CCEM.RF-K9 KEY COMPARISON:

International comparison of thermal noise standards between 12.4 GHz and 18 GHz (GT-RF/99-1)

Final Report

Djamel Allal and Joseph Achkar

BNM-LNE F-78197 Trappes Cedex France

May 2005

International comparison of thermal noise standards between 12.4 GHz and 18 GHz (GT-RF/99-1)

Abstract

- I. INTRODUCTION
- II. TRAVELING STANDARDS
- III. THE COMPARISON SCHEME (Table III.1)
- IV. RADIOELECTRIC NOISE TEMPERATURE
- V. QUANTITIES TO BE MEASURED
- VI. MEASUREMENT METHODS AND ENVIRONMENTAL CONDITIONS
- VII. MEASUREMENT RESULTS (Figures 7.1 to 7.6)
- VIII. REFERENCE VALUE AND DEGREE OF EQUIVALENCE: GRAPHICAL DATA (Figures 8.1.1.a to 8.6.5.b)
- IX. CONCLUSION

REFERENCES

APPENDICES

A.1	NPL RESULTS	(Measurements: Tables 1.4 to 1.6, 3.1 to 3.3, 5.4 to 5.6) (Uncertainties: Tables U.5.4 to U.5.6)	
A.2	PTB RESULTS	(Measurements: Tables 1.1 to 1.3, 3.4 to 3.6, 5.1 to 5.3) (Uncertainties: Tables U.1.1 to U.1.3, U.3.4 to U.3.6, U.5.1 to U.5.3)	
A.3	BNM-LCIE RESULTS	(Measurements: Tables 2.1 to 2.6, 4.1 to 4.6, 8.1 to 8.6) (Uncertainties: Tables U.8.7 to U.8.8)	
A.4	NIST RESULTS	(Measurements: Tables 6.1 to 6.6) (Uncertainties: Tables U.6.1 to U.6.6)	
A.5	VNIIFTRI RESULTS	(Measurements: Tables 7.1 to 7.6) (Uncertainties: Tables 7 to 11)	
A.6	KCRV AND DEGREES OF EQUIVALENCE: NUMERICAL DATA		

International Comparison of Thermal Noise Standards between 12.4 GHz and 18 GHz (GT-RF/99-1)

B. MELLOUET, A.LITWIN and J. ACHKAR BNM-LCIE, BP 8, F-92266 Fontenay-aux-Roses, France

D. SCHUBERT PTB, Bundesallee 100, 38116 Braunschweig, Germany

D. ADAMSON, M. W. SINCLAIR, D. D. ROYAL, S. J. PROTHEROE NPL, Teddington, Middlesex, TW11 0LW, United Kingdom

R. UZDIN VNIIFTRI, 141570, Moscow Region, Mendeleevo, Russia

J. RANDA NIST, 325 Broadway, Boulder, Colorado 80305-3337, USA

Abstract

An international comparison of thermal noise-power measurements has been carried out among five national metrology institutes between 12.4 and 18 GHz. Four transfer standards were measured. The following national institutes participated: BNM-LCIE (France), NPL (United Kingdom), PTB (Germany), NIST (United States of America) and VNIIFTRI (Russia). The Bureau National de Métrologie - Laboratoire Central des Industries Electriques (France) acted as the pilot laboratory for the comparison.

I. INTRODUCTION

The measurement comparison was initiated by Euromet among BNM-LCIE, PTB and NPL, under the Euromet 329 project. Its aim was to verify the facilities present in European national metrology institutes for the measurement of radioelectrical noise temperature at national standards level of accuracy in the IEC R140 waveguide range. The Euromet 329 project was extended by the Working Group on Radio-Frequency Quantities (Groupe de Travail pour les grandeurs aux Radio-Fréquences GT-RF) of the Comité Consultatif d'Electricité-Magnétisme (CCEM), an advisory committee of the Comité International des Poids et Mesures (CIPM) to a GT-RF Key comparison. Two additional institutes, NIST and VNIIFTRI joined the comparison, which becomes the GT-RF/99-1 comparison, also identified under the reference CCEM.RF-K9.

The following national metrology institutes participated in this Key comparison:

- A. Bureau National de Métrologie Laboratoire Central des Industries Electriques (BNM-LCIE), Fontenay-aux-Roses, France
- B. National Physical Laboratory (NPL), Teddington, United Kingdom
- C. Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany.
- D. National Institute of Standards and Technology (NIST), Boulder, United States of America
- E. All-Russian Scientific Research Institute for Physical-Technical and Radiotechnical Measurements (VNIIFTRI), Moscow, Russia.

The Bureau National de Métrologie - Laboratoire Central des Industries Electriques acted as the pilot laboratory for the comparison. Four transfer standards have circulated for measurement by participants. Measurements were started in April 1997 and were completed in December 2000.

II. TRAVELING STANDARDS

Four traveling standards were used in the comparison, kindly given by NPL and PTB:

- Noise standard in waveguide with output IEC R140 flange
- Noise standard in coaxial line with output PC-7 connector and associated to a precision adapter PC-7/R140

TSA1:

Waveguide R140 Noise generator with noise source power supply (Nore Microwave Gas Discharge Tube type NTM16-18/7L + transition NTL16-18 R100/R140, output flange R140, 14...16 dB ENR. Noise Tube Power Supply: Nore Microwave type NM5, 125 mA), supplied by PTB.

TSA2:

Waveguide R140 Noise generator with noise source power supply (Nore Gas Discharge Tube Noise Source NTM16/7 + taper R100/R140, 15 dB ENR. Power Supply Nore type NM5), supplied by NPL.

TSB1:

Coaxial PC-7 noise generator associated to a precision coaxial to waveguide adapter (Hewlett-Packard Coaxial Noise Source HP346A opt 002, output connector PC-7, 14...16 dB ENR, Maury Microwave coaxial-waveguide adapter PC-7 / R140 type P229A2. Input power +28 VDC, 30 mA), supplied by PTB.

TSB2:

Coaxial PC-7 noise generator associated to a precision coaxial to waveguide adapter (Hewlett-Packard Coaxial Noise Source HP346A, output connector PC-7, 5 dB ENR, + coaxial-waveguide adapter PC-7 / R140), supplied by NPL.

III. THE COMPARISON SCHEME

The traveling standards were circulated to the participating institutes according to the scheduled scheme described in Table III.1:

Institute	Step	Plot's legend	Traveling standards	Time period
	number			
NPL	Step 1	NPL 1	TSA2, TSB2	April 1997
PTB	Step 1	PTB 1	TSA1, TSB1	June 1997
BNM-LCIE	Step 2	BNM-LCIE 2	TSA1, TSB1, TSA2, TSB2	September 1997
PTB	Step 3	PTB 3	TSA2, TSB2	February 1998
NPL	Step 3	NPL 3	TSA1, TSB1	May 1998
BNM-LCIE	Step 4	BNM-LCIE 4	TSA1, TSB1, TSA2, TSB2	January 1999
NPL	Step 5	NPL 5	TSA2, TSB2	March-April 1999
PTB	Step 5	PTB 5	TSA1, TSB1	April 1999
NIST	Step 6	NIST 6	TSA1, TSB1, TSA2, TSB2	April 2000
VNIIFTRI	Step 7	VNIIFTRI 7	TSA1, TSB1, TSA2, TSB2	Sept-Oct 2000
BNM-LCIE	Step 8	BNM-LCIE 8	TSA1, TSB1, TSA2, TSB2	December 2000

Table III.1: Circulation scheme

IV. RADIOELECTRIC NOISE TEMPERATURE

The fundamental quantity describing a microwave noise source is the available noise temperature T in Kelvin, or the Excess Noise Ratio (ENR) expressed in decibels, and given by the following formula:

$$\mathbf{ENR}(\mathbf{dB}) = \mathbf{10.log} \frac{\mathbf{T} - \mathbf{T}_0}{\mathbf{T}_0} \tag{1}$$

Where T_0 is an arbitrary noise temperature, given as 290 K.

V. QUANTITIES TO BE MEASURED

The required parameters of each traveling standard, to be measured are:

 Γ : magnitude of the reflection coefficient measured at its reference plane*, expressed in linear unit.

T: available noise temperature, expressed in Kelvin (K).

ENR: Excess Noise Ratio, expressed in decibels (dB).

The uncertainties ΔT and ΔENR are global uncertainties given to one standard deviation (1 σ) The main contributions in the uncertainty budget are also given.

These parameters have been measured at the following five frequency points: 12.4, 13.5, 15, 17.5 and 18 GHz except for one participant (VNIIFTRI) who carried out measurements at four frequency points: 12.4, 13.5, 15 and 17.5 GHz.

* The reference planes were the waveguide flanges for TSA1 and TSA2. For TSB1 and TSB2, two reference planes were used: the waveguide flange (when the coaxial-waveguide adapter PC-7 / R140 was connected) and the PC 7 connector, output connectors of TSB1 and TSB2.

VI. MEASUREMENT METHODS AND ENVIRONMENTAL CONDITIONS

A. BNM-LCIE

The traveling standards were compared against BNM-LCIE's working noise standard which has direct traceability to BNM-LCIE Primary Noise Standards (hot primary standard 1000 K). The noise measurements were made on the BNM-LCIE R140 Dicke-type radiometer [1]. The noise power of the PC-7 noise sources was determined by calculation considering the measured S parameters of the adapters.

B. NPL

The traveling standards were compared against NPL's working noise standard which has direct traceability to UK Primary Noise Standards. The noise measurements were made on the NPL WG 18 radiometer according to the procedures laid down in NPL Procedure Document QPCEM/B/085.

The NPL radiometer is a single-sideband radiometer.

The reflection coefficients were measured on network analysers according to the procedures laid down in NPL Procedure Document QPCEM/B/093.

C. PTB

An RF-switching Dicke-type radiometer for the waveguide band R140 with RF attenuator at the input was used. The measurement input and the noise source output are separately tuned for $|\Gamma|=0$. The unknown sources are calibrated against a working standard of about 10000 K, which is calibrated with reference to the PTB hot primary standard (650 K).

The noise power of the PC-7 noise sources was determined by calculation considering the measured S parameters of the adapters.

The room temperature was 23 °C.

D. NIST

All noise-temperature measurements were made on the NIST WR-62 (R140) waveguide radiometer. It is an isolated, total-power radiometer of the same design as the WR-28 system described in [2]. It is effectively a double sideband system with 20 MHz bandwidth and IF frequency 10 MHz. The two standards used are an ambient standard described in [2] and a WR-62 cryogenic horn standard described in [3]. The standards used are national primary standards. Reflection coefficients were measured on the six-port reflectometer built into the radiometer system [2]. For noise temperature at the PC-7 plane, the noise temperature was measured at the R140 waveguide plane, and a correction was made for the adapter effect. The adapters were characterized using a one-port method developed by Daywitt [4]. Details of the uncertainty analysis for NIST noise-temperature measurements are given in [5].

E. VNIIFTRI

The procedure of comparisons was complicated because of discrepancies of the standards IEC and Russia on the dimensions of waveguides, on frequency ranges of a means of measurements (in particular, in Russia upper bound of a frequency range is 17.44 instead of 18 GHz), and also because of features of VNIIFTRI reference standards.

The CCEM.RF-K9 protocol stipulates the comparisons with the national transfer standard of each participant laboratory. Such standards at VNIIFTRI are represented by neon gasdischarge noise generators. The generators and neon tubes for them were selected from those serially produced before 1991.

ENR unreproducibility for the neon tubes when switching on and off is about 0.02 dB (due to 150-200 mA anode current). To reduce the influence of this factor and to improve the reliability the transfer standard is made of a ten tubes group, switched on in turn. The ENR of this standard is about 18 dB. It is carried out with a 16x8 mm or 11x5.5 mm waveguide section (accordingly for the 12.05-17.44 or 17.44-25.96 GHz frequency range). This noise generator scatters a thermal power up to 60 W, so the temperature of the output flange reaches 60-70 °C. This last circumstance creates an additional uncertainty in the observed data of 1-1.5% because of a thermal drift while the comparisons of gas-discharge noise source with semiconductor generators TSB1, 2.

The elimination of the influence of the above-mentioned factors considerably complicates a procedure of measurements. That's why all the transfer standards were compared directly with the cryogenic primary standard PS. The exception is for 18 GHz, when the comparison with PS was carried out only for TSB2. ENR for the remaining standards was defined by means of comparison with the TSB2's ENR level. The reason of such decision is the feature of a radiometer characteristic on frequency 18 GHz (noted below).

The PS (waveguide 16x8 mm) represents a sliding termination together with a matching tuner immersed in liquid nitrogen and connected to an output section with sealing window and output flange by means of a heat-shield waveguide. The tuner ensures the alignment of complex reflection coefficients of the compared devices.

The measurements were made by means of a DSB radiometer with a pilot signal. To the input of it were connected: reflectometer, matching tuner, rotary-vane attenuator RVA (situated in between insulators), directional coupler for delivery of the noise pulse-modulated (meander 80 Hz) pilot signal and low-noise amplifier LNA. To reduce the influence of the system's non-linearity the measured signal with ENR more than 5 dB was attenuated on 10±0.01 dB by means of RVA. However usage of RVA on 18 GHz has appeared impossible because of growth on this frequency of uncertainty of attenuation measurements up to ± 0.1 dB.

The resulting signal from LNA output goes to a balanced mixer. After an IF amplification (the spectrum of intermediate frequencies is 20-40 MHz) and square-law detection the ratio

$A = \frac{\text{noise temperature of a pilot signal}}{\text{operating noise temperature of system}}$

is measured. For this purpose the intensity of signals relevant to adjacent half-periods of modulation are approximately balanced by means of a discrete precision resistive divider (at a residual unbalance in 1-2 %), then detected by a synchronous detector and flattened. This procedure is executed for all the objects connected to the radiometer's input at two close values of transmission factors ? of the resistive divider. To calculate the A value the information about K factors and about values of voltages of a residual unbalance relevant K is transmitted to the digital computer.

The prototypes of the primary standard and radiometer are described in [6], [7].

The available noise temperature of the coaxial noise sources at the reference plane of their output connectors (PC-7) was measured by method [8], using **TSA2** as a reference source.

The discrepancies in the IEC's and Russian standards on waveguide dimensions and frequency ranges of measuring devices have established the additional complications while comparisons (in particular the 17,44 GHz upper bound of a frequency range instead of 18 GHz). Because of the discrepancy in the IEC's and Russian waveguide connector dimensions standards additional adapters (the transient waveguides with the $\lambda_g/4$ length for 18 GHz) were manufactured. The calculated value of the return loss at 12,4-18,0 GHz is not less than 44 dB, measured attenuation is not more than 10⁻³ dB. Therefore correction factor on losses in the additional adapter is not taken into account.

VII. MEASUREMENT RESULTS

The measurement results are plotted in Figures 7.1 to 7.6. Uncertainty limits have been plotted as combined type A and type B uncertainty limits expressed as ± 1 standard deviation of the mean.

In the legend on the right of the plots, the numerical index following the name of the institute corresponds to the step index of the circulation scheme (Table III.1).

The complete set of measurement results including uncertainties, provided by the participating institutes are reported in tables 1.1 to 8.6 and presented in appendices A.1 to A.5. In these appendices, tables are identified as Table x.y, where x corresponds to the step number and y to the number of traveling standard.

Table x.1 for Source TSA1 output flange R140 Table x.2 for Source TSB1 output flange R140 Table x.3 for Source TSB1 output connector PC-7 Table x.4 for Source TSA2 output flange R140 Table x.5 for Source TSB2 output flange R140 Table x.6 for Source TSB2 output connector PC-7

The uncertainties tables are denoted U.Step.i

Figure 7.1: TSA1 standard at its output flange R140

Figure 7.2: TSB1 standard at its output flange R140

Figure 7.3: TSB1 standard at its output connector PC7

Figure 7.4: TSA2 standard at its output flange R140

Figure 7.5: TSB2 standard at its output flange R140

Figure 7.6: TSB2 standard at its output connector PC7

VIII. REFERENCE VALUE AND DEGREE OF EQUIVALENCE: GRAPHICAL DATA

The calculation of the Key Comparison Reference Value (KCRV) and the degree of equivalence are based on Randa's document [9]. The identification of outliers also followed the prescription in [9]. The coverage factor used in that prescription assumes a large sample, whereas the present comparison comprises only five participants. However, in the present case the practical effect of using the appropriate small-sample coverage factor would be small in the Key Comparison Reference Values, and we therefore decided to use the prescription of [9] unmodified, as originally agreed.

The numerical values are reported in tables presented in Appendix A.6 The following symbols are used in these tables:

KCRV: Key Comparison Reference Value

u_{KCRV}: standard uncertainty on the KCRV

Y_i: Reference value for the Lab i; value to take into account in the calculation of the KCRV(one value for each institute). It means that this value is the average value of the ENR given by the institute i. For example, $Y_i(BNM) = \frac{ENR(Step 2) + ENR(Step 4) + ENR(Step 8)}{ENR(Step 4) + ENR(Step 8)}$

3

u(Y_i): uncertainty on Y_i. Also averaged Δ_i : Degree of equivalence $U_{\Lambda i}$: Expanded uncertainty (k=2) on Δ_i

Figures 8.1.1.a to 8.6.5.b give the degrees of equivalence: each plot shows the degree of equivalence of each laboratory with respect to the KCRV, for a given noise source at a given frequency.

Both weighted and unweighted cases are considered.

For the cases presenting outliers, additional plots are presented including these outliers in the calculation.

The plotted uncertainties are extended uncertainties (k=2).

The complete data are reported in Appendix A.6.

Figure 8.1.1.a: TSA1 output flange R140, F = 12.4 GHz, weighted

Figure 8.1.1.b: TSA1 output flange R140, F = 12.4 GHz, unweighted

Figure 8.1.1.c: TSA1 output flange R140, F = 12.4 GHz, weighted, outliers included

Figure 8.1.1.d: TSA1 output flange R140, F = 12.4 GHz, unweighted, outliers included

Figure 8.1.2.a: TSA1 output flange R140, F = 13.5 GHz, weighted

Figure 8.1.2.b: TSA1 output flange R140, F = 13.5 GHz, unweighted

Figure 8.1.3.a: TSA1 output flange R140, F = 15 GHz, weighted

Figure 8.1.3.b: TSA1 output flange R140, F = 15 GHz, unweighted

Figure 8.1.4.a: TSA1 output flange R140, F = 17.5 GHz, weighted

Figure 8.1.4.b: TSA1 output flange R140, F = 17.5 GHz, unweighted

Figure 8.1.4.c: TSA1 output flange R140, F = 17.5 GHz, weighted, outliers included

Figure 8.1.4.d: TSA1 output flange R140, F = 17.5 GHz, unweighted, outliers included

18

Figure 8.1.5.a: TSA1 output flange R140, F = 18 GHz, weighted

Figure 8.1.5.b: TSA1 output flange R140, F = 18 GHz, unweighted

Figure 8.2.1.a: TSB1 output adapter PC-7/R140, F = 12.4 GHz, weighted

Figure 8.2.1.b: TSB1 output adapter PC-7/R140, F = 12.4 GHz, unweighted

Figure 8.2.1.c: TSB1 output adapter PC-7/R140, F = 12.4 GHz, weighted, outliers included

Figure 8.2.1.d: TSB1 output adapter PC-7/R140, F = 12.4 GHz, unweighted, outliers included

Figure 8.2.2.a: TSB1 output adapter PC-7/R140, F = 13.5 GHz, weighted

Figure 8.2.2.b: TSB1 output adapter PC-7/R140, F = 13.5 GHz, unweighted

Figure 8.2.3.a: TSB1 output adapter PC-7/R140, F = 15 GHz, weighted

Figure 8.2.3.b: TSB1 output adapter PC-7/R140, F = 15 GHz, unweighted

Figure 8.2.4.a: TSB1 output adapter PC-7/R140, F = 17.5 GHz, weighted

Figure 8.2.4.b: TSB1 output adapter PC-7/R140, F = 17.5 GHz, unweighted

Figure 8.2.4.c: TSB1 output adapter PC-7/R140, F = 17.5 GHz, weighted, outliers included

Figure 8.2.4.d: TSB1 output adapter PC-7/R140, F = 17.5 GHz, unweighted, outliers included

Figure 8.2.5.a: TSB1 output adapter PC-7/R140, F = 18 GHz, weighted

Figure 8.2.5.b: TSB1 output adapter PC-7/R140, F = 18 GHz, unweighted

Figure 8.3.1.a: TSB1 output connector PC-7, F = 12.4 GHz, weighted

Figure 8.3.1.b: TSB1 output connector PC-7, F = 12.4 GHz, unweighted

Figure 8.3.1.c: TSB1 output connector PC-7, F = 12.4 GHz, weighted, outliers included

Figure 8.3.1.d: TSB1 output connector PC-7, F = 12.4 GHz, unweighted, outliers included

Figure 8.3.2.a: TSB1 output connector PC-7, F = 13.5 GHz, weighted

Figure 8.3.2.b: TSB1 output connector PC-7, F = 13.5 GHz, unweighted

Figure 8.3.3.a: TSB1 output connector PC-7, F = 15 GHz, weighted

Figure 8.3.3.b: TSB1 output connector PC-7, F = 15 GHz, unweighted

Figure 8.3.3.c: TSB1 output connector PC-7, F = 15 GHz, weighted, outliers included

Figure 8.3.3.d: TSB1 output connector PC-7, F = 15 GHz, unweighted, outliers included

Figure 8.3.4.a: TSB1 output connector PC-7, F = 17.5 GHz, weighted

Figure 8.3.4.b: TSB1 output connector PC-7, F = 17.5 GHz, unweighted

Figure 8.3.4.c: TSB1 output connector PC-7, F = 17.5 GHz, weighted, outliers included

Figure 8.3.4.d: TSB1 output connector PC-7, F = 17.5 GHz, unweighted, outliers included

Figure 8.3.5.a: TSB1 output connector PC-7, F = 18 GHz, weighted

Figure 8.3.5.b: TSB1 output connector PC-7, F = 18 GHz, unweighted

Figure 8.4.1.a: TSA2 output flange R140, F = 12.4 GHz, weighted

Figure 8.4.1.b: TSA2 output flange R140, F = 12.4 GHz, unweighted

Figure 8.4.1.c: TSA2 output flange R140, F = 12.4 GHz, weighted, outliers included

Figure 8.4.1.d: TSA2 output flange R140, F = 12.4 GHz, unweighted, outliers included

Figure 8.4.2.a: TSA2 output flange R140, F = 13.5 GHz, weighted

Figure 8.4.2.b: TSA2 output flange R140, F = 13.5 GHz, unweighted

Figure 8.4.3.a: TSA2 output flange R140, F = 15 GHz, weighted

Figure 8.4.3.b: TSA2 output flange R140, F = 15 GHz, unweighted

Figure 8.4.4.a: TSA2 output flange R140, F = 17.5 GHz, weighted

Figure 8.4.4.b: TSA2 output flange R140, F = 17.5 GHz, unweighted

Figure 8.4.4.c: TSA2 output flange R140, F = 17.5 GHz, weighted, outliers included

Figure 8.4.4.d: TSA2 output flange R140, F = 17.5 GHz, unweighted, outliers included

Figure 8.4.5.a: TSA2 output flange R140, F = 18 GHz, weighted

Figure 8.4.5.b: TSA2 output flange R140, F = 18 GHz, unweighted

Figure 8.5.1.a: TSB2 output adapter PC-7/R140, F = 12.4 GHz, weighted

Figure 8.5.1.b: TSB2 output adapter PC-7/R140, F = 12.4 GHz, unweighted

Figure 8.5.1.c: TSB2 output adapter PC-7/R140, F = 12.4 GHz, weighted, outliers included

Figure 8.5.1.d: TSB2 output adapter PC-7/R140, F = 12.4 GHz, unweighted, outliers included

Figure 8.5.2.a: TSB2 output adapter PC-7/R140, F = 13.5 GHz, weighted

Figure 8.5.2.b: TSB2 output adapter PC-7/R140, F = 13.5 GHz, unweighted

Figure 8.5.3.a: TSB2 output adapter PC-7/R140, F = 15 GHz, weighted

Figure 8.5.3.b: TSB2 output adapter PC-7/R140, F = 15 GHz, unweighted

Figure 8.5.3.c: TSB2 output adapter PC-7/R140, F = 15 GHz, weighted, outliers included

Figure 8.5.3.d: TSB2 output adapter PC-7/R140, F = 15 GHz, unweighted, outliers included

Figure 8.5.4.a: TSB2 output adapter PC-7/R140, F = 17.5 GHz, weighted

Figure 8.5.4.b: TSB2 output adapter PC-7/R140, F = 17.5 GHz, unweighted

Figure 8.5.4.c: TSB2 output adapter PC-7/R140, F = 17.5 GHz, weighted, outliers included

Figure 8.5.4.d: TSB2 output adapter PC-7/R140, F = 17.5 GHz, unweighted, outliers included

Figure 8.5.5.a: TSB2 output adapter PC-7/R140, F = 18 GHz, weighted

Figure 8.5.5.b: TSB2 output adapter PC-7/R140, F = 18 GHz, unweighted

Figure 8.6.1.a: TSB2 output connector PC-7, F = 12.4 GHz, weighted

Figure 8.6.1.b: TSB2 output connector PC-7, F = 12.4 GHz, unweighted

Figure 8.6.1.c: TSB2 output connector PC-7, F = 12.4 GHz, weighted, outliers included

Figure 8.6.1.d: TSB2 output connector PC-7, F = 12.4 GHz, unweighted, outliers included

Figure 8.6.2.a: TSB2 output connector PC-7, F = 13.5 GHz, weighted

Figure 8.6.2.b: TSB2 output connector PC-7, F = 13.5 GHz, unweighted

Figure 8.6.3.a: TSB2 output connector PC-7, F = 15 GHz, weighted

Figure 8.6.3.b: TSB2 output connector PC-7, F = 15 GHz, unweighted

Figure 8.6.3.c: TSB2 output connector PC-7, F = 15 GHz, weighted, outliers included

Figure 8.6.3.d: TSB2 output connector PC-7, F = 15 GHz, unweighted, outliers included

Figure 8.6.4.a: TSB2 output connector PC-7, F = 17.5 GHz, weighted

Figure 8.6.4.b: TSB2 output connector PC-7, F = 17.5 GHz, unweighted

Figure 8.6.5.a: TSB2 output connector PC-7, F = 18 GHz, weighted

Figure 8.6.5.b: TSB2 output connector PC-7, F = 18 GHz, unweighted

IX. CONCLUSION

A measurement comparison of thermal noise-power measurements has been carried out among five national metrology institutes on waveguide between 12.4 and 18 GHz. The participants were BNM-LCIE (France), NPL (United Kingdom), PTB (Germany), NIST (United States of America) and VNIIFTRI (Russia). The Bureau National de Métrologie -Laboratoire Central des Industries Electriques (France) acted as the pilot laboratory for the comparison. A very good agreement was found between four participants in measuring noise temperature of four thermal noise transfer standards. Only VNIIFTRI, which uses different waveguide standards present significant differences, in comparison to the four other institutes, especially at the higher frequencies.

An additional exercise has been done for the calculation of the KCRV and the degree of equivalence. This work is presented here for open discussions between the participants.

References

- [1] J. Achkar, "A set of waveguide primary thermal noise standards and related calibration systems for the frequency range 8.2-40 GHz", *IEEE Transactions on Instrumentation and Measurement*, vol.48, n°2, pp638-641, April 1999.
- [2] J. Randa and L.A. Terrell, "Noise-temperature measurement system for the WR-28 band", *NIST Tech. Note 1395*, August 1997.
- [3] W.C. Daywitt, "The noise temperature of an arbitrarely shaped microwave cavity with application to a set of millimetre wave primary standards", *Metrologia*, vol. 30, pp. 471-478, 1993/1994.
- [4] S.P. Pucic and W.C. Daywitt, "Single port technique for adapter efficiency evaluation", 45th ARFTG Conference Digest, Orlando, FL, pp. 113-118, May 1995.
- [5] J. Randa, "Uncertainties in NIST noise-temperature measurements", *NIST Tech. Note* 1502, March 1998.
- [6] L.P. Emelyanova, *Izmeritel'naya Tekhnika*, n° 9, pp.54-55, Sep.1985.
- [7] L. Erard, M. Valon, A.A. Rezchikov, V.G. Kocherga, Bull.BNM, n° 73, pp. 30-32, Jul.1988.
- [8] G.F. Engen, IEEE Trans. on MTT, vol.MTT-16, pp. 636-639, Sep. 1968.
- [9] J. Randa, "Proposal for KCRV & degree of equivalence for GTRF Key comparisons", GT-RF Document GTRF/00-12, August 2000.

A.1 NPL RESULTS

A.1.1 NPL Measurements

Transfer Standard: TSA2

Reference Plane: output flange R140

Date of calibration: April 1997

Room Temperature: (23±0.5) °C Room Humidity: (50±10)%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$		
12.4	0.011	11208	52	52 15.758			
13.5	0.005	11205	60	60 15.756			
15.0	0.006	11231	51	15.767	0.020		
17.5	0.004	11236	78	15.769	0.031		
18.0	0.006	11245	53	15.772	0.021		

Table 1.4

Transfer Standard: TSB2

Reference Plane: output adapter PC-7/R140

Date of calibration: April 1997

Room Temperature: (23±0.5) °C Room Humidity: (50±10)%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$	
12.4	0.073	1174	4.36	4.841	0.021	
13.5	0.042	1155	4.82	4.744	0.024	
15.0	0.061	1146	4.24	4.699	0.022	
17.5	0.047	1181	6.48	4.877	0.032	
18.0	0.024	1180	4.86	4.870	0.024	

Table 1.5

Transfer Standard: TSB2

Reference Plane: output connector PC-7

Date of calibration: April 1997 Room Temperature: (23±0.5) °C Room Humidity: (50±10)%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	ΔENR(dB)
12.4	0.043	1195	11	4.942	0.051
13.5	0.048	1175	8	4.846	0.039
15.0	0.055	1167	7	4.808	0.034
17.5	0.059	1200	9	4.967	0.045
18.0	0.060	1200	8	4.966	0.040

Table 1.6

0.021

Transfer Standard: TSA1

Reference Plane: output flange R140

15.658

Date of calibration: May 1998 Room Temperature: (25 ± 0.5) °C Room Humidity: (42 ± 10) %

			(
F (GHz)	Γ	T (K)	$\Delta T(K)$	ENR (dB)	ΔENR(dB
12.4	0.0074	11033	51	15.687	0.021
13.5	0.0076	11020	59	15.682	0.024
15.0	0.0079	11036	50	15.689	0.020
17.5	0.0030	10962	76	15.659	0.031

Transfer Standard: TSB1

0.0093

18.0

Reference Plane: output adapter PC-7/R140

51

Date of calibration: May 1998 Room Temperature: (25±0.5) °C Room Humidity: (37±10)%

10961

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$		
12.4	0.0400	11282	52	52 15.787			
13.5	0.0400	11370	61	15.822	0.024		
15.0	0.0640	11461	53	15.857	0.020		
17.5	0.0340	10982	76	15.667	0.031		
18.0	0.0120	10838	51	15.608	0.021		

Table 3.1

Table 3.2

Transfer Standard: TSB1

Reference Plane: output connector PC-7

Date of calibration: May 1998 Room Temperature: (25±0.5) °C Room Humidity: (37±10)%

F (GHz)	Γ	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$	
12.4	0.0440	11459	126	15.856	0.049	
13.5	0.0530	11561	97	15.896	0.037	
15.0	0.0610	11720	89	15.957	0.034	
17.5	0.0320	11337	113	15.809	0.045	
18.0	0.0200	11229	101	15.766	0.040	

Table 3.3

Transfer Standard: TSA2

<u>Reference Plane:</u> output flange R140

Date of calibration: March-April 1999 Room Temperature: (23±1) °C Room Humidity: (27±10)%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$					
12.4	0.011	11207	57	15.757	0.023					
13.5	0.006	11201	58	0.023						
15.0	0.007	11226	57	15.764	0.023					
17.5	0.004	11223	79	15.763	0.031					
18.0	0.006	11240	100	15.768	0.041					
	Table 5.4									

Transfer Standard: TSB2

Reference Plane: output adapter PC-7/R140

Date of calibration: March-April 1999 Room Temperature: (23±1) °C Room Humidity: (26±10)%

F (GHz)	Γ	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$	
12.4	0.073	1178.3	4.8	4.862	0.024	
13.5	0.046	1157.1	4.7	4.757	0.024	
15.0	0.060	1150.0	4.6	4.721	0.023	
17.5	0.045	1182.6	6.5	4.882	0.032	
18.0	0.027	1182.7	8.5	4.883	0.041	

Table 5.5

Transfer Standard: TSB2

Reference Plane: output connector PC-7

Date of calibration: March-April 1999 Room Temperature: (23±1) °C Room Humidity: (26±10)%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.042	1201.0	11	4.970	0.052
13.5	0.049	1180.1	8	4.870	0.039
15.0	0.056	1176.5	7.4	4.853	0.036
17.5	0.059	1215.9	9.6	5.042	0.045
18.0	0.061	1217.0	12	5.046	0.054

A.1.2 NPL Uncertainties

The radiometer used for the intercomparison is the NPL WG18 (WR62, R140) radiometer which is a Dicke radiometer with a built in working standard which is calibrated periodically using a hot thermal standard. The equation for the radiometer is:

$$T_u = \left(T_w - T_a\right)\frac{Y}{Q} + T_a$$

where T_u is the unknown temperature, T_a is ambient temperature, Y is the Y factor (in linear units) obtained when comparing the unknown with the working standard and Q is given by:

$$Q = \frac{\left(1 - \left|\Gamma_{u}\right|^{2}\right)}{\left|1 - S_{11}\Gamma_{u}\right|^{2}}$$

where G_u is the reflection coefficient of the unknown device and S_{11} is the input reflection coefficient of the radiometer.

If G_u is represented by its magnitude ?, and its phase $?_u$, and S11 by its magnitude, |S11| and phase $?_{11}$, then we have:

$$Q = \frac{(1 - |\Gamma_u|^2)}{1 - 2|S_{11}|\rho\cos(\theta_{11} + \theta_u) + |S_{11}|^2\rho^2}$$

This equation can be used to generate values ?Q by offsetting the values of ?, $?_u$, |S11| and $?_{11}$ by their uncertainties.

By partial differentiation we have:

$$X_{I} = \frac{\delta T_{ux}}{\delta T_{w}} \cdot \Delta T_{w} = \left(\frac{Y}{Q}\right) \Delta T_{w}$$

$$X_{2} = \frac{\delta T_{u}}{\delta T_{a}} \cdot \Delta T_{a} = \left(1 - \frac{Y}{Q}\right) \Delta T_{a}$$

$$X_{3} = \frac{\delta T_{x}}{\delta Y} \cdot \Delta Y = \frac{(T_{w} - T_{a})}{Q} \cdot \Delta Y$$

$$X_{4} = \frac{\delta T_{x}}{\delta Q} \cdot \Delta Q_{I} = -(T_{w} - T_{a}) \cdot \frac{Y}{Q^{2}} \cdot \Delta Q_{I}$$

$$X_{5} = \frac{\delta T_{x}}{\delta Q} \cdot \Delta Q_{2} = -(T_{w} - T_{a}) \cdot \frac{Y}{Q^{2}} \cdot \Delta Q_{2}$$

$$X_{6} = \frac{\delta T_{x}}{\delta Q} \cdot \Delta Q_{3} = -(T_{w} - T_{a}) \cdot \frac{Y}{Q^{2}} \cdot \Delta Q_{3}$$

$$X_{7} = \frac{\delta T_{x}}{\delta Q} \cdot \Delta Q_{4} = -(T_{w} - T_{a}) \cdot \frac{Y}{Q^{2}} \cdot \Delta Q_{4}$$

where the values Q_1 , Q_2 , Q_3 and Q_4 are obtained by offsetting each of ?, ?_u, |S11| and ?₁₁ by their uncertainties.

A sample calculation for TSB2 at its waveguide port at 12.4 GHz is given below. The uncertainty on the VRC magnitude is assumed to ± 0.002 and the uncertainty on the phase is given by $[\sin^{-1}(0.01/|\Gamma|)]^{\circ}$ in phase. If the magnitude $|\Gamma|$ is less than its uncertainty then the phase uncertainty is 180°. The uncertainty due to flange repeatability is assumed to be proportional to the device ENR and is therefore calculated from $\Delta T = \frac{\log_e (10)}{10} (T_u - 290)$

Freq = 12.4 GHz	Tu = 1178.30	Q = 0.99

	Actual	Source of	Uncertainty		Probability	Divis	Coeffic		v _i or
Symbol	values	uncertainty	value ±	?Q±	distribution	or	ient c _i	U _i (T)±K	V _{eff}
	11221.								
Tw	00	Working standard	28.20		Normal	1.00	0.08	2.27	8
		Ambient							
Та	297.38	temperature	0.50		Normal	1.00	0.92	0.46	8
Y	-10.97	Y factor	0.0010		Normal	1.00	202.84	0.20	8
		Device VRC							
?	0.07	magnitude	0.002	-0.00039	Normal	1.00	-880.92	0.35	8
?u	39.60	Device VRC phase	1.60	0.00017	Normal	1.00	-880.92	-0.15	8
		Radiometer VRC							
S_{11}	0.05	magnitude	0.002	-0.00014	Normal	1.00	-880.92	0.13	8
		Radiometer VRC							
$?_{11}$	-159.38	phase	2.30	0.00025	Normal	1.00	-880.92	-0.22	8
		Connector							
		repeatability	0.0030		Rectangular	1.73	204.54	0.35	8
		Type A			Normal	1.00		0.24	9.00
		Combined standard							
		uncertainty			Normal			2.41	>1000
		Expanded							
		uncertainty			Normal (k=2)			4.82	

Table U.5.5: Uncertainty for TSB2 at waveguide plane

Freq = 12.4 GHz

	Actual	Source of	Uncontainty		Duchahility	Divia	Coofficient		
Symbol	values	uncertainty	value ±	?Q±	distribution	or	Coefficient C _i	U _i (1) ±K	v _i or V _{eff}
Tw	11221.00	Working standard	28.20		Normal	1.00	1.00	28.16	8
Та	297.91	Ambient temperature	0.50		Normal	1.00	0.00	0.00	8
Y	-0.01	Y factor	0.0010		Normal	1.00	2511.89	2.51	8
?	0.01	Device VRC magnitude	0.0020	-0.00016	Normal	1.00	-10909.02	1.76	8
?u	-75.97	Device VRC phase	10.19	-0.00015	Normal	1.00	-10909.02	1.65	8
\mathbf{S}_{11}	0.05	Radiometer VRC magnitude	0.0020	-0.00003	Normal	1.00	-10909.02	0.28	8
?11	-159.38	Radiometer VRC phase	2.33	-0.00004	Normal	1.00	-10909.02	0.40	8
		Connector repeatability	0.0030		Rectangular	1.73	2513.72	4.35	8
		Туре А			Normal	1.00		0.67	9.00
		Combined standard uncertainty			Normal			28.72	>1000
		Expanded uncertainty			Normal (k=2)			57.44	

Q = 1.00

A similar table for TSA2 is shown below:

Tu = 11206.93

Table U.5.4: Uncertainty for TSA2 at waveguide plane

Finally, the adaptor de-embedding uncertainty must be considered.

Here the equation is: (T, T)

$$T_c = \frac{(T_{w/g} - T_a)}{APTF} + T_a$$

Where T_c denotes the temperature at the coaxial plane, $T_{w/g}$ at the waveguide plane, T_a is the ambient temperature and the APTF is the available power transfer factor of the waveguide to coaxial adaptor. This can be found be several techniques. For this intercomparison, the method of three known (waveguide) loads attached at the waveguide port was used. Reflection coefficient measurements made at the coaxial port allow the necessary S parameters (S₁₁, S₂₂ and S₁₂.S₂₁) to be calculated. By partial differentiation we have:

$$\frac{\partial T_c}{\partial T_a} = 1 - \frac{1}{APTF}$$
$$\frac{\partial T_c}{\partial T_{w/g}} = \frac{1}{APTF}$$
$$\frac{\partial T_c}{\partial APTF} = \frac{(T_{w/g} - T_a)}{APTF^2}$$

	Actual		Uncertainty	Probability		Coefficie		v _i or
Symbol	values	Source of uncertainty	value ±	distribution	Divisor	nt c _i	U _i (T)±K	V _{eff}
		Noise temperature at						
Tu	1178.310	waveguide plane	2.400	Normal	1.000	1.025	2.461	8
Та	297.380	Ambient temperature	0.500	Rectangular	1.732	-0.025	-0.007	8
APTF	0.975	APTF	0.011	Normal	2.000	926.304	4.875	8
		Туре А	0.240	Normal	1.000	1.025	0.246	9.000
		Combined standard						
		uncertainty		Normal			5.466	>1000
		Expanded uncertainty		Normal (k=2)			10.932	

The table below shows the uncertainty for TSB2 at the coaxial plane at a frequency of 12.4 GHz.

Table U.5.6: Uncertainty for TSB2 at coaxial plane

Here, the type A uncertainty is the Type A uncertainty of the waveguide measurements and the coefficient used is the same as the coefficient for the noise temperature. The difference between the uncertainty for the noise temperature at waveguide plane quoted in Table 3 above and the equivalent value for TSB2 at the waveguide plane quoted in Table 1 arises because the value in Table 3 excludes the Type A component which is separately accounted for in the calculation Table 3.

A.2.1 PTB Measurements

Transfer Standard: TSA1

Reference Plane: output flange R140

Date of calibration: June 1997 Room Temperature: 23°C Room Humidity:

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.010	11076	32	15.705	0.013
13.5	0.007	11102	36	15.715	0.014
15.0	0.008	11039	40	15.690	0.016
17.5	0.004	11012	44	15.679	0.018
18.0	0.009	10920	50	15.641	0.020

Table 1.1

Transfer Standard: TSB1

Reference Plane: output adapter PC-7/R140

Date of calibration: June 1997 Room Temperature: 23°C Room Humidity:

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.045	11287	36	15.789	0.014
13.5	0.040	11408	39	15.836	0.015
15.0	0.063	11383	45	15.827	0.018
17.5	0.032	10989	46	15.669	0.019
18.0	0.016	10660	50	15.534	0.021

Table 1.2

Transfer Standard: TSB1

Reference Plane: output connector PC-7

Date of calibration: June 1997 Room Temperature: 23°C Room Humidity:

F (GHz)	Γ	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.032	11481	38	15.865	0.015
13.5	0.037	11631	41	15.923	0.016
15.0	0.065	11688	47	15.944	0.018
17.5	0.032	11417	49	15.840	0.019
18.0	0.017	11039	52	15.690	0.021

GT-RF/99-1

Transfer Standard: TSA2

Reference Plane: output flange R140

Date of calibration: February 1998 Room Temperature: 23°C Room Humidity:

F (GHz)	Γ	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.012	11264	31	15.780	0.012
13.5	0.008	11298	37	15.793	0.015
15.0	0.005	11255	41	15.776	0.016
17.5	0.006	11218	44	15.761	0.017
18.0	0.001	11140	50	15.730	0.020

Table 3.4

Transfer Standard: TSB2

Reference Plane: output adapter PC-7/R140

Date of calibration: February 1998 Room Temperature: 23°C Room Humidity:

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.069	1174.7	4.1	4.844	0.020
13.5	0.044	1159.4	3.1	4.768	0.015
15.0	0.059	1149.8	3.6	4.720	0.018
17.5	0.043	1182.6	4.1	4.883	0.020
18.0	0.032	1156.0	8.0	4.751	0.040

Table 3.5

Transfer Standard: TSB2

Reference Plane: output connector PC-7

Date of calibration: February 1998 Room Temperature: 23°C Room Humidity:

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.043	1197.0	4.4	4.952	0.021
13.5	0.046	1180.0	3.4	4.870	0.017
15.0	0.055	1173.6	3.9	4.839	0.019
17.5	0.062	1213.6	4.4	5.031	0.021
18.0	0.062	1191.0	8.6	4.923	0.041

Transfer Standard: TSA1

Reference Plane: output flange R140

Date of calibration: April 1999 Room Temperature: 23°C Room Humidity:

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$					
12.4	0.011	11095	30	15.712	0.012					
13.5	0.007	11121	36	15.723	0.015					
15.0	0.011	11086	40	15.709	0.016					
17.5	0.008	11033	43	15.687	0.018					
18.0	0.013	10936	50	15.648	0.021					
		Table 5.1								

Transfer Standard: TSB1

Reference Plane: output adapter PC-7/R140

Date of calibration: April 1999 Room Temperature: 23°C Room Humidity:

F (GHz)	Γ	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.042	11301	32	15.794	0.013
13.5	0.041	11414	38	15.839	0.015
15.0	0.067	11425	43	15.843	0.017
17.5	0.033	11120	44	15.722	0.018
18.0	0.012	10719	49	15.558	0.021

Table 5.2

Transfer Standard: TSB1

Reference Plane: output connector PC-7

Date of calibration: April 1999 Room Temperature: 23°C Room Humidity:

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.038	11513	34	15.877	0.013
13.5	0.042	11658	39	15.933	0.015
15.0	0.067	11773	44	15.977	0.017
17.5	0.036	11450	46	15.853	0.018
18.0	0.028	11034	52	15.688	0.021

A.2.2 PTB Uncertainties (in K)

Transfer Source: TSA1

Reference plane: R140

F(GHz)	12.4	13.5	15.0	17.5	18.0
Standard*	29.3	35.1	38.9	42.4	48.5
Ambient*	0.00274	0.00277	0.00318	0.00279	0.00275
Mismatch after Tuning*	2.04	0.967	0.577	0.681	1.26
Attenuation with Standard*	1.24	1.24	1.24	1.23	1.22
Attenuation with unknown*	-1.24	-1.24	-1.24	-1.23	-1.22
Tuner Attenuation Variation*	0.0	0.0	2.96	0.0	3.25
Source Power*	1.39	1.42	1.47	1.45	1.40
Resolution*	11.3	6.12	7.33	9.94	13.4
Null Detector (Type A)	0.548	1.38	4.79	2.13	0.586
Total	32	36	40	44	50

* Type B

Transfer Source: TSB1

Table U.1.1

Reference plane: R140

F(GHz)	12.4	13.5	15.0	17.5	18.0
Standard*	30.1	36.1	40.1	42.4	46.0
Ambient*	0.000536	0.000428	-0.000416	0.00303	0.00549
Mismatch after Tuning*	2.96	2.13	1.76	1.28	1.38
Attenuation with Standard*	1.27	1.28	1.28	1.23	1.19
Attenuation with unknown*	-1.27	-1.28	-1.28	-1.23	-1.19
Tuner Attenuation Variation*	4.37	10.5	14.9	11.1	4.12
Source Power*	13.9	8.21	9.44	6.21	-15.2
Resolution*	11.5	6.29	7.56	9.92	13.1
Null Detector (Type A)	1.63	1.85	4.93	4.53	2.52
Total	36	39	45	46	50

* Type B

Transfer Source: TSB1

Table U.1.2

Reference plane: PC-7

F(GHz)	12.4	13.5	15.0	17.5	18.0
Unknown Ref. Wg. Plane*	36.6	39.8	46.2	47.8	51.8
Ambient Temp.Adapter*	0.1	0.1	0.1	0.1	0.1
Attenuation Adapter*	6.44	7.83	6.56	6.40	7.42
Mismatch of Unknown*	3.58	4.2	7.44	3.56	1.83
Tuned Mism. Of Unk. + Ad.*	1.00	1.20	1.44	0.71	0.54
Phase of Reflection*	4.96	4.84	3.42	4.11	3.16
Total	38	41	47	49	52

* Type B

Table U.1.3

GT-RF/99-1

Transfer Source: TSA2

Reference plane: R140

F(GHz)	12.4	13.5	15.0	17.5	18.0
Standard*	29.8	35.8	39.8	43.3	49.4
Ambient*	0.000773	0.000721	0.000916	0.000624	0.000477
Mismatch after Tuning*	3.03	0.483	0.734	0.719	0.682
Attenuation with Standard*	1.26	1.27	1.26	1.26	1.25
Attenuation with unknown*	-1.26	-1.27	-1.26	-1.26	-1.25
Tuner Attenuation Variation*	0	2.35	-1.68	0	0
Source Power*	1.84	1.46	1.5	1.5	1.54
Resolution*	6.14	6.61	6.51	6.19	6.95
Null Detector (Type A)	4.11	2.27	3.13	3.03	6.77
Total	31	37	41	44	50

* Type B

Transfer Source: TSB2

Table U.3.4

Reference plane: R140

F(GHz)	12.4	13.5	15.0	17.5	18.0
Standard*	2.39	2.81	3.09	3.51	4.14
Ambient*	0.106	0.106	0.107	0.106	0.106
Mismatch after Tuning*	0.64	0.171	0.161	0.121	0.140
Attenuation with Standard*	0.101	0.0994	0.0983	0.102	0.0990
Attenuation with unknown*	-0.202	-0.199	-0.197	-0.204	-0.198
Tuner Attenuation Variation*	0.698	0.950	1.07	1.11	0.920
Source Power*	2.92	0.188	0.690	0.206	6.43
Resolution*	0.922	0.664	0.582	1.39	1.87
Null Detector (Type A)	0.830	0.336	1.03	0.967	0.564
Total	4.1	3.1	3.6	4.1	8.0

* Type B

Transfer Source: TSB2

Table U.3.5

Reference plane: PC-7

F(GHz)	12.4	13.5	15	17.5	18
Unknown Ref. Wg. Plane*	4.20	3.17	3.70	4.24	8.32
Ambient Temp.Adapter*	0.1	0.1	0.1	0.1	0.1
Attenuation Adapter*	0.622	0.611	0.505	0.528	0.618
Mismatch of Unknown*	0.388	0.407	0.484	0.571	0.557
Tuned Mism. Of Unk. + Ad.*	0.142	0.101	0.116	0.086	0.080
Phase of Reflection*	1.16	0.939	1.17	0.92	2.05
Total	4.4	3.4	3.9	4.4	8.6

* Type B

Table U.3.6

GT-RF/99-1

Transfer Source: TSA1

Reference plane: R140

F(GHz)	12.4	13.5	15.0	17.5	18.0
Standard*	29.3	35.2	39.1	42.5	48.9
Ambient*	0.00254	0.00526	0.00268	0.00256	0.00260
Mismatch after Tuning*	5.28	0.911	1.27	1.27	1.53
Attenuation with Standard*	1.24	1.25	1.24	1.24	1.22
Attenuation with unknown*	-1.24	-1.25	-1.24	-1.24	-1.22
Tuner Attenuation Variation*	0.33	-3.31	1.65	-2.63	2.93
Source Power*	1.41	1.40	1.43	1.42	1.37
Resolution*	2.9	3.12	3.92	6.42	6.42
Null Detector (Type A)	3.39	2.48	4.27	3.18	3.24
Total	30	36	40	43	50

* Type B

Transfer Source: TSB1

Table U.5.1

Reference plane: R140

F(GHz)	12.4	13.5	15.0	17.5	18.0
Standard*	29.9	36.2	40.3	42.9	47.9
Ambient*	0.000385	-0.000491	-0.000860	0.00165	0.00490
Mismatch after Tuning*	8.6	3.31	3.62	2.31	2.51
Attenuation with Standard*	1.27	1.28	1.28	1.25	1.20
Attenuation with unknown*	-1.27	-1.28	-1.28	-1.25	-1.20
Tuner Attenuation Variation*	5.05	9.18	13.6	6.95	1.91
Source Power*	3.28	2.18	2.63	-0.665	0.137
Resolution*	2.96	3.21	4.04	6.48	6.29
Null Detector (Type A)	2.92	1.69	2.75	3.16	6.13
Total	32	38	43	44	49

* Type B

Transfer Source: TSB1

Table U.5.2

Reference plane: PC-7

F(GHz)	12.4	13.5	15.0	17.5	18.0
Unknown Ref. Wg. Plane*	32.6	37.8	42.3	45.3	50.5
Ambient Temp.Adapter*	0.1	0.1	0.1	0.1	0.1
Attenuation Adapter*	6.46	7.85	6.61	6.42	7.42
Mismatch of Unknown*	4.27	4.78	7.72	4.02	3.01
Tuned Mism. Of Unk. + Ad.*	0.92	1.085	1.70	0.89	0.768
Phase of Reflection*	6.00	5.22	3.60	3.77	6.44
Total	34	39	44	46	52

* Type B

Table U.5.3
A.3.1 BNM-LCIE Measurements

Transfer Standard: TSA1

Reference Plane: output flange R140

Date of calibration: September 1997 Room Temperature: (23±1) °C Room Humidity: < 60%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.009	11060	92	15.698	0.037
13.5	0.009	11111	95	15.719	0.038
15.0	0.010	11033	98	15.687	0.040
17.5	0.005	11008	94	15.677	0.038
18.0	0.010	10955	92	15.656	0.038

Table 2.1

Transfer Standard: TSB1

Reference Plane: output adapter PC-7/R140

Date of calibration: September 1997

Room Temperature: (23±1) °C Room Humidity: < 60%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.041	11279	94	15.786	0.037
13.5	0.042	11408	98	15.836	0.038
15.0	0.067	11447	103	15.851	0.040
17.5	0.032	11023	94	15.683	0.038
18.0	0.015	10715	90	15.557	0.038
		Tabl	e 2.2		

Transfer Standard: TSB1

Reference Plane: output connector PC-7

Date of calibration: September 1997 Room Temperature: (23±1) °C Room Humidity: < 60%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.038	11465	107	15.859	0.042
13.5	0.044	11619	113	15.918	0.043
15.0	0.064	11715	119	15.954	0.045
17.5	0.033	11418	117	15.840	0.046
18.0	0.033	11095	108	15.712	0.044

<u>Reference Plane:</u> output flange R140

Date of calibration: September 1997 Room Temperature: (23±1) °C Room Humidity: < 60%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.011	11219	93	15.762	0.037
13.5	0.005	11302	97	15.795	0.038
15.0	0.004	11218	100	15.761	0.040
17.5	0.006	11242	96	15.771	0.038
18.0	0.003	11171	94	15.743	0.038

Table 2.4

Transfer Standard: TSB2

Reference Plane: output adapter PC-7/R140

Date of calibration: September 1997 Room Temperature: (23±1) °C Room Humidity: < 60%

F (GHz)	Γ	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.075	1179.0	8.9	4.865	0.044
13.5	0.045	1165.7	8.7	4.800	0.043
15.0	0.058	1151.6	8.7	4.729	0.044
17.5	0.041	1185.5	9.2	4.897	0.044
18.0	0.032	1186.1	8.6	4.899	0.042
		Tabl	le 2.5		

Transfer Standard: TSB2

Reference Plane: output connector PC-7

Date of calibration: September 1997 Room Temperature: (23±1) °C Room Humidity: < 60%

F (GHz)	Γ	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.038	1198.9	10.1	4.961	0.048
13.5	0.045	1188.7	10	4.912	0.048
15.0	0.056	1174.2	9.9	4.841	0.049
17.5	0.055	1217.0	11.1	5.047	0.052
18.0	0.055	1221.6	10.2	5.068	0.048

<u>Reference Plane:</u> output flange R140

Date of calibration: January 1999 Room Temperature: (23±1) °C Room Humidity: < 60%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.006	11047	95	15.693	0.038
13.5	0.005	11114	96	15.720	0.038
15.0	0.006	11037	95	15.689	0.038
17.5	0.008	11035	97	15.688	0.039
18.0	0.009	10961	99	15.658	0.040
		Tab	le 4.1		

Transfer Standard: TSB1

Reference Plane: output adapter PC-7/R140

Date of calibration: January 1999 Room Temperature: (23±1) °C Room Humidity: < 60%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.041	11272	107	15.783	0.042
13.5	0.042	11400	108	15.833	0.042
15.0	0.067	11358	111	15.817	0.043
17.5	0.032	11070	105	15.702	0.042
18.0	0.015	10746	100	15.570	0.041

Table 4.2

Transfer Standard: TSB1

Reference Plane: output connector PC-7

Date of calibration: January 1999 Room Temperature: (23±1) °C Room Humidity: < 60%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.046	11580	121	15.903	0.046
13.5	0.039	11682	119	15.942	0.045
15.0	0.062	11737	122	15.963	0.046
17.5	0.036	11433	117	15.846	0.045
18.0	0.015	11139	116	15.730	0.046

<u>Reference Plane:</u> output flange R140

Date of calibration: January 1999 Room Temperature: (23±1) °C Room Humidity: < 60%

F (GHz)	Γ	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.011	11242	102	15.771	0.040
13.5	0.004	11313	97	15.799	0.038
15.0	0.004	11235	99	15.768	0.039
17.5	0.010	11234	102	15.768	0.040
18.0	0.008	11192	101	15.751	0.040

Table 4.4

Transfer Standard: TSB2

Reference Plane: output adapter PC-7/R140

Date of calibration: January 1999 Room Temperature: (23±1) °C Room Humidity: < 60%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.072	1168.8	8.8	4.815	0.043
13.5	0.044	1158.2	8.5	4.762	0.042
15.0	0.057	1153.6	8.8	4.739	0.044
17.5	0.043	1181.2	8.7	4.876	0.042
18.0	0.026	1177.2	8.9	4.856	0.043

Table 4.5

Transfer Standard: TSB2

Reference Plane: output connector PC-7

Date of calibration: January 1999 Room Temperature: (23±1) °C Room Humidity: < 60%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.072	1187.4	9.4	4.906	0.045
13.5	0.044	1179.4	8.9	4.867	0.043
15.0	0.057	1178.0	9.9	4.860	0.048
17.5	0.043	1219.6	9.3	5.059	0.043
18.0	0.026	1212.1	9.6	5.024	0.045

Table 4.6

<u>Reference Plane:</u> output flange R140

Date of calibration: December 2000 Room Temperature: (23±1) °C Room Humidity: < 60%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.007	11083	95	15.708	0.038
13.5	0.006	11100	93	15.714	0.037
15.0	0.006	10983	99	15.667	0.040
17.5	0.008	11025	99	15.684	0.040
18.0	0.009	11022	97	15.683	0.040

Table 8.1

Transfer Standard: TSB1

Reference Plane: output adapter PC-7/R140

Date of calibration: December 2000 Room Temperature: (23±1) °C Room Humidity: < 60%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.039	11279	96	15.786	0.037
13.5	0.043	11409	97	15.837	0.037
15.0	0.063	11417	100	15.840	0.038
17.5	0.034	11044	99	15.692	0.039
18.0	0.017	10864	98	15.618	0.039

Table 8.2

Transfer Standard: TSB1

Reference Plane: output connector PC-7

Date of calibration: December 2000

Room Temperature: (23±1) °C Room Humidity: < 60%

F (GHz)	Γ	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.040	11493	107	15.869	0.043
13.5	0.043	11646	105	15.928	0.041
15.0	0.064	11704	111	15.951	0.043
17.5	0.039	11371	109	15.822	0.044
18.0	0.033	11266	107	15.780	0.044

Reference Plane: output flange R140

Date of calibration: December 2000

Room Temperature: (23±1) °C Room Humidity: < 60%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.007	11187	93	15.749	0.037
13.5	0.008	11351	94	15.814	0.037
15.0	0.008	11199	100	15.754	0.040
17.5	0.009	11240	98	15.770	0.039
18.0	0.005	11289	99	15.789	0.039

Table 8.4

Transfer Standard: TSB2

Reference Plane: output adapter PC-7/R140

Date of calibration: December 2000 Room Temperature: (23±1) °C Room Humidity: < 60%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.064	1176	8.4	4.850	0.041
13.5	0.043	1161	8.4	4.775	0.042
15.0	0.057	1143	8.4	4.683	0.043
17.5	0.044	1177	8.8	4.855	0.043
18.0	0.022	1179	9.0	4.864	0.044

Table 8.5

Transfer Standard: TSB2

<u>Reference Plane:</u> output connector PC-7

Date of calibration: December 2000

Room Temperature: (23±1) °C Room Humidity: < 60%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.044	1203	9.2	4.979	0.044
13.5	0.045	1186	9.5	4.900	0.046
15.0	0.054	1175	9.6	4.845	0.047
17.5	0.060	1210	10.0	5.015	0.047
18.0	0.062	1216	10.2	5.041	0.048

A.3.2 BNM-LCIE Uncertainties

We use a switching radiometer where the standard and unknown noise sources are connected successively for comparison [1].

The radiometer equation gives the unknown noise temperature:

$$T_{x} = (T_{s} - T_{a}) \cdot 10^{\frac{A_{s} - A_{x}}{10}} \cdot \left| \frac{1 - S_{11} \rho_{x}}{1 - S_{11} \rho_{s}} \right|^{2} \left(\frac{1 - \Gamma_{s}^{2}}{1 - \Gamma_{x}^{2}} \right) + T_{a}$$

where

 T_a : ambient temperature (K) T_s : standard noise temperature (K) A_s - A_x : variation of the attenuation (in dB) read on the calibrated attenuator S_{11} : reflection coefficient at the radiometer input ρ_s : reflection coefficient of the standard source ρ_x : reflection coefficient of the unknown source Γ_s : magnitude of ρ_s

 Γ_x : magnitude of ρ_x

The ENR is given by

ENR_x(dB) =
$$10\log \frac{T_x(K) - 290K}{290K}$$

The formula that gives the uncertainty on T_x is:

$$\begin{split} \Delta T_x &= 10^{\frac{A_s - A_x}{10}} \Delta T_s \quad (\text{standard}) \\ &+ \left(1 - 10^{\frac{A_s - A_x}{10}}\right) \Delta T_a \quad (\text{ambient}) \\ &+ 0.23 \cdot 10^{\frac{A_s - A_x}{10}} \left(T_s - T_a\right) \Delta (A_s - A_x) \quad (\text{attenuation measurement}) \\ &+ \left(T_s - T_a\right) 10^{\frac{A_s - A_x}{10}} \left[2|S_{11}| \left(\Gamma_s + \Gamma_x\right)\right] \quad (\text{mismatch}) \\ &+ 2 \cdot 10^{\frac{A_s - A_x}{10}} \left(T_s - T_a\right) \Gamma_s \Delta \Gamma_s \quad (\text{standard reflection coefficient}) \\ &+ 2 \cdot 10^{\frac{A_s - A_x}{10}} \left(T_s - T_a\right) \Gamma_x \Delta \Gamma_x \quad (\text{unknown reflection coefficient}) \end{split}$$

And the uncertainty on ENR is:

$$\Delta \text{ENR}_{x}(\text{dB}) = 10\log\left(1 + \frac{\Delta Tx(\text{K})}{Tx(\text{K}) - 290\text{K}}\right)$$

As an example, uncertainties for TSB1 (at R140-waveguide plane and PC7-coaxial plane) are given in the tables below.

Source: TSB1 Reference plane: R140

F(GHz)	12.4	13.5	15	17.5	18
Standard	88	87	88	89	87
Ambient	0.1	0.1	0.1	0.1	0.1
Attenuation Meas.	23	24	24	25	23
Mismatch	16	18	22	26	25
Refl.factor Standard	2	3	3	4	3
Refl.factor Unknown	6	5	5	7	8
Adapter	0	0	0	0	0
Total Type B	93	92	96	97	94
Type A	25	28	27	20	25
Total	96	97	100	99	98

Table U.8.7

Source: TSB1 Reference plane: PC-7

	10.4	125	15	175	10
F(GHZ)	12.4	13.5	15	17.5	18
Standard	88	87	88	89	87
Ambient	0.1	0.1	0.1	0.1	0.1
Attenuation Meas.	23	24	24	25	23
Mismatch	16	18	22	26	25
Refl.factor Standard	2	3	3	4	3
Refl.factor Unknown	6	5	5	7	8
Adapter	50	50	50	50	50
Total Type B	106	105	108	109	107
Type A	25	24	27	20	25
Total	109	108	112	111	110

Table U.8.8

A.4 NIST RESULTS

A.4.1 NIST Measurements

Transfer Standard: TSA1

Reference Plane: output flange R140

Date of calibration: April 2000

Room Temperature: (23±0.5) °C Room Humidity: (40±5)%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.0081	11038	44	15.689	0.018
13.5	0.0038	11023	44	15.683	0.018
15.0	0.0070	11006	47	15.676	0.019
17.5	0.0021	10981	49	15.666	0.020
18.0	0.0096	10953	50	15.655	0.020

Table 6.1

Transfer Standard: TSB1

Reference Plane: output adapter PC-7/R140

Date of calibration: April 2000

Room Temperature: (23±0.5) °C Room Humidity: (40±5)%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.0418	11246	45	15.773	0.018
13.5	0.0389	11318	46	15.801	0.018
15.0	0.0637	11382	47	15.826	0.018
17.5	0.0282	11058	48	15.697	0.019
18.0	0.0181	10759	47	15.575	0.020

Table 6.2

Transfer Standard: TSB1

Reference Plane: output connector PC-7

Date of calibration: April 2000 Room Temperature: (23±0.5) °C Room Humidity: (40±5)%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.038	11422	60	15.842	0.023
13.5	0.042	11524	61	15.881	0.024
15.0	0.063	11704	64	15.950	0.024
17.5	0.036	11399	63	15.833	0.025
18.0	0.034	11108	63	15.717	0.025

Reference Plane: output flange R140

Date of calibration: April 2000 Room Temperature: (23±0.5) °C Room Humidity: (40±5)%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.0082	11210	44	15.758	0.018
13.5	0.0078	11204	44	15.756	0.018
15.0	0.0059	11193	46	15.751	0.018
17.5	0.0058	11196	49	15.753	0.020
18.0	0.0036	11187	51	15.749	0.020
		Tab	le 6.4	<u>.</u>	•

Tuon

Transfer Standard: TSB2

Reference Plane: output adapter PC-7/R140

Date of calibration: April 2000 Room Temperature: (23±0.5) °C Room Humidity: (40±5)%

F (GHz)	Γ	T (K)	$\Delta T(K)$	ENR (dB)	ΔENR(dB)
12.4	0.0662	1174	4	4.841	0.018
13.5	0.0313	1152	4	4.731	0.018
15.0	0.0558	1139	4	4.665	0.018
17.5	0.0467	1173	4	4.836	0.019
18.0	0.0229	1172	4	4.831	0.021

Table 6.5

Transfer Standard: TSB2

Reference Plane: output connector PC-7

Date of calibration: April 2000 Room Temperature: (23±0.5) °C Room Humidity: (40±5)%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.043	1195	5	4.943	0.023
13.5	0.046	1173	5	4.836	0.023
15.0	0.055	1164	6	4.791	0.029
17.5	0.060	1207	6	5.000	0.029
18.0	0.059	1206	6	4.995	0.030

Table 6.6

A.4.2 NIST Uncertainties

Source: TSA1

Reference plane: R140

Reference plane: R140

F(GHz)	12.4	13.5	15	17.5	18
Cryogenic Std.	8.3	8.3	8.3	8.2	8.2
Ambient Std.	5.1	5.1	5.1	5.1	5.0
Y factors	4.3	4.3	4.3	4.3	4.3
Mismatch factors	2.8	7.2	5.6	6.0	3.4
Path difference	30.1	30.1	29.9	29.9	29.8
Isolation	3.0	3.0	3.0	3.0	2.8
Connector var.	26.0	27.2	28.6	30.9	31.2
Broadband Mismatch	0.0	0.1	0.2	0.1	0.1
Nonlinearity	6.6	6.6	6.6	6.6	6.6
Adapter	0	0	0	0	0
Total Type B	41.9	43.1	43.8	45.2	45.1
Type A	13.5	10.9	16.2	18.0	21.1
Total	44.1	44.5	46.7	48.7	49.8

Table U.6.1

Source: TSB1

Source: TSB1

F(GHz)	12.4	13.5	15	17.5	18
Cryogenic Std.	8.4	8.5	8.5	8.3	8.1
Ambient Std.	5.2	5.2	5.2	5.1	4.9
Y factors	4.4	4.4	4.4	4.3	4.2
Mismatch factors	8.7	11.2	10.1	10.1	1.8
Path difference	30.7	30.9	31.1	30.2	29.3
Isolation	3.1	3.1	3.2	2.9	2.8
Connector var.	26.7	28.0	29.6	31.1	30.7
Broadband Mismatch	0.1	0.2	0.6	0.4	0.1
Nonlinearity	6.7	6.8	6.8	6.6	6.5
Adapter	0	0	0	0	0
Total Type B	43.5	45.0	46.1	46.2	44.2
Type A	11.0	7.3	9.9	11.4	16.6
Total	44.9	45.6	47.2	47.6	47.2

Table U.6.2

Reference plane: PC-7

F(GHz)	12.4	13.5	15	17.5	18
Cryogenic Std.	8.6	8.6	8.8	8.6	8.3
Ambient Std.	5.3	5.3	5.4	5.2	5.1
Y factors	4.5	4.5	4.6	4.4	4.3
Mismatch factors	8.8	11.4	10.4	10.4	1.9
Path difference	31.2	31.5	32.0	31.1	30.2
Isolation	3.2	3.1	3.3	3.0	2.9
Connector var.	27.1	28.5	30.5	32.1	31.7
Broadband Mismatch	0.1	0.2	0.6	0.5	0.1
Nonlinearity	6.9	6.9	7.0	6.8	6.7
Adapter	39.6	40.0	41.1	40.1	39.1
Total Type B	59.4	60.9	62.8	62.3	60.1
Туре А	11.2	7.4	10.2	11.8	17.1
Total	60.4	61.3	63.6	63.4	62.5

GT-RF/99-1

Source: TSA2

Reference plane: R140

F(GHz)	12.4	13.5	15	17.5	18
Cryogenic Std.	8.4	8.4	8.4	8.4	8.4
Ambient Std.	5.2	5.2	5.1	5.2	5.1
Y factors	4.4	4.4	4.4	4.4	4.4
Mismatch factors	2.2	5.0	5.5	6.3	3.4
Path difference	30.6	30.6	30.6	30.6	30.5
Isolation	3.1	3.1	3.1	3.1	3.1
Connector var.	26.6	27.7	29.1	31.5	31.9
Broadband Mismatch	0.0	0.1	0.2	0.1	0.1
Nonlinearity	6.7	6.7	6.7	6.7	6.7
Adapter	0	0	0	0	0
Total Type B	42.6	43.5	44.5	46.1	46.1
Type A	10.4	9.0	12.9	15.0	21.9
Total	43.9	44.4	46.3	48.5	51.0

Table U.6.4

Source: TSB2

Source: TSB2

F(GHz)	12.4	13.5	15	17.5	18
Cryogenic Std.	0.7	0.7	0.6	0.7	0.7
Ambient Std.	0.5	0.5	0.5	0.5	0.5
Y factors	0.4	0.3	0.3	0.4	0.4
Mismatch factors	0.8	0.5	0.7	0.3	0.5
Path difference	2.5	2.4	2.4	2.5	2.5
Isolation	0.3	0.3	0.3	0.3	0.3
Connector var.	2.1	2.2	2.3	2.5	2.6
Broadband Mismatch	0.0	0.0	0.0	0.0	0.0
Nonlinearity	0.7	0.7	0.7	0.7	0.7
Adapter	0	0	0	0	0
Total Type B	3.6	3.5	3.5	3.8	3.8
Type A	0.6	0.6	0.8	0.9	1.8
Total	3.6	3.5	3.6	3.9	4.2

Table U.6.5

Reference plane: PC-7

Reference plane: R140

F(GHz)	12.4	13.5	15	17.5	18
Cryogenic Std.	0.7	0.7	0.7	0.7	0.7
Ambient Std.	0.5	0.5	0.5	0.5	0.5
Y factors	0.4	0.4	0.4	0.4	0.4
Mismatch factors	0.8	0.5	0.7	0.3	0.5
Path difference	2.5	2.5	2.4	2.6	2.6
Isolation	0.3	0.3	0.3	0.3	0.3
Connector var.	2.2	2.2	2.3	2.6	2.7
Broadband Mismatch	0.0	0.0	0.0	0.0	0.0
Nonlinearity	0.7	0.7	0.7	0.7	0.7
Adapter	3.1	3.1	4.5	4.7	4.7
Total Type B	4.8	4.7	5.8	6.1	6.1
Type A	0.6	0.7	0.8	1.0	1.9
Total	4.8	4.7	5.8	6.2	6.4

A.5 VNIIFTRI RESULTS

A.5.1 VNIIFTRI Measurements

Transfer Standard: TSA1

Reference Plane: output flange R140

Date of calibration: 06.09-16.10.2000

Room Temperature: (24±3) °C Room Humidity: (67±4)%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.004	11360	79	15.817	0.031
13.5	0.004	11181	68	15.747	0.027
15.0	0.005	11106	70	15.717	0.028
17.5	0.012	11252	66	15.775	0.026

Table 7.1

Transfer Standard: TSB1

Reference Plane: output adapter PC-7/R140

Date of calibration: 03.09-06.10.2000 Room Temperature: (24±3) °C Room Humidity: (67±4)%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.041	11495	93	15.870	0.036
13.5	0.040	11505	72	15.874	0.028
15.0	0.066	11437	85	15.848	0.033
17.5	0.037	11570	67	15.899	0.026

Table 7.2

Transfer Standard: TSB1

Reference Plane: output connector PC-7

Date of calibration: 29.09-16.10.2000 Room Temperature: (24±3) °C Room Humidity: (67±4)%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.027	11715	94	15.954	0.035
13.5	0.054	11755	75	15.970	0.028
15.0	0.058	11787	88	15.982	0.033
17.5	0.032	11982	72	16.055	0.027

Table 7.3

<u>Reference Plane:</u> output flange R140

Date of calibration: 10.09-16.10.2000 **Room Temperature:** (24±3) °C **Room Humidity:** (67±4)%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.007	11541	78	15.888	0.030
13.5	0.006	11356	66	15.816	0.026
15.0	0.004	11302	71	15.795	0.028
17.5	0.007	11630	63	15.922	0.024
		Tab	le 7.4		

Transfer Standard: TSB2

Reference Plane: output adapter PC-7/R140

Date of calibration: 27.08-06.10.2000 Room Temperature: (24±3) °C Room Humidity: (67±4)%

F (GHz)	Γ	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.058	1183	6.7	4.885	0.032
13.5	0.038	1157	5.3	4.754	0.027
15.0	0.056	1142	5.4	4.681	0.027
17.5	0.047	1175	6.4	4.845	0.031

Table 7.5

Transfer Standard: TSB2

Reference Plane: output connector PC-7

Date of calibration: 29.09-16.10.2000 Room Temperature: (24±3) °C Room Humidity: (67±4)%

F (GHz)	Г	T (K)	$\Delta T(K)$	ENR (dB)	$\Delta ENR(dB)$
12.4	0.051	1206	6.7	4.996	0.032
13.5	0.064	1183	5.5	4.883	0.027
15.0	0.072	1179	5.6	4.866	0.028
17.5	0.105	1219	8.7	5.056	0.041

Table 7.6

A.5.2 VNIIFTRI Uncertainties

Main contributions in the uncertainty budget

The main uncertainty sources of measured noise temperature NT and designations of uncertainty components* (for TSA1, TSA2, TSB1, TSB2)		U _i /u _i
1. Uncertainty of a mean NT on five measurements	ua	
2. NT uncertainty of a primary standard PS, or (on 18 GHz) working standard TSB2	U_1	$\sqrt{3}$
3. Discrepancy of PS and TS reflection coefficients	U_2	$\sqrt{2}$
4. Uncertainty because of reflections from an input of a radiometer at comparisons with PS, or at comparisons with TSB2 - uncertainty of correction factor on a difference of quadrates of reflection coefficients modules of transfer standards	U ₃	$\sqrt{2}$
5 Uncertainty of measurement of attenuation by RVA	U_4	$\sqrt{3}$
6. Uncertainty of correction factor on non-linearity of a radiometer	U ₅	$\sqrt{3}$
7. Uncertainty of a transmission ratio of a resistive divider	U_6	$\sqrt{3}$
8. Uncertainty of temperature of a «room» load or of a RVA vane	U ₇	$\sqrt{3}$

 $\ast u_a-\text{standard}$ uncertainty of type A; U_i and $u_i-\text{maximum}$ allowed $% U_i$ and standard uncertainties

of type B.

Table 7

Numerical evaluation	ations of m	ain uncei	tainty co	mponent	s U _i , u _a , a	nd also c	ombined	uncertair	nties u _c	
Comparison method	F(GHz)	U ₁	U_2	U ₃	U ₄	U ₅	U ₆	U ₇	u _a	u _c
	12.4	5.9	4.5	14.7	25.5	25.5	104.6	51.8	28.1	76.9
	13.5	5.9	2.6	9.7	25.2	25.2	79.3	51.1	30.2	66.1
TSA1/PS	15.0	5.9	7.8	21.1	25.0	25.0	85.1	50.7	27.0	68.5
	17.5	5.9	10.5	16.8	25.2	25.2	83.9	51.2	56.0	83.7
TSA1/TSB2	18.0	63.6	15.8	14.5	0.0	25.5	18.3	11.2	8.8	68.7
	12.4	6.1	4.8	10.3	25.9	25.9	104.6	52.5	20.2	74.2
	13.5	6.0	5.4	12.4	25.4	25.4	79.3	51.6	20.3	62.8
TSA2/PS	15.0	6.0	4.8	16.0	25.4	25.4	85.1	51.7	12.7	63.7
	17.5	6.0	5.2	14.7	26.1	26.1	83.9	53.0	36.0	72.0
TSA2/TSB2	18.0	64.9	16.1	14.8	0.0	26.1	18.3	11.4	9.0	70.0
	12.4	5.8	26.6	9.5	25.6	25.6	104.6	52.0	52.8	90.5
	13.5	5.8	23.4	8.6	25.7	25.7	79.3	52.2	21.6	65.2
TSB1/PS	15.0	5.8	84.0	18.8	25.8	25.8	85.1	52.3	25.8	90.3
	17.5	5.8	37.1	19.9	26.0	26.0	83.9	52.7	33.2	75.7
TSB1/TSB2	18.0	62.5	15.5	14.3	0.0	25.1	18.3	11.0	8.6	67.5
	12.4	0.5	3.9	0.7	0.0	2.0	8.0	5.1	1.7	6.7
	13.5	0.5	2.6	0.7	0.0	2.0	5.8	4.9	1.4	5.3
TSB2/PS	15.0	0.5	3.1	0.6	0.0	1.9	5.5	4.9	1.6	5.4
	17.5	0.5	3.5	1.1	0.0	2.0	5.9	5.0	3.2	6.4
	18.0	0.5	1.4	0.7	0.0	2.1	6.2	5.2	0.7	5.2

Table 8

The main uncertainty sources of measured noise temperature NT and designations of uncertainty components for coaxial TS at their output PC-7 connectors		U _i /u _i
1. Uncertainty of a mean NT on five pairs of measurements	u _a '	
2. NT uncertainty of TSB1 or TSB2 at their output R140 flanges	U ₁ '	$\sqrt{3}$
3. Discrepancy of reflection coefficients	U ₂ '	$\sqrt{2}$
4. Uncertainty of correction factor on a difference of quadrates of reflection coefficients modules of transfer standards	Ū ₃ '	$\sqrt{2}$
5. Uncertainty of a transmission ratio of a resistive divider	\overline{U}_4 '	$\sqrt{3}$

* See note to table 7

Table	9*
-------	----

Numerical evaluations of main unc	ertainty compon for TSB1c	ents U _i ', ı , TSB2c	u _a ', and c (in K)	ombined u	uncertaint	ies u _c '	
Measurements procedure	F(GHz)	U ₁ '	U ₂ '	U ₃ '	U4'	u _a '	u _c '
	12.4	92.8	15.1	7.5	2.4	1.6	93.6
a) TSB1 \rightarrow TSA2	13.5	72.2	25.1	10.8	2.9	3.0	74.8
b) $TSB1_c \rightarrow TSA2_{wc1}$	15.0	84.6	25.8	18.4	0.0	1.1	87.5
	17.5	67.4	20.7	30.1	2.8	1.2	72.2
	18.0	70.2	38.6	42.9	0.0	3.3	81.3
	12.4	6.6	0.1	1.6	1.2	0.1	6.7
a) TSB2 \rightarrow TSA2	13.5	5.4	0.1	1.5	1.0	0.4	5.5
b) $TSB2_c \rightarrow TSA2_{wc2}$	15.0	5.3	0.0	2.2	1.6	0.4	5.6
	17.5	6.3	0.2	6.2	5.7	0.3	8.7
	18.0	5.3	0.0	4.0	4.3	0.3	6.7

Designations: $TSB1_c$ or $TSB2_c$ - TSB1 or TSB2 without their PC7/R140 adapter, $TSA2_{wc1}$ - TSA2 with the TSB1 adapter; $TSA2_{wc2}$ - TSA2 with the TSB2 adapter.

Table 10

Influence of switching of the standard TSB1 on the radiometer input

	Experimental standard dev	iation of the mean of the five measurement	ts (dB)
	at switchin		
F (GHz)	between input of a radiometer and TSB1 output with the additional adapter	at absence of the switching	
12.4	0.0006	0.0012	0.0005
18.0	0.0013	0.0021	0.0007

Table 11

A.6. KCRV and Degrees of Equivalence: Numerical Data

A.6.1.a: Weighted case Source: TSA1 Reference plane: R140

12.4 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.699	0.009	BNM	15.700	0.038	0.000	0.073	no
			NPL	15.687	0.021	0.012	0.038	no
			PTB	15.709	0.013	-0.009	0.017	no
			NIST	15.689	0.018	0.010	0.031	no
			VNIIFTRI	15.817	0.031	-0.118	0.065	yes

13.5 GHz	KCRV	u _{KCRV}	Lab _i	Yi	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.707	0.009	BNM	15.718	0.038	-0.010	0.073	no
			NPL	15.682	0.024	0.025	0.044	no
			PTB	15.719	0.015	-0.012	0.022	no
			NIST	15.683	0.018	0.024	0.031	no
			VNIIFTRI	15.747	0.027	-0.040	0.051	no

15 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.692	0.009	BNM	15.681	0.039	0.011	0.076	no
			NPL	15.689	0.020	0.003	0.035	no
			PTB	15.700	0.016	-0.007	0.026	no
			NIST	15.676	0.019	0.016	0.033	no
			VNIIFTRI	15.717	0.028	-0.025	0.053	no

17.5 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.674	0.012	BNM	15.683	0.039	-0.009	0.074	no
			NPL	15.659	0.031	0.015	0.057	no
			PTB	15.683	0.018	-0.009	0.027	no
			NIST	15.666	0.020	0.008	0.032	no
			VNIIFTRI	15.775	0.026	-0.101	0.057	yes

18 GHz	KCRV	u _{KCRV}	Lab _i	Yi	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.654	0.011	BNM	15.666	0.039	-0.012	0.075	no
			NPL	15.658	0.021	-0.004	0.035	no
			PTB	15.645	0.021	0.009	0.034	no
			NIST	15.655	0.020	-0.001	0.033	no

A.6.1.b: Unweighted case Source: TSA1 Reference plane: R140

12.4 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.696	0.005	BNM	15.700	0.038	-0.004	0.054	no
			NPL	15.687	0.021	0.009	0.031	no
			PTB	15.709	0.013	-0.012	0.020	no
			NIST	15.689	0.018	0.007	0.027	no
			VNIIFTRI	15.817	0.031	-0.121	0.063	yes
13.5 GHz	KCRV	llwonu	Lab	V.	$u(\mathbf{V}_{\cdot})$	Δ.	IL	Outlier
13.5 GHZ	Renv	uKCRV	Lao	1	u(1)	Δ_{i}	$O_{\Delta i}$	Outlief
	15.710	0.012	BNM	15.718	0.038	-0.008	0.063	no
			NPL	15.682	0.024	0.028	0.045	no
			PTB	15.719	0.015	-0.009	0.033	no

NIST

VNIIFTRI

15 GHz	KCRV	u _{KCRV}	Lab _i	\mathbf{Y}_{i}	$u(Y_i)$	$\Delta_{\rm i}$	$U_{\Delta i}$	Outlier
	15.693	0.007	BNM	15.681	0.039	0.012	0.063	no
		_	NPL	15.689	0.020	0.004	0.034	no
			PTB	15.700	0.016	-0.007	0.029	no
			NIST	15.676	0.019	0.017	0.033	no
			VNIIFTRI	15 717	0.028	-0.024	0.046	no

15.683

15.747

0.018

0.027

0.027

-0.037

0.037

0.049

no

no

17.5 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.673	0.006	BNM	15.683	0.039	-0.010	0.056	no
			NPL	15.659	0.031	0.014	0.045	no
			PTB	15.683	0.018	-0.010	0.028	no
			NIST	15.666	0.020	0.007	0.031	no
			VNIIFTRI	15.775	0.026	-0.102	0.053	yes

18 GHz	KCRV	u _{KCRV}	Lab _i	Yi	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.656	0.004	BNM	15.666	0.039	-0.010	0.056	no
			NPL	15.658	0.021	-0.002	0.031	no
			PTB	15.645	0.021	0.011	0.030	no
			NIST	15.655	0.020	0.001	0.030	no

A.6.1.c: Weighted case, outliers included Source: TSA1 Reference plane: R140

KCRV

15.708

12.4 GHz

u _{KCRV}		Lab _i	\mathbf{Y}_{i}	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
0.009		BNM	15.700	0.038	0.009	0.073
	-	NPL	15.687	0.021	0.021	0.038
		PTB	15.709	0.013	0.000	0.018
		NIST	15.689	0.018	0.019	0.032
		VNIIFTRI	15.817	0.031	-0.109	0.060

 KCRV
 u_{KCRV}

 15.691
 0.011

Lab _i	\mathbf{Y}_{i}	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
BNM	15.683	0.039	0.008	0.075
NPL	15.659	0.031	0.032	0.058
PTB	15.683	0.018	0.008	0.029
NIST	15.666	0.020	0.025	0.034
VNIIFTRI	15.775	0.026	-0.084	0.047

A.6.1.d: Unweighted case, outliers included Source: TSA1 Reference plane: R140

KCRV

15.720

12.4 GHz

u _{KCRV}		Lab _i	Yi	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
0.024		BNM	15.700	0.038	0.021	0.076
	_	NPL	15.687	0.021	0.033	0.059
		PTB	15.709	0.013	0.012	0.053
		NIST	15.689	0.018	0.031	0.056
		VNIIFTRI	15.817	0.031	-0.097	0.069

 KCRV
 u_{KCRV}

 15.693
 0.021

Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
BNM	15.683	0.039	0.010	0.074
NPL	15.659	0.031	0.034	0.064
PTB	15.683	0.018	0.010	0.050
NIST	15.666	0.020	0.027	0.052
VNIIFTRI	15.775	0.026	-0.082	0.058

A.6.2.a: Weighted case Source: TSB1 Reference plane: PC-7/R140

					1	1	1	1
12.4 GHz	KCRV	u _{KCRV}	Lab _i	Yi	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.785	0.009	BNM	15.785	0.039	0.000	0.075	no
			NPL	15.787	0.021	-0.002	0.038	no
			PTB	15.792	0.014	-0.006	0.020	no
			NIST	15.773	0.018	0.012	0.031	no
			VNIIFTRI	15.870	0.036	-0.085	0.074	yes

13.5 GHz	KCRV	u _{KCRV}	Lab _i	\mathbf{Y}_{i}	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.829	0.009	BNM	15.835	0.039	-0.006	0.076	no
			NPL	15.822	0.024	0.007	0.044	no
			PTB	15.838	0.015	-0.008	0.023	no
			NIST	15.801	0.018	0.028	0.031	no
			VNIIFTRI	15.874	0.028	-0.045	0.053	no

15 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	u(Y _i)	Δ_{i}	$U_{\Delta i}$	Outlier
	15.839	0.010	BNM	15.836	0.040	0.003	0.078	no
			NPL	15.857	0.020	-0.018	0.035	no
			PTB	15.835	0.018	0.004	0.029	no
			NIST	15.826	0.018	0.013	0.030	no
			VNIIFTRI	15.848	0.033	-0.009	0.063	no

17.5 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	$u(Y_i)$	$\Delta_{\rm i}$	$U_{\Delta i}$	Outlier
	15.696	0.013	BNM	15.692	0.040	0.004	0.075	no
			NPL	15.667	0.031	0.029	0.067	yes
			PTB	15.696	0.019	0.000	0.027	no
			NIST	15.697	0.019	-0.001	0.028	no
			VNIIFTRI	15.899	0.026	-0.203	0.058	yes

18 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.577	0.011	BNM	15.582	0.039	-0.005	0.075	no
			NPL	15.608	0.021	-0.031	0.035	no
			PTB	15.546	0.021	0.031	0.035	no
			NIST	15.575	0.020	0.002	0.033	no

A.6.2.b: Unweighted case Source: TSB1 Reference plane: PC-7/R140

12.4 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	u(Y _i)	$\Delta_{\rm i}$	$U_{\Delta i}$	Outlier
	15.784	0.004	BNM	15.785	0.039	-0.001	0.055	no
			NPL	15.787	0.021	-0.003	0.031	no
			PTB	15.792	0.014	-0.007	0.021	no
			NIST	15.773	0.018	0.011	0.027	no
			VNIIFTRI	15.870	0.036	-0.086	0.072	yes

13.5 GHz	KCRV	u _{KCRV}	Lab _i	\mathbf{Y}_{i}	$u(Y_i)$	$\Delta_{ m i}$	$U_{\Delta i}$	Outlier
	15.834	0.012	BNM	15.835	0.039	-0.001	0.065	no
			NPL	15.822	0.024	0.012	0.044	no
			PTB	15.838	0.015	-0.004	0.033	no
			NIST	15.801	0.018	0.033	0.037	no
			VNIIFTRI	15.874	0.028	-0.040	0.050	no

15 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	u(Y _i)	Δ_{i}	$U_{\Delta i}$	Outlier
	15.840	0.005	BNM	15.836	0.040	0.004	0.063	no
			NPL	15.857	0.020	-0.017	0.033	no
			PTB	15.835	0.018	0.005	0.029	no
			NIST	15.826	0.018	0.014	0.030	no
			VNIIFTRI	15.848	0.033	-0.008	0.052	no

17.5 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	$u(Y_i)$	$\Delta_{\rm i}$	$U_{\Delta i}$	Outlier
	15.695	0.001	BNM	15.692	0.040	0.003	0.046	no
			NPL	15.667	0.031	0.028	0.062	yes
			PTB	15.696	0.019	-0.001	0.022	no
			NIST	15.697	0.019	-0.002	0.022	no
			VNIIFTRI	15.899	0.026	-0.204	0.052	yes

18 GHz	KCRV	u _{KCRV}	Lab _i	Yi	$u(Y_i)$	$\Delta_{\rm i}$	$U_{\Delta i}$	Outlier
	15.578	0.013	BNM	15.582	0.039	-0.004	0.061	no
			NPL	15.608	0.021	-0.030	0.039	no
			PTB	15.546	0.021	0.032	0.039	no
			NIST	15.575	0.020	0.003	0.038	no

A.6.2.c: Weighted case, outliers included Source: TSB1 Reference plane: PC-7/R140

KCRV

15.791

12.4 GHz	
----------	--

u _{KCRV}		Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
0.009		BNM	15.785	0.039	0.006	0.075
	-	NPL	15.787	0.021	0.004	0.038
		PTB	15.792	0.014	-0.001	0.020
		NIST	15.773	0.018	0.018	0.031
		VNIIFTRI	15.870	0.036	-0.079	0.070

 KCRV
 u_{KCRV}

 15.726
 0.011

Lab _i	Yi	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
BNM	15.692	0.040	0.034	0.076
NPL	15.667	0.031	0.059	0.058
PTB	15.696	0.019	0.031	0.030
NIST	15.697	0.019	0.029	0.031
VNIIFTRI	15.899	0.026	-0.173	0.047

A.6.2.d: Unweighted case, outliers included Source: TSB1 Reference plane: PC-7/R140

KCRV

15.801

12.4 GHz

u _{KCRV}		Lab _i	Yi	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
0.017		BNM	15.785	0.039	0.016	0.069
	_	NPL	15.787	0.021	0.014	0.048
		PTB	15.792	0.014	0.010	0.041
		NIST	15.773	0.018	0.028	0.045
		VNIIFTRI	15.870	0.036	-0.069	0.066

 KCRV
 u_{KCRV}

 15.730
 0.043

Lab _i	\mathbf{Y}_{i}	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
BNM	15.692	0.040	0.038	0.105
NPL	15.667	0.031	0.063	0.098
PTB	15.696	0.019	0.035	0.090
NIST	15.697	0.019	0.033	0.090
VNIIFTRI	15.899	0.026	-0.169	0.094

no

Weighted case A.6.3.a: Source: TSB1 Reference plane: PC-7

12.4 GHz	KCRV	u _{KCRV}	Lab _i	\mathbf{Y}_{i}	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.864	0.011	BNM	15.877	0.044	-0.013	0.084	no
			NPL	15.856	0.049	0.008	0.095	no
			PTB	15.871	0.014	-0.007	0.017	no
			NIST	15.842	0.023	0.022	0.040	no
			VNIIFTRI	15.954	0.035	-0.090	0.074	yes
13.5 GHz	KCRV	u _{KCRV}	Lab _i	$\mathbf{Y}_{\mathbf{i}}$	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.922	0.011	BNM	15.929	0.043	-0.007	0.083	no
			NPL	15.896	0.037	0.026	0.071	no
			PTB	15.928	0.016	-0.006	0.022	no
			NIST	15.881	0.024	0.041	0.043	no

VNIIFTRI

15 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	u(Y _i)	Δ_{i}	$U_{\Delta i}$	Outlier
	15.957	0.013	BNM	15.956	0.045	0.001	0.086	no
			NPL	15.957	0.034	0.000	0.063	no
			PTB	15.961	0.018	-0.004	0.024	no
			NIST	15.950	0.024	0.007	0.041	no
			VNIIFTRI	15.982	0.033	-0.025	0.071	ves

15.970

0.028

-0.048

0.052

17.5 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	$u(Y_i)$	$\Delta_{\rm i}$	$U_{\Delta i}$	Outlier
	15.838	0.013	BNM	15.836	0.045	0.002	0.086	no
			NPL	15.809	0.045	0.029	0.086	no
			PTB	15.847	0.019	-0.008	0.025	no
			NIST	15.833	0.025	0.005	0.042	no
			VNIIFTRI	16.055	0.027	-0.217	0.060	yes

18 GHz	KCRV	u _{KCRV}	Lab _i	Yi	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.713	0.014	BNM	15.741	0.045	-0.028	0.085	no
			NPL	15.766	0.040	-0.053	0.075	no
			PTB	15.689	0.021	0.024	0.031	no
			NIST	15.717	0.025	-0.004	0.041	no

no

Unweighted case A.6.3.b: Source: TSB1 Reference plane: PC-7

12.4 GHz	KCRV	u _{KCRV}	Lab _i	Yi	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.862	0.008	BNM	15.877	0.044	-0.016	0.064	no
		_	NPL	15.856	0.049	0.005	0.071	no
			PTB	15.871	0.014	-0.010	0.025	no
			NIST	15.842	0.023	0.019	0.036	no
			VNIIFTRI	15.954	0.035	-0.093	0.072	yes
13.5 GHz	KCRV	u _{KCRV}	Lab _i	Yi	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.921	0.015	BNM	15.929	0.043	-0.008	0.073	no
			NPL	15.896	0.037	0.025	0.065	no
			PTB	15.928	0.016	-0.007	0.039	no
			NIST	15.881	0.024	0.040	0.048	no

15 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	u(Y _i)	Δ_{i}	$U_{\Delta i}$	Outlier
	15.956	0.002	BNM	15.956	0.045	0.000	0.063	no
			NPL	15.957	0.034	-0.001	0.048	no
			PTB	15.961	0.018	-0.005	0.025	no
			NIST	15.950	0.024	0.006	0.034	no
			VNIIFTRI	15.982	0.033	-0.026	0.066	yes

15.970

0.028

-0.049

0.053

VNIIFTRI

17.5 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.831	0.008	BNM	15.836	0.045	-0.005	0.066	no
			NPL	15.809	0.045	0.022	0.066	no
			PTB	15.847	0.019	-0.015	0.031	no
			NIST	15.833	0.025	-0.002	0.039	no
			VNIIFTRI	16.055	0.027	-0.224	0.056	yes

18 GHz	KCRV	u _{KCRV}	Lab _i	Yi	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.728	0.016	BNM	15.741	0.045	-0.013	0.071	no
			NPL	15.766	0.040	-0.038	0.065	no
			PTB	15.689	0.021	0.039	0.044	no
			NIST	15.717	0.025	0.011	0.048	no

A.6.3.c: Weighted case, outliers included Source: TSB1 Reference plane: PC-7

KCRV

15.872

12.4 GHz

	_					
u _{KCRV}		Lab _i	\mathbf{Y}_{i}	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
0.011		BNM	15.877	0.044	-0.005	0.085
	_	NPL	15.856	0.049	0.016	0.096
		PTB	15.871	0.014	0.001	0.018
		NIST	15.842	0.023	0.030	0.041
		VNIIFTRI	15.954	0.035	-0.082	0.067

15 GHz	1.	GHz
--------	----	-----

Γ

 KCRV
 u_{KCRV}

 15.960
 0.012

Lab _i	Yi	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
BNM	15.956	0.045	0.004	0.086
NPL	15.957	0.034	0.003	0.064
PTB	15.961	0.018	-0.001	0.026
NIST	15.950	0.024	0.010	0.042
VNIIFTRI	15.982	0.033	-0.022	0.062

175	CII-
ר / ו	(TH7
11.0	ULL

KCRV	u _{KCRV}
15.881	0.012

Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
BNM	15.836	0.045	0.045	0.087
NPL	15.809	0.045	0.072	0.087
PTB	15.847	0.019	0.035	0.028
NIST	15.833	0.025	0.048	0.044
VNIIFTRI	16.055	0.027	-0.174	0.048

A.6.3.d: Unweighted case, outliers included Source: TSB1 Reference plane: PC-7

KCRV

15.880

12.4 GHz

u _{KCRV}		Lab _i	\mathbf{Y}_{i}	$u(Y_i)$	$\Delta_{\rm i}$	$U_{\Delta i}$
0.019		BNM	15.877	0.044	0.003	0.078
	-	NPL	15.856	0.049	0.024	0.085
		PTB	15.871	0.014	0.009	0.045
		NIST	15.842	0.023	0.038	0.053
		VNIIFTRI	15.954	0.035	-0.074	0.067

 KCRV
 u_{KCRV}

 15.961
 0.005

Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
BNM	15.956	0.045	0.005	0.070
NPL	15.957	0.034	0.004	0.054
PTB	15.961	0.018	0.001	0.029
NIST	15.950	0.024	0.011	0.039
VNIIFTRI	15.982	0.033	-0.021	0.052

17.5 GHz

KCRV	u _{KCRV}
15.876	0.045

Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
BNM	15.836	0.045	0.040	0.114
NPL	15.809	0.045	0.067	0.114
PTB	15.847	0.019	0.029	0.095
NIST	15.833	0.025	0.043	0.098
VNIIFTRI	16.055	0.027	-0.179	0.100

A.6.4.a: Weighted case Source: TSA2 Reference plane: R140

12.4 GHz	KCRV	u _{KCRV}	Lab _i	\mathbf{Y}_{i}	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.758	0.013	BNM	15.761	0.038	-0.003	0.071	no
			NPL	15.758	0.022	0.001	0.035	no
			PTB	15.780	0.012	-0.022	0.036	yes
			NIST	15.758	0.018	0.000	0.025	no
			VNIIFTRI	15.888	0.030	-0.130	0.065	yes
13.5 GHz	KCRV	llycony	Lab	V.	$\mathbf{u}(\mathbf{V}_{i})$	٨	I	Outlier
15.5 UIIZ	KCKV	uKCRV	Laui	ι _i	u(1 _i)	Δ_{i}	$U_{\Delta i}$	Outliel
	15.781	0.009	BNM	15.803	0.038	-0.022	0.073	no

		1	(1/	—I	- <u>Δ</u>	
	BNM	15.803	0.038	-0.022	0.073	no
	NPL	15.755	0.024	0.026	0.043	no
	PTB	15.793	0.015	-0.012	0.024	no
	NIST	15.756	0.018	0.025	0.031	no
	VNIIFTRI	15.816	0.026	-0.035	0.049	no

15 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.768	0.010	BNM	15.761	0.040	0.007	0.077	no
			NPL	15.766	0.022	0.003	0.039	no
			PTB	15.776	0.016	-0.008	0.026	no
			NIST	15.751	0.018	0.017	0.031	no
			VNIIFTRI	15.795	0.028	-0.027	0.053	no

17.5 GHz	KCRV	u _{KCRV}	Lab _i	Yi	$u(Y_i)$	$\Delta_{\rm i}$	$U_{\Delta i}$	Outlier
	15.760	0.011	BNM	15.770	0.039	-0.010	0.075	no
			NPL	15.766	0.031	-0.006	0.058	no
			PTB	15.761	0.017	-0.001	0.025	no
			NIST	15.753	0.020	0.007	0.033	no
			VNIIFTRI	15.922	0.024	-0.162	0.053	yes

18 GHz	KCRV	u _{KCRV}	Lab _i	Yi	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.746	0.012	BNM	15.761	0.039	-0.015	0.074	no
			NPL	15.770	0.031	-0.024	0.057	no
			PTB	15.730	0.020	0.016	0.032	no
			NIST	15.749	0.020	-0.003	0.032	no

A.6.4.b: Unweighted case Source: TSA2 Reference plane: R140

12.4 GHz	KCRV	u _{KCRV}	Lab _i	Yi	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.759	0.001	BNM	15.761	0.038	-0.002	0.044	no
			NPL	15.758	0.022	0.001	0.025	no
			PTB	15.780	0.012	-0.021	0.024	yes
			NIST	15.758	0.018	0.001	0.021	no
			VNIIFTRI	15.888	0.030	-0.129	0.060	yes
12.5 CH ₇	KCDV		Lab	v	$\mathbf{u}(\mathbf{V})$		T	Outlier
15.5 UHZ	KCKV	u _{KCRV}	Laoi	I i	$u(1_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.785	0.012	BNM	15.803	0.038	-0.018	0.063	no

	DIVIVI	15.605	0.056	-0.018	0.005	no
	NPL	15.755	0.024	0.030	0.044	no
	PTB	15.793	0.015	-0.008	0.034	no
]	NIST	15.756	0.018	0.029	0.037	no
VN	VIIFTRI	15.816	0.026	-0.031	0.047	no

15 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.770	0.007	BNM	15.761	0.040	0.009	0.063	no
			NPL	15.766	0.022	0.004	0.037	no
			PTB	15.776	0.016	-0.006	0.029	no
			NIST	15.751	0.018	0.019	0.032	no
			VNIIFTRI	15.795	0.028	-0.025	0.046	no

17.5 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.762	0.004	BNM	15.770	0.039	-0.007	0.056	no
			NPL	15.766	0.031	-0.004	0.044	no
			PTB	15.761	0.017	0.001	0.025	no
			NIST	15.753	0.020	0.009	0.029	no
			VNIIFTRI	15.922	0.024	-0.160	0.049	yes

18 GHz	KCRV	u _{KCRV}	Lab _i	Yi	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	15.753	0.009	BNM	15.761	0.039	-0.009	0.058	no
			NPL	15.770	0.031	-0.018	0.047	no
			PTB	15.730	0.020	0.022	0.033	no
			NIST	15.749	0.020	0.003	0.033	no

A.6.4.c: Weighted case, outliers included Source: TSA2 Reference plane: R140

KCRV

15.779

12.4 GHz

u _{KCRV}		Lab _i	\mathbf{Y}_{i}	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
0.008		BNM	15.761	0.038	0.019	0.074
	-	NPL	15.758	0.022	0.022	0.041
		PTB	15.780	0.012	-0.001	0.017
		NIST	15.758	0.018	0.021	0.032
		VNIIFTRI	15.888	0.030	-0.109	0.058

 KCRV
 u_{KCRV}

 15.790
 0.010

Lab _i	\mathbf{Y}_{i}	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
BNM	15.770	0.039	0.020	0.075
NPL	15.766	0.031	0.024	0.058
PTB	15.761	0.017	0.029	0.027
NIST	15.753	0.020	0.037	0.034
VNIIFTRI	15.922	0.024	-0.132	0.043

A.6.4.d: Unweighted case, outliers included Source: TSA2 Reference plane: R140

KCRV

15.789

12.4 GHz

u _{KCRV}		Lab _i	$\mathbf{Y}_{\mathbf{i}}$	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
0.025		BNM	15.761	0.038	0.028	0.077
	_	NPL	15.758	0.022	0.031	0.061
		PTB	15.780	0.012	0.009	0.054
		NIST	15.758	0.018	0.031	0.057
		VNIIFTRI	15.888	0.030	-0.099	0.068

 KCRV
 u_{KCRV}

 15.794
 0.032

Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
BNM	15.770	0.039	0.025	0.088
NPL	15.766	0.031	0.028	0.080
PTB	15.761	0.017	0.033	0.069
NIST	15.753	0.020	0.041	0.071
VNIIFTRI	15.922	0.024	-0.128	0.074

A.6.5.a: Weighted case Source: TSB2 Reference plane: PC-7/R140

12.4 GHz	KCRV	u _{KCRV}	Lab _i	Yi	$u(Y_i)$	$\Delta_{\rm i}$	$U_{\Delta i}$	Outlier
	4.845	0.011	BNM	4.843	0.043	0.001	0.082	no
			NPL	4.852	0.023	-0.007	0.039	no
			PTB	4.844	0.020	0.001	0.033	no
			NIST	4.841	0.018	0.004	0.028	no
			VNIIFTRI	4.885	0.032	-0.040	0.068	yes
13 5 GHz	KCRV	llkony	Lab	Y:	$\mathbf{u}(\mathbf{Y}_{i})$	Δ.	I.	Outlier
15.5 OHE	Rent	^{GKCRV}	Luo ₁	1	u(1)	Δ_1	$U_{\Delta i}$	Outlief
	4.754	0.009	BNM	4.779	0.042	-0.025	0.083	no

Luci	-1	u(1)	Δ_1	$O_{\Delta 1}$	outiful
BNM	4.779	0.042	-0.025	0.083	no
NPL	4.751	0.024	0.003	0.044	no
PTB	4.768	0.015	-0.014	0.023	no
NIST	4.731	0.018	0.023	0.031	no
VNIIFTRI	4.754	0.027	0.000	0.051	no

0.027

0.028

0.048

no

15 GHz	KCRV	u _{KCRV}	Lab _i	Yi	$u(Y_i)$	$\Delta_{\rm i}$	$U_{\Delta i}$	Outlier
	4.709	0.012	BNM	4.717	0.044	-0.008	0.084	no
			NPL	4.710	0.023	-0.001	0.038	no
			PTB	4.720	0.018	-0.011	0.027	no
			NIST	4.665	0.018	0.044	0.043	ves

4.681

VNIIFTRI

17.5 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	4.881	0.016	BNM	4.876	0.043	0.005	0.080	no
			NPL	4.880	0.032	0.002	0.056	no
			PTB	4.883	0.020	-0.002	0.025	no
			NIST	4.836	0.019	0.045	0.049	yes
			VNIIFTRI	4.845	0.031	0.036	0.070	yes

18 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	4.849	0.016	BNM	4.873	0.043	-0.024	0.080	no
			NPL	4.877	0.033	-0.028	0.056	no
			РТВ	4.751	0.040	0.098	0.086	yes
			NIST	4.831	0.021	0.018	0.026	no

A.6.5.b: Unweighted case Source: TSB2 Reference plane: PC-7/R140

12.4 GHz	KCRV	u _{KCRV}	Lab _i	Yi	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	4.845	0.002	BNM	4.843	0.043	0.002	0.061	no
			NPL	4.852	0.023	-0.007	0.032	no
			PTB	4.844	0.020	0.001	0.029	no
			NIST	4.841	0.018	0.004	0.026	no
			VNIIFTRI	4.885	0.032	-0.040	0.064	yes
13.5 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	u(Y _i)	Δ_{i}	$U_{\Delta i}$	Outlier

KCRV	u _{KCRV}	Lab _i	Yi	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
4.757	0.008	BNM	4.779	0.042	-0.023	0.068	no
		NPL	4.751	0.024	0.006	0.041	no
		PTB	4.768	0.015	-0.011	0.028	no
		NIST	4.731	0.018	0.026	0.032	no
		VNIIFTRI	4.754	0.027	0.003	0.045	no

15 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	u(Y _i)	$\Delta_{\rm i}$	$U_{\Delta i}$	Outlier
	4.707	0.009	BNM	4.717	0.044	-0.010	0.064	no
			NPL	4.710	0.023	-0.003	0.036	no
			PTB	4.720	0.018	-0.013	0.031	no
			NIST	4.665	0.018	0.042	0.040	yes
			VNIIFTRI	4.681	0.027	0.026	0.042	no

17.5 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	$u(Y_i)$	$\Delta_{\rm i}$	$U_{\Delta i}$	Outlier
	4.880	0.002	BNM	4.876	0.043	0.003	0.050	no
			NPL	4.880	0.032	0.000	0.037	no
			PTB	4.883	0.020	-0.003	0.023	no
			NIST	4.836	0.019	0.043	0.038	yes
			VNIIFTRI	4.845	0.031	0.035	0.062	yes

18 GHz	KCRV	u _{KCRV}	Lab _i	Yi	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	4.860	0.015	BNM	4.873	0.043	-0.013	0.058	no
			NPL	4.877	0.033	-0.016	0.048	no
			PTB	4.751	0.040	0.109	0.085	yes
			NIST	4.831	0.021	0.029	0.038	no

Weighted case, outliers included A.6.5.c: Source: TSB2 Reference plane: PC-7/R140

KCRV

4.849

u _{KCRV}		Lab _i	\mathbf{Y}_{i}	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
0.010		BNM	4.843	0.043	0.006	0.083
	-	NPL	4.852	0.023	-0.003	0.040
		PTB	4.844	0.020	0.005	0.034
		NIST	4.841	0.018	0.008	0.029
		VNIIFTRI	4.885	0.032	-0.036	0.060

KCRV $\mathbf{u}_{\mathrm{KCRV}}$ 4.696 0.010

Lab _i	\mathbf{Y}_{i}	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
BNM	4.717	0.044	-0.021	0.085
NPL	4.710	0.023	-0.014	0.040
PTB	4.720	0.018	-0.024	0.030
NIST	4.665	0.018	0.031	0.030
VNIIFTRI	4.681	0.027	0.015	0.050

175	CIL
1/2	(TH7
17.5	ULL

KCRV	u _{KCRV}
4.860	0.011

Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
BNM	4.876	0.043	-0.016	0.083
NPL	4.880	0.032	-0.019	0.060
PTB	4.883	0.020	-0.023	0.033
NIST	4.836	0.019	0.024	0.031
VNIIFTRI	4.845	0.031	0.015	0.058

Unweighted case, outliers included A.6.5.d: Source: TSB2 Reference plane: PC-7/R140

12.4 GHz	KCRV
	4.853

u _{KCRV}		Lab _i	\mathbf{Y}_{i}	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
0.008		BNM	4.843	0.043	0.010	0.068
	-	NPL	4.852	0.023	0.001	0.039
		PTB	4.844	0.020	0.009	0.035
		NIST	4.841	0.018	0.012	0.032
		VNIIFTRI	4.885	0.032	-0.032	0.052

15 GHz

ſ

KCRV $\mathbf{u}_{\mathrm{KCRV}}$ 4.699 0.011

Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
BNM	4.717	0.044	-0.018	0.071
NPL	4.710	0.023	-0.011	0.041
PTB	4.720	0.018	-0.021	0.035
NIST	4.665	0.018	0.034	0.035
VNIIFTRI	4.681	0.027	0.018	0.047

175	CII-
ר / ו	(TH7
11.0	ULL

KCRV	u _{KCRV}
4.864	0.010

Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
BNM	4.876	0.043	-0.012	0.069
NPL	4.880	0.032	-0.016	0.053
PTB	4.883	0.020	-0.019	0.037
NIST	4.836	0.019	0.028	0.035
VNIIFTRI	4.845	0.031	0.019	0.052
I

A.6.6.a: Weighted case Source: TSB2 Reference plane: PC-7

12.4 GHz	KCRV	u _{KCRV}	Lab _i	\mathbf{Y}_{i}	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	4.949	0.014	BNM	4.949	0.046	0.000	0.087	no
			NPL	4.956	0.052	-0.007	0.099	no
			PTB	4.952	0.021	-0.003	0.031	no
			NIST	4.943	0.023	0.006	0.036	no
			VNIIFTRI	4.996	0.032	-0.047	0.070	yes
13.5 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	u(Y _i)	$\Delta_{ m i}$	$U_{\Delta i}$	Outlier
<u> </u>	4.864	0.011	BNM	4.893	0.046	-0.029	0.089	no
			NPL	4.858	0.039	0.006	0.075	no
			PTB	4.870	0.017	-0.006	0.025	no
			NIST	4.836	0.023	0.028	0.040	no
			VNIIFTRI	4.883	0.027	-0.019	0.049	no

15 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	u(Y _i)	Δ_{i}	$U_{\Delta i}$	Outlier
	4.845	0.014	BNM	4.849	0.048	-0.004	0.092	no
			NPL	4.831	0.035	0.014	0.064	no
			PTB	4.839	0.019	0.006	0.026	no
			NIST	4.791	0.029	0.054	0.064	yes
			VNIIFTRI	4.866	0.028	-0.021	0.049	no

17.5 GHz	KCRV	u _{KCRV}	Lab _i	Yi	$u(Y_i)$	$\Delta_{\rm i}$	$U_{\Delta i}$	Outlier
	5.025	0.014	BNM	5.040	0.047	-0.016	0.090	no
			NPL	5.005	0.045	0.020	0.085	no
			PTB	5.031	0.021	-0.006	0.031	no
			NIST	5.000	0.029	0.025	0.051	no
			VNIIFTRI	5.056	0.041	-0.031	0.077	no

18 GHz	KCRV	u _{KCRV}	Lab _i	Yi	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	4.989	0.020	BNM	5.044	0.047	-0.055	0.085	no
			NPL	5.006	0.047	-0.017	0.085	no
			PTB	4.923	0.041	0.066	0.072	no
			NIST	4.995	0.030	-0.006	0.045	no

A.6.6.b: Unweighted case Source: TSB2 Reference plane: PC-7

12.4 GHz	KCRV	u _{KCRV}	Lab _i	$\mathbf{Y}_{\mathbf{i}}$	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	4.950	0.003	BNM	4.949	0.046	0.001	0.065	no
			NPL	4.956	0.052	-0.006	0.073	no
			PTB	4.952	0.021	-0.002	0.030	no
			NIST	4.943	0.023	0.007	0.033	no
			VNIIFTRI	4.996	0.032	-0.046	0.064	yes
12.5 CHz	KCBV		Lab	v	$\mathbf{u}(\mathbf{V})$		TT	Outlior
13.3 OHZ		UKCRV	LaDi	I i	u(1 _i)	Δ _i	U _{Δi}	Outlief
	4.868	0.010	BNM	4.893	0.046	-0.025	0.073	no
			NPL	4.858	0.039	0.010	0.064	no
			PTB	4.870	0.017	-0.002	0.033	no
			NIST	4.836	0.023	0.032	0.041	no
			VNIIFTRI	4.883	0.027	-0.015	0.046	no

15 GHz	KCRV	u _{KCRV}	Lab _i	Y _i	u(Y _i)	Δ_{i}	$U_{\Delta i}$	Outlier
	4.846	0.008	BNM	4.849	0.048	-0.003	0.070	no
			NPL	4.831	0.035	0.016	0.052	no
			PTB	4.839	0.019	0.007	0.031	no
			NIST	4.791	0.029	0.055	0.060	yes
			VNIIFTRI	4.866	0.028	-0.020	0.042	no

17.5 GHz	KCRV	u _{KCRV}	Lab _i	Yi	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$	Outlier
	5.026	0.011	BNM	5.040	0.047	-0.014	0.076	no
			NPL	5.005	0.045	0.022	0.073	no
			PTB	5.031	0.021	-0.005	0.039	no
			NIST	5.000	0.029	0.026	0.050	no
			VNIIFTRI	5.056	0.041	-0.030	0.067	no

18 GHz	KCRV	u _{KCRV}	Lab _i	Yi	u(Y _i)	Δ_{i}	$U_{\Delta i}$	Outlier
	4.992	0.025	BNM	5.044	0.047	-0.052	0.084	no
			NPL	5.006	0.047	-0.014	0.084	no
			PTB	4.923	0.041	0.069	0.077	no
			NIST	4.995	0.030	-0.003	0.066	no

A.6.6.c: Weighted case, outliers included Source: TSB2 Reference plane: PC-7

KCRV

4.956

12.4 GHz

u _{KCRV}		Lab _i	\mathbf{Y}_{i}	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
0.013		BNM	4.949	0.046	0.008	0.088
	_	NPL	4.956	0.052	0.000	0.100
		PTB	4.952	0.021	0.004	0.033
		NIST	4.943	0.023	0.013	0.038
		VNIIFTRI	4.996	0.032	-0.040	0.059

15	6 GHz

ſ

 KCRV
 u_{KCRV}

 4.835
 0.012

Lab _i	Y _i	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
BNM	4.849	0.048	-0.014	0.093
NPL	4.831	0.035	0.005	0.065
PTB	4.839	0.019	-0.004	0.029
NIST	4.791	0.029	0.044	0.052
VNIIFTRI	4.866	0.028	-0.031	0.050

A.6.6.d: Unweighted case, outliers included Source: TSB2 Reference plane: PC-7

KCRV

4.959

12.4 GHz	
----------	--

u _{KCRV}		Lab _i	\mathbf{Y}_{i}	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
0.009		BNM	4.949	0.046	0.010	0.073
	_	NPL	4.956	0.052	0.003	0.082
		PTB	4.952	0.021	0.007	0.038
		NIST	4.943	0.023	0.016	0.040
		VNIIFTRI	4.996	0.032	-0.037	0.053

15 GHz

 KCRV
 u_{KCRV}

 4.835
 0.012

Lab _i	Yi	$u(Y_i)$	Δ_{i}	$U_{\Delta i}$
BNM	4.849	0.048	-0.014	0.078
NPL	4.831	0.035	0.005	0.060
PTB	4.839	0.019	-0.004	0.039
NIST	4.791	0.029	0.044	0.051
VNIIFTRI	4.866	0.028	-0.031	0.050

Key Comparison CCEM.RF-K9

Degrees of equivalence

Measurand: Excess Noise Ratio (ENR) expressed in decibels (dB), at 12.4 GHz, 13.5 GHz, 15 GHz, 17.5 GHz and 18 GHz

The Key Comparison Reference Value, KCRV, was calculated as the unweighted mean of the participants results,

 $KCRV = \frac{1}{N} \sum_{i=1}^{N} ENR_i$

and its standard uncertainty is,

$$u_{KCRV} = \left(\frac{1}{N(N-1)}\sum_{i=1}^{N} (ENR_i - KCRV)^2\right)^{0.5}$$

where N is the number of participating laboratories

The degree of equivalence of each laboratory with respect to the KCRV is given by $D_i = KCRV - ENR_i$

and its expanded uncertainty (k = 2) is

 $U_{i} = 2\left(u_{KCRV}^{2} + \left(1 - \frac{2}{N'}\right)u_{i}^{2}\right)^{0.5}$ for laboratories included in KCRV computation, or $U_{i} = 2\left(u_{KCRV}^{2} + u_{i}^{2}\right)^{0.5}$ for laboratories not included in KCRV computation (outliers)

 $U_i = 2(u_i^2 + u_{KCRV}^2)^{0.5}$ for laboratories not included in KCRV computation (outliers), where N' is the number of laboratories included in KCRV computation

The degree of equivalence between two laboratories is given by $D_{ij} = D_i - D_j$ and its expanded uncertainty (k = 2) is, $U_{ij} = 2(u_i^2 + u_j^2)^{0.5}$

			Lab $j \Rightarrow$									
Lab i ↓			BN	M	N	PL	P	ГВ	NI	ST	VNII	FTRI
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	-0.004	0.054			-0.013	0.086	0.009	0.079	-0.011	0.083	0.117	0.098
NPL	0.009	0.031	0.013	0.086			0.022	0.049	0.002	0.055	0.130	0.075
PTB	-0.012	0.020	-0.009	0.079	-0.022	0.049			-0.020	0.044	0.108	0.067
NIST	0.007	0.027	0.011	0.083	-0.002	0.055	0.020	0.044			0.128	0.072
VNIIFTRI	-0.121	0.063	-0.117	0.098	-0.130	0.075	-0.108	0.067	-0.128	0.072		

Degrees of equivalence at 13.5 GHz

	- 1

Lab $j \Rightarrow$

Lab <i>i</i> ↓			BN	BNM NPL		РТВ		NIST		VNIIFTRI		
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	-0.008	0.063			-0.036	0.089	0.001	0.081	-0.035	0.083	0.029	0.093
NPL	0.028	0.045	0.036	0.089			0.037	0.056	0.001	0.060	0.065	0.072
РТВ	-0.009	0.033	-0.001	0.081	-0.037	0.056			-0.036	0.046	0.028	0.061
NIST	0.027	0.037	0.035	0.083	-0.001	0.060	0.036	0.046			0.064	0.065
VNIIFTRI	-0.037	0.049	-0.029	0.093	-0.065	0.072	-0.028	0.061	-0.064	0.065		

Degrees of equivalence at 15 GHz

			Lab $j \Rightarrow$									
Lab <i>i</i> ↓			BN	M	NPL		РТВ		NIST		VNIIFTRI	
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	0.012	0.063			0.008	0.088	0.019	0.085	-0.005	0.087	0.036	0.097
NPL	0.004	0.034	-0.008	0.088			0.011	0.051	-0.013	0.055	0.028	0.069
PTB	-0.007	0.029	-0.019	0.085	-0.011	0.051			-0.024	0.050	0.018	0.064
NIST	0.017	0.033	0.005	0.087	0.013	0.055	0.024	0.050			0.041	0.068
VNIIFTRI	-0.024	0.046	-0.036	0.097	-0.028	0.069	-0.018	0.064	-0.041	0.068		

Degrees of equivalence at 17.5 GHz

			Lab $j \Rightarrow$									
Lab i ↓			BN	M	N	PL	P	ГВ	NI	ST	VNII	FTRI
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	-0.010	0.056			-0.024	0.100	0.000	0.086	-0.017	0.088	0.092	0.094
NPL	0.014	0.045	0.024	0.100			0.024	0.072	0.007	0.074	0.116	0.081
PTB	-0.010	0.028	0.000	0.086	-0.024	0.072			-0.017	0.054	0.092	0.063
NIST	0.007	0.031	0.017	0.088	-0.007	0.074	0.017	0.054			0.109	0.066
VNIIFTRI	-0.102	0.053	-0.092	0.094	-0.116	0.081	-0.092	0.063	-0.109	0.066		

			Lab $j \Rightarrow$							
Lab <i>i</i> ↓			BI	M	N	NPL		ГВ	NIST	
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)						
BNM	-0.010	0.056			-0.008	0.089	-0.021	0.089	-0.011	0.088
NPL	-0.002	0.031	0.008	0.089			-0.013	0.059	-0.003	0.058
PTB	0.011	0.030	0.021	0.089	0.013	0.059			0.010	0.057
NIST	0.001	0.030	0.011	0.088	0.003	0.058	-0.010	0.057		

			Lab $j \Rightarrow$									
Lab i ↓	Lab <i>i</i> ↓		B	BNM		NPL		РТВ		ST	VNIIFTRI	
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	-0.001	0.055			0.002	0.088	0.007	0.082	-0.012	0.085	0.085	0.106
NPL	-0.003	0.031	-0.002	0.088			0.004	0.050	-0.014	0.055	0.083	0.083
PTB	-0.007	0.021	-0.007	0.082	-0.004	0.050			-0.018	0.045	0.079	0.077
NIST	0.011	0.027	0.012	0.085	0.014	0.055	0.018	0.045			0.097	0.080
VNIIFTRI	-0.086	0.072	-0.085	0.106	-0.083	0.083	-0.079	0.077	-0.097	0.080		

Degrees of equivalence at 13.5 GHz

н	ah	i	

$\mathsf{Lab}\, j \;\; \Rightarrow \;\;$

Lab i ↓			BN	M	N	PL	P1	ГВ	N	ST	VNII	FTRI
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	-0.001	0.065			-0.013	0.092	0.002	0.084	-0.034	0.086	0.039	0.096
NPL	0.012	0.044	0.013	0.092			0.016	0.057	-0.021	0.060	0.052	0.074
PTB	-0.004	0.033	-0.002	0.084	-0.016	0.057			-0.037	0.047	0.037	0.064
NIST	0.033	0.037	0.034	0.086	0.021	0.060	0.037	0.047			0.073	0.067
VNIIFTRI	-0.040	0.050	-0.039	0.096	-0.052	0.074	-0.037	0.064	-0.073	0.067		

Degrees of equivalence at 15 GHz

			Lab $j \Rightarrow$									
Lab i ↓			BN	M	N	PL	PI	ГВ	NI	ST	VNII	FTRI
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	0.004	0.063			0.021	0.090	-0.001	0.088	-0.010	0.088	0.012	0.104
NPL	-0.017	0.033	-0.021	0.090			-0.022	0.053	-0.031	0.054	-0.009	0.077
PTB	0.005	0.029	0.001	0.088	0.022	0.053			-0.009	0.050	0.013	0.075
NIST	0.014	0.030	0.010	0.088	0.031	0.054	0.009	0.050			0.022	0.075
VNIIFTRI	-0.008	0.052	-0.012	0.104	0.009	0.077	-0.013	0.075	-0.022	0.075		

Degrees of equivalence at 17.5 GHz

			Lab $j \Rightarrow$									
Lab i ↓			BN	M	N	PL	P	ГВ	NI	ST	VNII	FTRI
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	0.003	0.046			-0.025	0.101	0.003	0.088	0.005	0.088	0.207	0.095
NPL	0.028	0.062	0.025	0.101			0.028	0.072	0.030	0.073	0.232	0.081
PTB	-0.001	0.022	-0.003	0.088	-0.028	0.072			0.002	0.053	0.204	0.064
NIST	-0.002	0.022	-0.005	0.088	-0.030	0.073	-0.002	0.053			0.202	0.064
VNIIFTRI	-0.204	0.052	-0.207	0.095	-0.232	0.081	-0.204	0.064	-0.202	0.064		

			Lab $j \Rightarrow$							
Lab <i>i</i> ↓			BI	M	N	PL	P	ГВ	NI	ST
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)						
BNM	-0.004	0.061			0.026	0.089	-0.036	0.089	-0.007	0.088
NPL	-0.030	0.039	-0.026	0.089			-0.062	0.059	-0.033	0.058
PTB	0.032	0.039	0.036	0.089	0.062	0.059			0.029	0.058
NIST	0.003	0.038	0.007	0.088	0.033	0.058	-0.029	0.058		

			Lab $j \Rightarrow$									
Lab i ↓			BI	M	N	PL	PI	ГВ	NI	ST	VNII	FTRI
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	-0.016	0.064			-0.021	0.131	-0.006	0.092	-0.035	0.099	0.077	0.112
NPL	0.005	0.071	0.021	0.131			0.015	0.102	-0.014	0.108	0.098	0.120
PTB	-0.010	0.025	0.006	0.092	-0.015	0.102			-0.029	0.054	0.083	0.075
NIST	0.019	0.036	0.035	0.099	0.014	0.108	0.029	0.054			0.112	0.084
VNIIFTRI	-0.093	0.072	-0.077	0.112	-0.098	0.120	-0.083	0.075	-0.112	0.084		

Degrees of equivalence at 13.5 GHz

	- 1

Lab $j \Rightarrow$

Lab <i>i</i> ↓			BN	M	N	PL	P	ГВ	NI	ST	VNII	FTRI
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	-0.008	0.073			-0.033	0.113	-0.001	0.091	-0.048	0.098	0.041	0.103
NPL	0.025	0.065	0.033	0.113			0.032	0.080	-0.015	0.088	0.074	0.093
РТВ	-0.007	0.039	0.001	0.091	-0.032	0.080			-0.047	0.057	0.042	0.064
NIST	0.040	0.048	0.048	0.098	0.015	0.088	0.047	0.057			0.089	0.074
VNIIFTRI	-0.049	0.053	-0.041	0.103	-0.074	0.093	-0.042	0.064	-0.089	0.074		

Degrees of equivalence at 15 GHz

			Lab $j \Rightarrow$									
Lab i ↓			BN	M	N	PL	P	ГВ	NI	ST	VNII	FTRI
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	0.000	0.063			0.001	0.112	0.004	0.096	-0.006	0.101	0.026	0.111
NPL	-0.001	0.048	-0.001	0.112			0.003	0.076	-0.007	0.083	0.025	0.095
PTB	-0.005	0.025	-0.004	0.096	-0.003	0.076			-0.011	0.059	0.021	0.075
NIST	0.006	0.034	0.006	0.101	0.007	0.083	0.011	0.059			0.032	0.082
VNIIFTRI	-0.026	0.066	-0.026	0.111	-0.025	0.095	-0.021	0.075	-0.032	0.082		

Degrees of equivalence at 17.5 GHz

			Lab $j \Rightarrow$									
Lab i ↓			BN	M	N	PL	P	ГВ	NI	ST	VNII	FTRI
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	-0.005	0.066			-0.027	0.127	0.011	0.097	-0.003	0.103	0.219	0.105
NPL	0.022	0.066	0.027	0.127			0.037	0.097	0.024	0.103	0.246	0.105
PTB	-0.015	0.031	-0.011	0.097	-0.037	0.097			-0.013	0.062	0.209	0.065
NIST	-0.002	0.039	0.003	0.103	-0.024	0.103	0.013	0.062			0.222	0.074
VNIIFTRI	-0.224	0.056	-0.219	0.105	-0.246	0.105	-0.209	0.065	-0.222	0.074		

			Lab $j \Rightarrow$							
Lab <i>i</i> ↓			B	M	N	PL	P	ГВ	NI	ST
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)						
BNM	-0.013	0.071			0.025	0.120	-0.052	0.099	-0.024	0.102
NPL	-0.038	0.065	-0.025	0.120			-0.077	0.090	-0.049	0.094
РТВ	0.039	0.044	0.052	0.099	0.077	0.090			0.028	0.065
NIST	0.011	0.048	0.024	0.102	0.049	0.094	-0.028	0.065		

			Lab $j \Rightarrow$									
Lab i ↓			BN	M	N	PL	P	ГВ	NI	ST	VNII	FTRI
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	-0.002	0.044			-0.003	0.088	0.019	0.080	-0.003	0.084	0.127	0.097
NPL	0.001	0.025	0.003	0.088			0.022	0.050	0.000	0.057	0.131	0.074
PTB	-0.021	0.024	-0.019	0.080	-0.022	0.050			-0.022	0.043	0.108	0.065
NIST	0.001	0.021	0.003	0.084	0.000	0.057	0.022	0.043			0.130	0.070
VNIIFTRI	-0.129	0.060	-0.127	0.097	-0.131	0.074	-0.108	0.065	-0.130	0.070		

Degrees of equivalence at 13.5 GHz

l ab	i	1
Lub		~

Lab $j \Rightarrow$

Lab i ↓			BN	NM NPL		PL	РТВ		NIST		VNIIFTRI	
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	-0.018	0.063			-0.048	0.089	-0.010	0.081	-0.047	0.083	0.013	0.092
NPL	0.030	0.044	0.048	0.089			0.038	0.056	0.001	0.059	0.061	0.070
PTB	-0.008	0.034	0.010	0.081	-0.038	0.056			-0.037	0.047	0.023	0.060
NIST	0.029	0.037	0.047	0.083	-0.001	0.059	0.037	0.047			0.060	0.063
VNIIFTRI	-0.031	0.047	-0.013	0.092	-0.061	0.070	-0.023	0.060	-0.060	0.063		

Degrees of equivalence at 15 GHz

			Lab $j \Rightarrow$									
Lab i ↓			BN	M	N	PL	P	ГВ	NI	ST	VNII	FTRI
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	0.009	0.063			0.004	0.090	0.015	0.086	-0.010	0.087	0.034	0.097
NPL	0.004	0.037	-0.004	0.090			0.011	0.054	-0.015	0.056	0.030	0.071
PTB	-0.006	0.029	-0.015	0.086	-0.011	0.054			-0.025	0.048	0.019	0.064
NIST	0.019	0.032	0.010	0.087	0.015	0.056	0.025	0.048			0.044	0.067
VNIIFTRI	-0.025	0.046	-0.034	0.097	-0.030	0.071	-0.019	0.064	-0.044	0.067		

Degrees of equivalence at 17.5 GHz

			Lab $j \Rightarrow$									
Lab i ↓			BN	M	N	PL	P	ГВ	NI	ST	VNII	FTRI
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	-0.007	0.056			-0.004	0.100	-0.009	0.085	-0.017	0.088	0.152	0.092
NPL	-0.004	0.044	0.004	0.100			-0.005	0.071	-0.013	0.074	0.156	0.078
PTB	0.001	0.025	0.009	0.085	0.005	0.071			-0.008	0.052	0.161	0.059
NIST	0.009	0.029	0.017	0.088	0.013	0.074	0.008	0.052			0.169	0.062
VNIIFTRI	-0.160	0.049	-0.152	0.092	-0.156	0.078	-0.161	0.059	-0.169	0.062		

			Lab $j \Rightarrow$							
Lab <i>i</i> ↓			B	M	N	PL	P	ГВ	NI	ST
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)						
BNM	-0.009	0.058			0.009	0.100	-0.031	0.088	-0.012	0.088
NPL	-0.018	0.047	-0.009	0.100			-0.040	0.074	-0.021	0.074
PTB	0.022	0.033	0.031	0.088	0.040	0.074			0.019	0.057
NIST	0.003	0.033	0.012	0.088	0.021	0.074	-0.019	0.057		

			Lab $j \Rightarrow$									
Lab i ↓			BN	M	N	PL	PI	ГВ	NI	ST	VNII	FTRI
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	0.002	0.061			0.008	0.096	0.001	0.094	-0.002	0.093	0.042	0.107
NPL	-0.007	0.032	-0.008	0.096			-0.007	0.060	-0.010	0.058	0.034	0.078
PTB	0.001	0.029	-0.001	0.094	0.007	0.060			-0.003	0.054	0.041	0.075
NIST	0.004	0.026	0.002	0.093	0.010	0.058	0.003	0.054			0.044	0.073
VNIIFTRI	-0.040	0.064	-0.042	0.107	-0.034	0.078	-0.041	0.075	-0.044	0.073		

Degrees of equivalence at 13.5 GHz

٥h	1

Lab $j \Rightarrow$

Lab <i>i</i> ↓			BN	M	NPL		РТВ		NIST		VNIIFTRI	
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	-0.023	0.068			-0.029	0.097	-0.011	0.090	-0.048	0.092	-0.025	0.100
NPL	0.006	0.041	0.029	0.097			0.018	0.057	-0.019	0.060	0.003	0.072
РТВ	-0.011	0.028	0.011	0.090	-0.018	0.057			-0.037	0.047	-0.014	0.062
NIST	0.026	0.032	0.048	0.092	0.019	0.060	0.037	0.047			0.023	0.065
VNIIFTRI	0.003	0.045	0.025	0.100	-0.003	0.072	0.014	0.062	-0.023	0.065		

Degrees of equivalence at 15 GHz

			Lab $j \Rightarrow$									
Lab i ↓			BN	M	N	PL	PI	ГВ	NI	ST	VNII	FTRI
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	-0.010	0.064			-0.007	0.098	0.003	0.094	-0.052	0.094	-0.036	0.103
NPL	-0.003	0.036	0.007	0.098			0.010	0.058	-0.045	0.058	-0.029	0.070
PTB	-0.013	0.031	-0.003	0.094	-0.010	0.058			-0.055	0.051	-0.039	0.065
NIST	0.042	0.040	0.052	0.094	0.045	0.058	0.055	0.051			0.016	0.065
VNIIFTRI	0.026	0.042	0.036	0.103	0.029	0.070	0.039	0.065	-0.016	0.065		

Degrees of equivalence at 17.5 GHz

			Lab $j \Rightarrow$									
Lab i ↓			BN	M	N	PL	P	ГВ	NI	ST	VNII	FTRI
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	0.003	0.050			0.003	0.107	0.007	0.095	-0.040	0.094	-0.031	0.106
NPL	0.000	0.037	-0.003	0.107			0.003	0.075	-0.043	0.074	-0.035	0.089
PTB	-0.003	0.023	-0.007	0.095	-0.003	0.075			-0.047	0.055	-0.038	0.074
NIST	0.043	0.038	0.040	0.094	0.043	0.074	0.047	0.055			0.009	0.073
VNIIFTRI	0.035	0.062	0.031	0.106	0.035	0.089	0.038	0.074	-0.009	0.073		

			Lab $j \Rightarrow$							
Lab <i>i</i> ↓			B	M	N	PL	P	ГВ	NI	ST
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)						
BNM	-0.013	0.058			0.003	0.108	-0.122	0.117	-0.042	0.096
NPL	-0.016	0.048	-0.003	0.108			-0.126	0.103	-0.045	0.077
PTB	0.109	0.085	0.122	0.117	0.126	0.103			0.080	0.090
NIST	0.029	0.038	0.042	0.096	0.045	0.077	-0.080	0.090		

			Lab $j \Rightarrow$									
Lab <i>i</i> ↓			BN	M	N	PL	PI	ГВ	NI	ST	VNII	FTRI
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	0.001	0.065			0.007	0.138	0.003	0.101	-0.006	0.102	0.047	0.112
NPL	-0.006	0.073	-0.007	0.138			-0.004	0.111	-0.013	0.113	0.040	0.121
PTB	-0.002	0.030	-0.003	0.101	0.004	0.111			-0.009	0.062	0.044	0.077
NIST	0.007	0.033	0.006	0.102	0.013	0.113	0.009	0.062			0.053	0.079
VNIIFTRI	-0.046	0.064	-0.047	0.112	-0.040	0.121	-0.044	0.077	-0.053	0.079		

Degrees of equivalence at 13.5 GHz

Lab	i	↓

Lab $j \Rightarrow$

Lab <i>i</i> ↓			BNM		NPL		РТВ		NIST		VNIIFTRI	
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	-0.025	0.073			-0.035	0.120	-0.023	0.097	-0.057	0.102	-0.010	0.106
NPL	0.010	0.064	0.035	0.120			0.012	0.085	-0.022	0.091	0.025	0.095
РТВ	-0.002	0.033	0.023	0.097	-0.012	0.085			-0.034	0.057	0.013	0.064
NIST	0.032	0.041	0.057	0.102	0.022	0.091	0.034	0.057			0.047	0.071
VNIIFTRI	-0.015	0.046	0.010	0.106	-0.025	0.095	-0.013	0.064	-0.047	0.071		

Degrees of equivalence at 15 GHz

			Lab $j \Rightarrow$											
Lab <i>i</i> ↓			BNM		NPL		РТВ		NIST		VNIIFTRI			
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)										
BNM	-0.003	0.070			-0.018	0.119	-0.010	0.103	-0.058	0.112	0.017	0.111		
NPL	0.016	0.052	0.018	0.119			0.009	0.080	-0.039	0.091	0.035	0.090		
PTB	0.007	0.031	0.010	0.103	-0.009	0.080			-0.048	0.069	0.027	0.068		
NIST	0.055	0.060	0.058	0.112	0.039	0.091	0.048	0.069			0.075	0.081		
VNIIFTRI	-0.020	0.042	-0.017	0.111	-0.035	0.090	-0.027	0.068	-0.075	0.081				

Degrees of equivalence at 17.5 GHz

			Lab $j \Rightarrow$	Lab $j \Rightarrow$											
Lab <i>i</i> ↓		BNM		NPL		РТВ		NIST		VNIIFTRI					
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)											
BNM	-0.014	0.076			-0.036	0.131	-0.009	0.104	-0.040	0.111	0.016	0.125			
NPL	0.022	0.073	0.036	0.131			0.026	0.099	-0.005	0.107	0.051	0.122			
PTB	-0.005	0.039	0.009	0.104	-0.026	0.099			-0.031	0.072	0.025	0.092			
NIST	0.026	0.050	0.040	0.111	0.005	0.107	0.031	0.072			0.056	0.100			
VNIIFTRI	-0.030	0.067	-0.016	0.125	-0.051	0.122	-0.025	0.092	-0.056	0.100					

			Lab $j \Rightarrow$									
Lab <i>i</i> ↓			BNM		NPL		РТВ		NIST			
	D ₁ (dB)	U _i (dB)	D _{ij} (dB)	U _{ij} (dB)								
BNM	-0.052	0.084			-0.038	0.133	-0.121	0.125	-0.049	0.112		
NPL	-0.014	0.084	0.038	0.133			-0.083	0.125	-0.011	0.112		
РТВ	0.069	0.077	0.121	0.125	0.083	0.125			0.072	0.102		
NIST	-0.003	0.066	0.049	0.112	0.011	0.112	-0.072	0.102				