MEASURAND :	AC Voltage ratio
NOMINAL VALUES :	Ten decimal ratio values : 0.01, and 0.1 to 0.9 by step of $0.1 ;$
	Ten elevenths ratio values : $1 / 11$ to $10 / 11$ by step of $1 / 11$
FREQUENCY:	1 kHz

The measurements of this key comparison were made of twenty AC voltage ratios at two possible frequencies: 1 kHz and 55 Hz . The in-phase and quadrature components of each voltage ratio were reported separately giving a total of 80 possible measurement results for each participant. The 1 kHz measurements were compulsory and all the 17 participating laboratories made these measurements. The 55 Hz measurements were optional, with 7 laboratories contributing.

The measurement results reported by the laboratories participating in CCEM-K7 can be found in section 4 on page 188 of the Final Report, Part 2.

Lab i	Year of measurement
NMIJ	2000
CEM	2003
NMIA	2001
INRIM	2002
KRISS	2002
LNE	2002
METAS	2000
NIM	2001
NIST	2003
NPL	2003
NPLI	2001
NRC	2003
PTB	2000
SP	2001
UME	2002
VNIIM	2002
VSL	1999

AC Voltage ratio

NOMINAL VALUES: Ten decimal ratio values : 0.01 , and 0.1 to 0.9 by step of 0.1 ;
Ten elevenths ratio values : 1/11 to 10/11 by step of 1/11

FREQUENCY:

1 kHz

For the in phase and the quadrature components of each voltage ratio, the key comparison reference value, x_{R}, is calculated as the weighted mean of the particapants' results after exclusion of outliers. Its expanded uncertainty $(k=2), U_{R}$, is calculated as explained in section 1.3 of the Final Report, Part 2.

	In phase		Quadrature	
	X_{R}	U_{R}	X_{R}	U_{R}
	$I(\mathrm{nV} / \mathrm{V})$	$I(\mathrm{nV} / \mathrm{V})$	$I(\mathrm{nV} / \mathrm{V})$	$I(\mathrm{nV} / \mathrm{V})$
	58.3	5.1	-71.6	3.9
0.8	71.5	5.3	-110.2	4.1
0.7	64.0	5.8	-137.0	4.5
0.6	39.0	5.7	-132.5	4.4
0.5	9.8	5.4	-130.3	4.5
0.4	-22.9	5.4	-97.0	4.4
0.3	-38.6	5.1	-51.0	4.3
0.2	-45.9	5.1	-15.4	4.1
0.1	-43.6	4.8	8.9	3.5
0.01	-1160.5	8.4	422.5	5.0
$10 / 11$	53.2	5.1	-123.5	3.9
$9 / 11$	21.8	5.2	-176.9	4.1
$8 / 11$	9.4	5.3	-200.9	4.0
$7 / 11$	-6.2	5.3	-186.6	4.5
$6 / 11$	-17.1	5.3	-156.5	4.3
$5 / 11$	-2.2	5.4	-124.9	4.6
$4 / 11$	-31.1	5.4	-46.8	4.3
$3 / 11$	-24.5	5.3	-1.6	4.1
$2 / 11$	-46.2	5.1	48.9	4.1
$1 / 11$	-49.7	5.0	59.6	3.7

For the in phase and the quadrature components of each voltage ratio, the degree of equivalence of each laboratory with respect to the key comparison reference value is given by a pair of terms:
D_{i} and U_{i}, its expanded uncertainty $(k=2)$, both expressed in nV / V.
The degree of equivalence between two laboratories is given by a pair of terms: $D_{i j}$ and $U_{i j}$, its expanded uncertainty $(k=2)$, both expressed in nV/V, and can be found in section 3 of the Final Report, Part 2.

The BIPM key comparison database, June 2012

MEASURAND : AC Voltage ratio
NOMINAL VALUES : Ten decimal ratio values : 0.01 , and 0.1 to 0.9 by step of 0.1 ; Ten elevenths ratio values : 1/11 to 10/11 by step of $1 / 11$
FREQUENCY: 1 kHz

Table of Degrees of equivalence

Voltage ratio Lab i	0.9				0.8				0.7				0.6				0.5			
	In phase		Quadrature																	
	$\begin{array}{cc} \hline D_{i} & U_{i} \\ I(\mathrm{nV} / \mathrm{V}) \end{array}$		$\begin{array}{cc} D_{i} & U_{i} \\ I(\mathrm{nV} / \mathrm{V}) \\ \hline \end{array}$		$\begin{array}{cc} \hline D_{i} & U_{i} \\ I(n \mathrm{n} / \mathrm{V}) \\ \hline \end{array}$		$\begin{array}{cc} \hline D_{i} & U_{i} \\ I(n \mathrm{~V} / \mathrm{V}) \\ \hline \end{array}$		$\begin{array}{cc} \hline D_{i} & U_{i} \\ I(\mathrm{nV} / \mathrm{V}) \\ \hline \end{array}$		$\begin{array}{cc} \hline D_{i} & U_{i} \\ I(n \mathrm{~V} / \mathrm{V}) \\ \hline \end{array}$		$\begin{array}{cc} \hline D_{i} & U_{i} \\ I(\mathrm{nV} / \mathrm{V}) \\ \hline \end{array}$		$\begin{array}{cc} D_{i} & U_{i} \\ I(\mathrm{nV} / \mathrm{V}) \\ \hline \end{array}$		$\begin{array}{cc} D_{i} & U_{i} \\ I(\mathrm{nV} / \mathrm{V}) \end{array}$		$\begin{array}{cc} D_{i} & U_{i} \\ I(\mathrm{nV} / \mathrm{V}) \\ \hline \end{array}$	
NMIJ	21	14	-3	31	21	14	-8	29	22	15	-11	27	16	13	-13	24	7	13	-13	21
CEM	-13	51	4	48	-27	51	6	48	-31	51	8	48	-35	51	10	48	-35	51	13	48
NMIA	-0.3	11.7	2.6	3.5	-4.5	11.7	3.2	3.2	-1.0	11.4	4.0	2.5	0.0	11.5	1.5	2.7	2.2	11.6	0.3	2.6
INRIM	6	16	7	10	4	18	6	10	-2	17	25	13	-6	16	11	14	-6	14	10	14
KRISS	10	20	-1	24	8	20	-3	24	10	20	-4	24	7	20	-7	24	3	20	-6	24
LNE	88	29	-8316	26	136	31	-12067	29	168	35	-11028	33	179	37	-7593	35	75	38	-3293	36
METAS	2	28	4	68	-4	35	7	108	-2	35	10	128	-5	33	10	129	-7	30	12	123
NIM	-3	12	-6	9	-9	14	-12	16	-4	14	-19	20	4	14	-22	20	0	12	-28	16
NIST	10	44	3	100	11	43	6	100	15	44	7	100	15	44	7	120	6	45	4	110
NPL	1	27	-12	25	-4	27	-19	25	-2	27	-25	25	-2	27	-30	25	0	27	-30	25
NPLI	-12	13	-3098	300	6	13	-6210	300	23	12	-7753	300	30	12	-8728	300	33	13	-9080	300
NRC	-9	31	-23	29	-21	31	-41	29	-22	31	-51	29	-24	31	-57	29	-23	31	-56	29
PTB	-7	23	-11	20	-17	23	-19	20	-17	23	-26	20	-19	23	-31	20	-18	23	-31	20
SP	-4	49	5	71	-7	49	-5	71	-17	49	-8	71	-15	49	-1	71	1	49	10	71
UME	-13	50	-14	59	-22	50	-20	59	-19	50	-23	59	-14	50	-22	59	-11	50	-22	59
VNIIM	3	21	6	28	-1	21	11	28	1	21	15	28	0	21	18	28	-2	21	20	28
VSL	-12	21	-128	110	-17	27	-240	150	-12	32	-333	180	-10	37	-388	210	-8	43	-390	230

MEASURAND : AC Voltage ratio
NOMINAL VALUES: Ten decimal ratio values : 0.01 , and 0.1 to 0.9 by step of 0.1 ; Ten elevenths ratio values : $1 / 11$ to $10 / 11$ by step of $1 / 11$ FREQUENCY: 1 kHz

Table of Degrees of equivalence

Voltage ratio Lab i	0.4				0.3				0.2				0.1				0.01			
	In phase		Quadrature																	
		U_{i}	$l(\mathrm{nV} / \mathrm{V})$		$l(\mathrm{nV} / \mathrm{V})$		1 (nV/V)	$\mathrm{U}_{\mathbf{i}}$	D_{i} I I	U_{i}	1 (nV/V)			U_{i}	l (nV / V)		I (nV/V)		I (nV/V)	
NMIJ	1	12	-9	19	-7	12	-7	16	-7	12	-4	13	-7	12	3	9	-76	79	65	160
CEM	-32	51	18	48	-30	51	20	48	-20	51	19	48	-12	51	16	48	-12	49	-9	50
NMIA	3.9	11.6	2.0	2.8	0.6	11.7	0.0	2.9	0.9	11.7	0.4	3.2	-0.4	11.9	3.1	3.9	2.5	9.7	0.5	1.5
INRIM	-1	13	4	15	-6	14	15	12	-3	14	10	11	7	14	-10	8	-78	80	150	51
KRISS	2	20	-4	24	-2	20	-6	24	-1	20	-6	24	-2	20	-1	24	-38	22	20	30
LNE	-58	37	2176	35	-135	35	7460	33	-91	31	9880	29	11	29	7879	26	2428	15	527	11
METAS	-5	29	15	129	-9	27	14	128	-6	24	12	108	-5	19	11	68	-78	65	68	85
NIM	16	14	-26	12	12	14	-29	9	3	17	-20	9	1	13	-1	9	8	13	-60	8
NIST	12	45	12	110	6	46	12	110	5	45	12	100	3	44	14	100	-57	500	71	500
NPL	3	27	-26	25	-1	27	-22	25	1	27	-15	25	0	27	-5	25	33	50	-11	49
NPLI	32	13	-8333	300	21	13	-6989	300	18	13	-5315	300	10	13	-2599	300	-54	11	3488	300
NRC	-21	31	-48	29	-21	31	-40	29	-15	31	-27	29	-9	31	-10	29	2329	61	-861	60
PTB	-13	23	-25	20	-13	23	-22	20	-8	23	-14	20	-6	23	-4	20	-1	51	-49	100
SP	10	49	11	71	2	49	17	71	1	49	6	71	-3	49	9	71	-18	49	-38	71
UME	-3	50	-12	59	-4	50	-11	59	2	50	-1	59	1	50	4	59	14	88	-1094	88
VNIIM	-1	21	23	28	-7	21	18	28	-5	21	21	28	-4	22	11	28	-4	24	-36	33
VSL	-2	37	-343	210	-2	32	-259	180	2	27	-165	150	2	21	-79	110	-86	43	-2	260

MEASURAND : AC Voltage ratio
NOMINAL VALUES : Ten decimal ratio values : 0.01 , and 0.1 to 0.9 by step of 0.1 ; Ten elevenths ratio values : 1/11 to 10/11 by step of $1 / 11$
FREQUENCY: 1 kHz

Table of Degrees of equivalence

Voltage ratio Lab i	10/11				9/11				8/11				$7 / 11$				6/11			
	In phase		Quadrature																	
	1 (nV/V)	U_{i}	$l(\mathrm{nV} / \mathrm{V})$		$l(\mathrm{nV} / \mathrm{V})$		1 (nV/V)		1 (nV/V)		1 (nV/V)		$l(\mathrm{nV} / \mathrm{V})$		1 (nV/V)		$l(\mathrm{nV} / \mathrm{V})$		$\begin{gathered} D_{i} \quad U_{i} \\ I(\mathrm{nV} / \mathrm{V}) \end{gathered}$	
NMIJ	11	14	-9	32	6	14	-11	29	2	14	-17	27	-2	13	-14	25	0	13	-16	23
CEM	-2	51	10	48	-20	51	20	48	-17	51	25	48	-30	51	36	48	-28	51	38	48
NMIA	-0.2	11.7	2.5	3.5	1.0	11.7	1.9	3.1	0.4	11.6	-1.1	3.3	-2.2	11.6	1.6	2.7	-1.4	11.6	0.5	2.9
INRIM	5	14	-3	8	3	13	1	10	2	14	4	12	11	14	-22	13	-1	13	11	13
KRISS	6	21	-6	24	3	21	-14	24	2	21	-25	24	-2	21	-31	24	-2	21	-35	24
LNE	109	33	-9902	690	262	36	-14320	690	323	39	-14532	690	304	41	-12227	690	193	42	-8656	690
METAS	5	18	0	50	2	22	3	74	0	27	3	103	-3	29	10	114	-2	30	9	124
NIM	7	14	8	12	12	14	8	16	11	14	9	9	17	14	4	12	16	14	-8	12
NIST	3	63	9	120	7	65	18	130	8	67	20	130	8	68	25	130	10	69	21	130
NPL	1	27	-10	25	1	27	-17	25	0	27	-24	25	-3	27	-24	25	-2	27	-27	25
NPLI	-27	15	-3496	500	-15	15	-6313	500	-5	15	-8249	500	2	15	-9553	500	11	15	-10164	500
NRC	-9	40	-33	38	-20	40	-56	38	-27	40	-74	38	-33	40	-78	38	-33	40	-82	38
PTB	-2	23	-13	20	-5	23	-22	20	-7	23	-31	20	-11	23	-31	20	-8	23	-35	20
SP	-4	49	-1	71	-1	49	-10	71	-13	49	0	71	-7	49	1	71	-13	49	6	71
UME	-10	50	-21	59	-15	50	-28	59	-18	50	-34	59	-20	50	-29	59	-19	50	-28	59
VNIIM	0	21	9	28	-2	21	15	28	-3	21	15	28	-9	21	20	28	-8	21	17	28
VSL	2	21	-86	120	-10	27	-203	160	-11	32	-339	190	-20	37	-453	210	-17	42	-514	230

MEASURAND : AC Voltage ratio
NOMINAL VALUES: Ten decimal ratio values : 0.01 , and 0.1 to 0.9 by step of 0.1 ; Ten elevenths ratio values : $1 / 11$ to $10 / 11$ by step of $1 / 11$ FREQUENCY: 1 kHz

Table of Degrees of equivalence

Voltage ratio Lab i	5/11				4/11				3/11				2/11				1/11			
	In phase		Quadrature																	
	l (nV/V)		$l(\mathrm{nV} / \mathrm{V})$		$\begin{array}{cc} D_{i} \quad U_{i} \\ I(\mathrm{nV} / \mathrm{V}) \end{array}$		$\begin{array}{cc} \hline D_{i} & U_{i} \\ I(n \mathrm{~V} / \mathrm{V}) \\ \hline \end{array}$		$\begin{array}{cc} \hline D_{i} & U_{i} \\ I(\mathrm{nV} / \mathrm{V}) \\ \hline \end{array}$		$\begin{array}{cc} \hline D_{i} \quad U_{i} \\ I(\mathrm{nV} / \mathrm{V}) \\ \hline \end{array}$									
NMIJ	3	13	-16	21	2	12	-8	18	3	12	-5	15	1	12	-2	12	0	12	4	9
CEM	-32	51	38	48	-31	51	41	50	-29	51	37	50	-23	51	29	50	-14	51	20	50
NMIA	-3.4	11.6	0.9	2.5	-2.5	11.6	2.8	3.0	-4.2	11.7	3.6	3.2	-1.6	11.7	1.1	3.2	-0.2	11.8	2.4	3.7
INRIM	5	16	2	13	3	16	7	13	6	16	6	13	0	13	7	11	11	15	-13	13
KRISS	-4	21	-34	24	-4	21	-19	24	-3	21	-6	24	-2	21	4	24	-1	22	2	24
LNE	-33	42	-4087	690	-132	41	1000	690	-238	39	5338	690	-170	36	7062	690	-62	37	4893	35
METAS	-3	31	9	137	-5	33	14	146	-5	31	13	138	-6	27	9	113	-4	21	9	71
NIM	15	14	-30	20	16	14	-7	20	14	12	-8	12	15	12	-25	12	10	12	-4	9
NIST	8	69	19	130	7	69	17	130	6	67	14	130	5	65	6	120	5	63	6	120
NPL	-3	27	-26	25	-4	27	-22	25	-4	27	-17	25	-3	27	-14	25	-1	27	-6	25
NPLI	12	15	-9485	500	7	15	-8323	500	7	15	-6918	500	6	15	-4519	500	6	15	-2260	500
NRC	-32	40	-77	38	-29	40	-65	38	-25	40	-51	38	-17	40	-37	38	-9	40	-16	38
PTB	-9	23	-31	20	-12	23	-26	20	-13	23	-20	20	-13	23	-17	20	-9	23	-7	20
SP	-9	49	-10	71	-13	49	-7	71	-10	49	-24	71	-5	49	-27	71	-10	49	-23	71
UME	-18	50	-22	59	-18	50	-13	59	-15	50	-5	59	-12	50	-1	59	-5	50	6	59
VNIIM	-11	21	19	28	-14	21	16	28	-13	21	14	28	-12	21	4	28	-5	22	2	28
VSL	-9	42	-505	230	-15	37	-463	210	-12	32	-358	190	-19	27	-239	160	-9	21	-110	120

