

SP:
Hakan Andersson
Swedish National Testing & Research Institute (SP)
PO Box 857
SE-50115 Boras
Sweden
Tel: +46 33 16 54 23
Fax: +46 33 13 83 81
E-mail: hakan.andersson@sp.se
·