<u>BIPM comparison BIPM.RI(II)-K1.Eu-152 of</u> activity measurements of the radionuclide ¹⁵²Eu for the VNIIM (Russia), the LNE-LNHB (France) and the CNEA (Argentina), with linked results for the <u>COOMET.RI(II)-K2.Eu-152 comparison</u>

C. Michotte, G. Ratel, S. Courte and I. A. Kharitonov¹, A.V. Zanevsky¹, E. E. Terechtchenko¹, M. Moune², I. Aubineau-Lanièce², C. Bobin², P. Arenillas³ and C. Balpardo³

Bureau International des Poids et Mesures (BIPM), Sèvres ¹ D. I. Mendeleyev Institute for Metrology (VNIIM), Russia ² Laboratoire National de Métrologie et d'Essais, Laboratoire National Henri Becquerel (LNE-LNHB), France ³ National Commission of Atomic Energy (CNEA), Argentina

Abstract

Three new participations in the BIPM.RI(II)-K1.Eu-152 comparison have been added to the previous results and this has produced a revised value for the key comparison reference value (KCRV), calculated using the power-moderated weighted mean. A link has been made to the COOMET.RI(II)-K2.Eu-152 comparison held in 2010 through the VNIIM who participated in both comparisons. Three National Metrology Institutes (NMIs) used the K1 or K2 comparisons to update their degree of equivalence. The degrees of equivalence between each equivalent activity measured in the International Reference System (SIR) and the KCRV have been calculated and the results are given in the form of a table for four NMIs in the BIPM.RI(II)-K1.Eu-152 comparison, three participants in the COOMET.RI(II)-K2.Eu-152 comparison and the 18 other participants in the previous CCRI(II)-K2.Eu-152 comparison. A graphical presentation is also given.

1. Introduction

The SIR for activity measurements of γ -ray-emitting radionuclides was established in 1976. Each national metrology institute may request a standard ampoule from the BIPM that is then filled with 3.6 g of the radioactive solution, or a different standard ampoule for radioactive gases. The NMI completes a submission form that details the standardization method used to determine the absolute activity of the radionuclide and the full uncertainty budget for the evaluation. The ampoules are sent to the BIPM where they are compared with standard sources of ²²⁶Ra using pressurized ionization chambers. Details of the SIR method, experimental set-up and the determination of the equivalent activity, A_e , are all given in [1].

From its inception until 31 December 2012, the SIR has measured 966 ampoules to give 721 independent results for 67 different radionuclides. The SIR makes it possible for national laboratories to check the reliability of their activity measurements at any time. This is achieved by the determination of the equivalent activity of the radionuclide and by comparison of the result with the key comparison reference value determined from the results of primary standardizations. These comparisons are described as BIPM ongoing comparisons and the results form the basis of the BIPM key comparison database (KCDB) of the Comité International des Poids et Mesures Mutual Recognition Arrangement (CIPM MRA) [2]. The comparison described in this report is known as the BIPM.RI(II)-K1.Eu-152 key comparison and includes results published previously [3].

In addition, an international comparison was held in 2009 for this radionuclide, COOMET.RI(II)-K2.Eu-152 [4]. Four laboratories took part in this comparison including the VNIIM who participated in the SIR at the same time, enabling to link the COOMET.RI(II)-K2 comparison to the BIPM.RI(II)-K1 comparison. The SMU had previously participated in a CCRI(II) comparison and has updated their result through this COOMET (Euro-Asian Cooperation of National Metrology Institutions) comparison.

2. Participants

Ten NMIs have submitted 19 ampoules to the SIR for the comparison of ¹⁵²Eu activity measurements since 1981. As the key comparison reference value has been re-evaluated for this comparison all the participants' details are given in Table 1a. In cases where the laboratory has changed its name since the original submission, both the earlier and the current acronyms are given, as it is the latter that are used in the KCDB.

Original acronym	NMI	Full name	Country	Regional metrology organization	Date of measurem ent at the BIPM YYYY-MM-DD
_	РТВ	Physikalisch- Technische Bundesanstalt	Germany	EURAMET	1981-10-12 1989-04-12
NBS	NIST	National Institute of Standards and Technology	United States	SIM	1982-09-28 2001-11-27
LMRI LPRI	LNE- LNHB	Laboratoire National de Métrologie et d'Essais - Laboratoire National Henri Becquerel	France	EURAMET	1983-04-11 1994-04-19 2009-04-15

Table 1a. Details of the participants in the BIPM.RI(II)-K1.Eu-152

continued overleaf

Original acronym	NMI	Full name	Country	Regional metrology organization	Date of measurem ent at the BIPM
ОМН	МКЕН	Magyar Kereskedelmi Engedélyezési Hivatal	Hungary	EURAMET	1984-04-16 1992-09-22
_	VNIIM	D.I. Mendeleyev Institute for Metrology	Russian Federation	COOMET	1986-04-16 1998-12-09 2009-01-12
UVVVR	CMI-IIR	Český Metrologický Institut/Czech Metrological Institute, Inspectorate for Ionizing Radiation	Czech Republic	EURAMET	1986-06-24
_	IRA	Institut de Radiophysique Appliquée	Switzerland	EURAMET	1993-05-19
_	LNMRI/ IRD	Laboratorio Nacional de Metrologia das Radiaçoes Ionizantes/ Instituto de Radioproteção e Dosimetria	Brazil	SIM	1995-09-26 2000-11-08
RC	POLATOM	National Centre for Nuclear Research, Radioisotope Centre	Poland	EURAMET	1998-06-19
_	CNEA	Comisión Nacional de Energía Atómica	Argentina	SIM	2011-10-12

Table 1a continued.	Details of the	participants in the	BIPM.RI(II)-K1.Eu-152
ruore ru commuca.	Details of the	pur de punto in the	

The BelGIM, CENTIS-DMR and SMU that took part in the COOMET international comparison, COOMET.RI(II)-K2.Eu-152 in 2009 and are also eligible for the KCDB are shown in Table 1b.

3. NMI standardization methods

Each NMI that submits ampoules to the SIR has measured the activity either by a primary standardization method or by using a secondary method, for example a calibrated ionization chamber. In the latter case, the traceability of the calibration needs to be clearly identified to ensure that any correlations are taken into account.

NMI	Full name	Country	Regional metrology organization
BelGIM	Belarussian State Institute of Metrology	Belarus	COOMET
CENTIS- DMR	Centro de Isótopos. Departamento de Metrología de Radionúclidos	Cuba	COOMET
SMU	Slovak Institute of Metrology	Slovakia	EURAMET

Table 1b. Details of the participants in the 2009 COOMET.RI(II)-K2.Eu-152 to be linked to BIPM.RI(II)-K1.Eu-152

A brief description of the standardization methods used by the laboratories, the activities submitted, the relative standard uncertainties (k = 1) and the half-life used by the participants in the SIR are given in Table 2. The uncertainty budgets for the three new submissions are given in Appendix 1, previous uncertainty budgets are given in the earlier K1 report [3]. The uncertainty budgets for all the participants in the COOMET.RI(II)-K2.Eu-152 comparison were published in the final report [4]. The acronyms used for the measurement methods are given in Appendix 2.

The half-life used by the BIPM from 1981 to 1999 was 4869 (15) d [5] while the value currently in use is 4939.3 (3.7) days [6], that was decided for the CCRI(II)-K2.Eu-152 comparison in 1999. The current half-life value is in agreement with 4939 (6) d, the value recommended in the BIPM Monographie 5 [7]. The pre-1999 SIR data could be revised using the current half-life. However, the updated degrees of equivalence would not differ significantly as the SIR measurements were performed within a few months following the reference date.

Details regarding the solution submitted are shown in Table 3, including any impurities, when present, as identified by the laboratories. When given, the standard uncertainties on the evaluations are shown. The BIPM has developed a standard method for evaluating the activity of impurities using a calibrated Ge(Li) spectrometer [10]. The CCRI(II) agreed in 1999 [11] that this method should be followed according to the protocol described in [12] when an NMI makes such a request or when there appear to be discrepancies. No impurity measurements were carried out at the BIPM in this case.

NMI	Method used and	Half-	Activity	Reference	e Relative	
	acronym (see	life	A_i/kBq	date	standard uncer	
	Appendix 2)		_		× 100 by method	
					of eval	uation
				YY-MM-DD	А	В
PTB	Pressurized IC	_	953	81-01-01	0.08	0.71
110	4P-IC-GR-00-00-00			0 h UT		
	calibrated by					
	$4\pi(NaI(Tl))\gamma$	_	1729	89-01-01	0.04	0.21
	4P-NA-GR-00-00-HE			0 h UT		
NIST	$4\pi(NaI(Tl))\gamma$	—	1063	82-08-27	0.01	0.34
	4P-NA-GR-00-00-HE			18 h UT		
	Pressurized IC *	13.523	164.6	01-11-15	0.10	0.35
	4P-IC-GR-00-00-00	(10) a		12 h UT		
LNE-LNHB	$4\pi(NaI(Tl))\gamma$	13.506	3 822	83-03-15	0.02	0.17
	4P-NA-GR-00-00-HE	(30) a	3 822†	12 h UT		
		4933	5 004	94-03-01	0.02	0.12
		(11) d		12 h UT		
		[8]				
		13.522	8 717	08-04-15	0.06	0.32
		(16) a		12 h UT		
MKEH	$4\pi(\beta, x, e_x)-\gamma$	13.33	3 625	84-04-01	0.03	0.02
	coincidence	(4) a		12 h UT		
	4P-PP-MX-NA-GR-CO	[9]				
		[8]	3 690	92-10-01	0.04	0.25
				12 h UT		
VNIIM	$4\pi(x,e)-\gamma$ coinc.	-	3 080	86-03-15	0.2	1.3
	4P-PC-MX-NA-GR-CO			12 h UT		
	$4\pi(\beta,e)-\gamma$ coinc.	[8]	2 696	98-11-23	0.09	0.27
	4P-PC-MX-NA-GR-CO			12 h UT		
	$4\pi(PC)\beta-\gamma$ coinc.	4939.3	2 544	08-07-01	0.49	0.09
	4P-PC-BP-NA-GR-CO	d		0 h UT		
	$4\pi(NaI(Tl))\gamma$		2 570		0.25	0.32
	4P-NA-GR-00-00-HE	4000 1	15 4 4 4	0.6.0.6.00	0.07	0.40
CMI-IIR	$4\pi\beta$ - γ coincidence	4803 d	17 661	86-06-02	0.07	0.40
	4P-PC-BP-NA-GR-CO		A 101	12 h UT	0.00	0.04
IRA	Pressurized IC	—	2 181	93-06-01	0.03	0.26
	calibrated in 1003			UhUT		
	by $\int \pi(\beta \mathbf{x} \boldsymbol{a}) \boldsymbol{x}$					
	coincidence					
	4P-PC-MX-NA-GR-CO					

 Table 2. Standardization methods of the participants for ¹⁵²Eu

continued overleaf

NMI	Method used and acronym (see Appendix 2)	Half- life	Activity A _i /kBq	Reference date	Relative standard uncert × 100 by method of evaluation	
				YY-MM-DD	А	В
LNMRI /IRD	Pressurized IC 4P-IC-GR-00-00-00	_	393.7	95-06-26 0 h UT	0.2	1.1
	Pressurized IC 4P-IC-GR-00-00-00 calibrated in 2000 by 4π (PPC) β - γ (Ge) coincidence 4P-PP-BP-GH-GR-CO	[6]	415.7	00-09-15 12 h UT	0.7	0.9
POLATOM	$4\pi(LS)-\gamma$ coinc. and anti-coinc. [8] 4P-LS-BP-NA-GR-CO 4P-LS-BP-NA-GR-AC	[6]	2 480	98-05-12 12 h UT	0.08	0.34
CNEA	4P-PC-BP-NA-GR-CO	13.522 a	183.5	10-07-05 0 h UT	0.47	0.25

Table 2 continued. Standardization methods of the participants for ¹⁵²Eu

[†] two ampoules submitted * calibrated in 1980 by 4π (NaI(Tl)) γ counting 4P-NA-GR-00-00-HE.

Table 3. Details of the solution of ¹⁵²
--

NMI, Year	Chemical	Solvent	Carrier:	Density	Relative activity
	composition	conc. /	conc.	$/(g \text{ cm}^{-3})$	of ¹⁵⁴ Eu
		$(\text{mol } \text{dm}^{-3})$	$/(\mu g g^{-1})$		impurity [†]
PTB. 1981	Eu Chloride	0.1	Eu : 40	1.00	0.34 (5) %
,	in HCl				
1989	EuCl ₃ in HCl	0.1	$EuCl_3: 40$	1.00	0.32 (6) %
					153 Gd : 0.27 (7) %
NIST, 1982	EuCl ₃ .6H ₂ O	1	EuCl ₃ .6H ₂ O	1.016	0.35 (4) %
,	in HCl		1100		
2001	EuCl ₃ in HCl	1	$EuCl_3:500$	1.016 (1)	0.19 (2) %
LNE- LNHB.	EuCl ₃ in HCl	1	$EuCl_3: 40$	1.027	0.295 (30) %
1983					
1994			EuCl ₃ : 70	1.016	0.42 (2) %
					153 Gd : 0.72 (3) %
2009	EuCl ₃ .6H ₂ O	1	EuCl ₃ .6H ₂ O	1.0159	0.43 (3) %
	in HCl		24.1		
MKEH, 1984	Eu in HCl	0.1	Eu : 30	_	0.30 (6) %
1992			Eu : 26	-	0.88 (9) %
VNIIM, 1986	EuCl ₃ in HCl	0.1	Eu : 10	1.001	0.03 (1) %
1998	Eu in HCl	0.5	Eu : 10	1.015	0.05 (1) %
2009 ^a	Eu in HNO ₃	0.3	-	1.009	0.275 (8) %

continued overleaf

NMI, Year	Chemical	Solvent	Carrier:	Density	Relative activity
	composition	conc. /	conc.	/(g cm °)	of ^{res} Eu
		(mol dm ⁻³ $)$	$/(\mu g g^{-1})$		impurity [†]
CMI-IIR,	EuCl ₃ in HCl	0.08	$EuCl_3: 20$	_	1.39 (5) %
1986					
IRA, 1993	Eu ⁺⁺⁺ in HCl	0.1	Eu : 90	1.000	1.17 (1) %
LNMRI/	EuCl ₃ in HCl	0.1	EuCl ₃ : 100	1.016	< 1.10 (5) % *
IRD, 1995					
2000			EuCl ₃ : 25	1.002	0.63 (3) %
POLATOM,	EuCl ₃ in HCl	1	EuCl ₃ : 170	1.007	—
1998					
CNEA, 2011	Eu ₂ O ₃ in HCl	0.1	$Eu_2O_3: 46$	1	_
CCRI(II)-K2,	Eu in HCl	0.1	_	_	0.67 (2) % ^{††}
1999 ^b					

Table 3 continued. Details of the solution of ¹⁵²Eu submitted

[†] the ratio of the activity of the impurity to the activity of ¹⁵²Eu at the reference date

^{††} mean value of the measurements carried out by 14 participants of the CCRI(II) comparison.

* this upper limit was used to correct the SIR measurement

^a same solution as for the COOMET.RI(II)-K2.Eu-152 comparison

^b solution used in the CCRI(II)-K2.Eu-152 comparison.

4. **Results**

All the submissions to the SIR since its inception in 1976 are maintained in a database known as the "master-file". The SIR equivalent activity, A_{ei} , for each ampoule for the previous and new results is given in Table 4a. The date of measurement in the SIR is also given and is used in the KCDB and all references in this report. The relative standard uncertainty arising from the measurements in the SIR is also shown. This uncertainty is additional to that declared by the NMI for the activity measurement shown in Table 2. Although submitted activities are compared with a given source of ²²⁶Ra, all the SIR results are normalized to the radium source number 5 [1].

The recent VNIIM, LNE-LNHB and CNEA results agree within standard uncertainty with their earlier result in the linked 1999 CCRI(II)-K2.Eu-152 comparison [3].

The most recent result of each NMI is normally eligible for the key comparison database (KCDB) of the CIPM MRA except for the LNMRI submission in 2000 that was identified as a pilot study.

An international comparison for this radionuclide, COOMET.RI(II)-K2.Eu-152 was held in 2009 [4] and the three laboratories from this comparison to be added to the matrix of degrees of equivalence are given in Table 1b.

The results $(A/m)_i$ of the COOMET comparison have been linked to the BIPM.RI(II)-K1.Eu-152 comparison through the measurement in the SIR of one ampoule of the COOMET solution standardized by the VNIIM. The link is made using a normalization ratio deduced from the row indicated in Table 4a:

$$A_{\rm ei} = (A/m)_i \times [A_{\rm eVNIIM}/(A/m)_{\rm VNIIM}] = (A/m)_i \times 21.422$$
 (a)

The details of the links are given in Table 4b. The uncertainties for the COOMET comparison results linked to the SIR are comprised of the original uncertainties together with the uncertainty in the link, 6×10^{-4} , given by the relative standard uncertainty of the SIR measurement of the VNIIM ampoule.

NMI		Mass of solution <i>m_i</i> / g	Activity submitted A _i / kBq	N° of Ra source used	SIR A _e / kBq	Relative uncert. from SIR	Combined uncert. <i>u_i</i> / kBq
PTB,	1981	3.551 29	953	3	14 880	9×10^{-4}	110
	1989	3.659 6	1 729	3	14 875	9×10^{-4}	35
NIST,	1982	3.609 95	1 063	3	14 866	7×10^{-4}	52
	2001	3.729 6 (2)	164.6	1	14 892	11×10^{-4}	57
LNE-L	NHB,	3.693 43	3 822	4	14 979	6×10^{-4}	28
	1983	3.693 42	3 822		14 979		28
	1994	3.662 8	5 004	4	14 932	6×10^{-4}	20
	2009	3.617 0 (6)	8 717	5	14 932	5×10^{-4}	50
MKEH	, 1984	3.603 2	3 625	4	15 000	8×10^{-4}	38
	1992	3.643 7	3 690	4	14 925	11×10^{-4}	41
VNIIM	[, 1986	3.589 72	3 080	4	14 840	5×10^{-4}	190
	1998	3.585 6 (1)	2 696	4	15 075	5×10^{-4}	43
	2009	3.6549 ^b	2 560 ^{a,b}	3	15 003 ^b	6×10^{-4}	50
CMI-II	R, 1986	3.597 7	17 661	5	15 013	7×10^{-4}	62
IRA,	1993	3.578 9 (1)	2 181	3	14 838	6×10^{-4}	40
LNMR IRD,	I/ 1995	3.457 08	393.7	2	15 210	9×10^{-4}	170
	2000	3.421 23	415.7	2	14 740 ^c	10×10^{-4}	170 ^c
POLAT	ГОМ, 1998	3.708 5	2 480	3	14 770	6×10^{-4}	52
CNEA,	2011	3.607 80	183.5	1	14 770	14×10^{-4}	81

Table 4a.Results of SIR measurements of ¹⁵²Eu

 $^{a}A = 2560$ (8) kBq is the weighted mean result of the activity values obtained by different methods given in Table 2, taking into account correlations.

^b result used to link the 2009 COOMET.RI(II)-K2.Eu-152 comparison.

^c submitted as a pilot study; result not included in the KCRV nor the KCDB.

The SMU result in the COOMET comparison agrees within standard uncertainty with their earlier result in the linked 1999 CCRI(II)-K2.Eu-152 comparison [3].

NMI	Measurement method and acronym (see Appendix 2 and [4])	Activity* concentration measured (A/m) _i / (kBq g ⁻¹)	Standard uncert. <i>u_i</i> / (kBq g ⁻¹)	Equivalent SIR activity A _{ei} / kBq	Combined standard uncert. u _{ci} / kBq
BelGIM	UA-GH-GR-00-00-00	698	5	14 950	110
CENTIS -DMR	UA-GH-GR-00-00-00	701.8	9.3	15 030	200
SMU	4P-IC-GR-00-00-00	701.1	5.3	15 020	110
VNIIM	4P-PC-BP-NA-GR-CO 4P-NA-GR-00-00-HE	700.4	2.3	see Ta	ble 4a

Table 4b.Results of the 2009 COOMET.RI(II) comparison of ¹⁵²Eu and links to
the SIR

*referenced to 00:00 UTC 1 July 2008

4.1 <u>The key comparison reference value</u>

In May 2013 the CCRI(II) decided to no longer calculate the key comparison reference value (KCRV) by using an unweighted mean but rather by using the power-moderated weighted mean [13]. This type of weighted mean is similar to a Mandel-Paule mean in that the NMIs' uncertainties may be increased until the reduced chi-squared value is one. In addition, it allows for a power smaller than two in the weighting factor. Therefore, all SIR key comparison results can be selected for the KCRV with the following provisions:

- a) only results for solutions standardized by primary techniques are accepted, with the exception of radioactive gas standards (for which results from transfer instrument measurements that are directly traceable to a primary measurement in the laboratory may be included);
- b) each NMI or other laboratory has only one result (normally the most recent result or the mean if more than one ampoule is submitted);
- c) possible outliers can be identified on a mathematical basis and excluded from the KCRV using the normalized error test with a test value of 2.5 and using the modified uncertainties;
- d) results can also be excluded for technical reasons.
- e) The CCRI(II) is always the final arbiter regarding excluding any data from the calculation of the KCRV.

The data set used for the evaluation of the KCRVs is known as the "KCRV file" and is a reduced data set from the SIR master-file. Although the KCRV may be modified when other NMIs participate, on the advice of the Key Comparison Working Group of the CCRI(II), such modifications are made only by the CCRI(II) during one of its biennial

meetings as for the case of ¹⁵²Eu in May 2013, or by consensus through electronic means (e.g., email) as discussed at the CCRI(II) meeting in 2013.

In addition, following the advice of the CCRI(II) in May 2003, the results from the CCRI(II)-K2 comparison in 1999 linked to the SIR can be used for the KCRV with the additional restriction that the participant must have measured the ¹⁵⁴Eu impurity of the solution (see [3, 14]).

Consequently, the KCRV for ¹⁵²Eu has been calculated as 14 919 (35) kBq on the basis of the SIR results from the NIST(1982), VNIIM(2009), LNE-LNHB(2009) and the CNEA(2011) and of the CCRI(II)-K2 1999 comparison results from the BIPM (primary result only), CMI-IIR, IFIN-HH, IRA, IRMM, NMIJ, MKEH (former OMH), PTB, POLATOM (former RC), CIEMAT and the KRISS. The ENEA CCRI(II)-K2 1999 comparison result is not included as it is known to be biased [3]. This KCRV can be compared with the previous KCRV value of 14 942 (26) kBq published in 2004 [3] and the value of 14 923 (23) kBq obtained using the SIRIC efficiency curve of the SIR [15].

4.2 <u>Degrees of equivalence</u>

Every participant in a comparison is entitled to have one result included in the KCDB as long as the NMI is a signatory or designated institute listed in the CIPM MRA, and the result is valid (i.e., not older than 20 years). Normally, the most recent result is the one included. An NMI may withdraw its result only if all other participants agree.

The degree of equivalence of a given measurement standard is the degree to which this standard is consistent with the KCRV [2]. The degree of equivalence is expressed quantitatively in terms of the deviation from the key comparison reference value and the expanded uncertainty of this deviation (k = 2). The degree of equivalence between any pair of national measurement standards is expressed in terms of their difference and the expanded uncertainty of this difference and is independent of the choice of key comparison reference value.

4.2.1 Comparison of a given NMI result with the KCRV

The degree of equivalence of the result of a particular NMI, i, with the key comparison reference value is expressed as the difference D_i between the values

$$D_i = A_{e_i} - \text{KCRV} \tag{1}$$

and the expanded uncertainty (k = 2) of this difference, U_i , known as the equivalence uncertainty; hence

$$U_i = 2u(D_i). \tag{2}$$

When the result of the NMI i is included in the KCRV with a weight w_i , then

$$u^{2}(D_{i}) = (1-2w_{i}) u_{i}^{2} + u^{2}(\text{KCRV}) .$$
(3)

However, when the result of the NMI *i* is not included in the KCRV, then

$$u^{2}(D_{i}) = u_{i}^{2} + u^{2}(\text{KCRV}).$$
 (4)

4.2.2 Comparison between pairs of NMI results

The degree of equivalence between the results of any pair of NMIs, i and j, is expressed as the difference D_{ij} in the values

$$D_{ij} = D_i - D_j = A_{e_i} - A_{e_j}$$
⁽⁵⁾

and the expanded uncertainty (k = 2) of this difference, $U_{ij} = 2u(D_{ij})$, where

$$u_{Dij}^{2} = u_{i}^{2} + u_{j}^{2} - 2u(A_{e,i}, A_{e,j})$$
(6)

where any obvious correlations between the NMIs (such as a traceable calibration, or correlations normally coming from the SIR or from the linking factor in the case of linked comparison) are subtracted using the covariance $u(A_{ei}, A_{ej})$ (see [16] for more detail). However, the CCRI decided in 2011 that these "pair-wise degrees of equivalence" no longer need to be published as long as the methodology is explained.

Table 5 shows the matrix of all the degrees of equivalence as they will appear in the KCDB. It should be noted that for consistency within the KCDB, a simplified level of nomenclature is used with A_{ei} replaced by x_i . The introductory text is that agreed for the comparison. The graph of the results in Table 5, corresponding to the degrees of equivalence with respect to the KCRV (identified as x_R in the KCDB), is shown in Figure 1. This graphical representation indicates in part the degree of equivalence between the NMIs but obviously does not take into account the correlations between the different NMIs. It should be noted that the final data in this paper, while correct at the time of publication, will become out-of-date as NMIs make new comparisons. The formal results under the CIPM MRA [2] are those available in the KCDB.

Conclusion

The BIPM ongoing key comparison for ¹⁵²Eu, BIPM.RI(II)-K1.Eu-152 currently comprises four results. These have been analysed with respect to the updated KCRV determined for this radionuclide. The results of the COOMET.RI(II)-K2.Eu-152 comparison held in 2009 have been linked to the BIPM comparison through the mutual participations of the VNIIM. This has enabled the table of degrees of equivalence to include further three results.

The results of sixteen other NMIs and two international laboratories that took part in the CCRI(II)-K2.Eu-152 comparison in 1999 were previously linked to the BIPM ongoing key comparison through the measurement of each of the comparison ampoules in the SIR prior to issue [3]. These linked results are included in the matrix of degrees of equivalence and shown on the graph.

The degrees of equivalence have been approved by the CCRI(II) and are published in the BIPM key comparison database. Further results may be added when other NMIs contribute ¹⁵²Eu activity measurements to the ongoing K1 comparison or take part in other linked comparisons.

Acknowledgements

The authors would like to thank Dr J.M. Los Arcos of the BIPM for editorial assistance.

References

- [1] Ratel G., The Système International de Référence and its application in key comparisons, *Metrologia*, 2007, 44(4), S7-S16
- [2] CIPM MRA: Mutual recognition of national measurement standards and of calibration and measurement certificates issued by national metrology institutes, International Committee for Weights and Measures, 1999, 45 pp. <u>http://www.bipm.org/en/cipm-mra/</u>.
- [3] Ratel G., Michotte C., BIPM comparison BIPM.RI(II)-K1.Eu-152 of activity measurements of the radionuclide ¹⁵²Eu and links for the international comparison CCRI(II)-K2.Eu-152, *Metrologia*, 2004, 41, *Tech. Suppl.*, 06003.
- [4] Kharitonov I.A. *et al.*, Measurement of activity concentration of radionuclide Eu-152 in a solution (COOMET project no 423/RU/08), <u>*Metrologia*</u>, 2013, 50, <u>*Tech.*</u> <u>Suppl.</u>, 06012.
- [5] Baglin C.M., Nuclear data Sheets for A=152, *Nuclear Data Sheets*, 1980, **30**, 78.
- [6] Bé M.-M., BNM-LNHB, Gif-sur-Yvette. Private communication to the CCRI(II) in 1999.
- [7] Bé M.-M., Chisté V., Dulieu C., Browne E., Chechev V., Kuzmenko N., Helmer R., Nichols A., Schönfeld E., Dersch R., 2004, Table of radionuclides, <u>Monographie BIPM-5</u>, Vol 2.
- [8] IAEA-TECDOC-619, X-ray and gamma-ray standards for detector calibration, Vienna, IAEA, 1991.
- [9] *PTB Mitt.* **87**, 1977, 22.
- [10] Michotte C., Efficiency calibration of the Ge(Li) detector of the BIPM for SIRtype ampoules, *Rapport BIPM*-1999/03, 15 pp.
- [11] Comité Consultatif pour les Étalons de Mesures des Rayonnements Ionisants 16th meeting (1999), 2001, CCRI(II) 81-82.
- [12] Michotte C., Protocol on the use of the calibrated spectrometer of the BIPM for the measurement of impurities in ampoules submitted to the SIR, CCRI(II)/01-01, 2001, 2 pp.
- [13] Pommé S., Determination of a reference value, associated standard uncertainty and degrees of equivalence for CCRI(II) key comparison data, European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, 2012, Report EUR 25355 EN. Errata notice published in the CCRI(II) working document, 2013, CCRI(II)/13-18.
- [14] Comité Consultatif des Rayonnements Ionisants, <u>Report of the 18th meeting</u> (2003), 2004, 68 pp.
- [15] Michotte C., Efficiency curve of the ionization chamber of the SIR, 2002, *Appl. Rad. Isot.* **56**, 15-20.
- [16] Michotte C. and Ratel G., Correlations taken into account in the KCDB, CCRI(II) working document, 2003, <u>CCRI(II)/03-29</u>.

Table 5.	Table of degrees	of equivalence and	introductory (text for ¹⁵² Eu
----------	------------------	--------------------	----------------	----------------------------

Key comparison BIPM.	RI(II)-K1.Eu-152						
MEASURAND :	Equivalent activity o	f ¹⁵² Eu					
Key comparison refere	nce value: the SIR reference	ce value for this ra	dionuclide is x	_R = 14 919 kBq			
with a standard uncerta	ainty, u _R = 35 kBq (see Sec	tion 4.1 of the Fin	al Report).				
The value x_i is the equ	ivalent activity for laborate	ory i.					
The degree of equivale	nce of each laboratory wit	h respect to the re	eference value i	s given by a pair	r of terms:		
$D_i = (x_i - x_R)$ and U_i , it	s expanded uncertainty (k	= 2), both expres	sed in kBq, and				
$U_i = 2((1 - 2w_i)u_i^2 + u_R)$	²) ^{1/2} when each laboratory	has contributed to	the calculation	of x _R			
When required, the de	gree of equivalence betwe	en two laboratori	es is given by a	pair of terms:			
$D_{ij} = D_i - D_j = (x_i - x_j)$	and U _{ij} , its expanded unce	ertainty (k = 2), bo	oth expressed in	MBq.			
The approximation U _{ii}	~ $2(u_i^2 + u_i^2)^{1/2}$ may be us	ed in the followin	g table.				
Linking CCRI(II)-K2.Eu-	52 (1999) to BIPM.RI(II)-K1.	Eu-152					
The value x_i is the equ	ivalent activity for laborate	ory <i>i</i> participant ir	CCRI(II)-K2.Eu-	152			
naving also been meas	ured in the SIR (see Final i	report).					
When required, the dep or both participant in C	gree of equivalence betwee CRI(II)-K2.Eu-152, is given t	en two laboratorio	es <i>i</i> and <i>j</i> , one <i>j</i> $D_{ij} = D_j - D_j$ at	participant in BI	PM.RI(II)-K1.Eu-15 ded uncertainty (2 and one in CCRI(I k = 2),	I)-K2.Eu-15
both expressed in MBq	, where the approximation	$U_{ij} \sim 2(u_i^2 + u_j^2)$) ^{1/2} may be used	•		,	
These statements make	it possible to extend the E	BIPM.RI(II)-K1.Eu-1	52 matrices of e	quivalence to th	e other participa	nts in CCRI(II)-K2.Eu	ı-152.
Linking COOMET.RI(II)-	K2.Eu-152 (2010) to BIPM.RI	l(II)-K1.Eu-152					
The value x_i is the equ	ivalent activity for laborate	ory i participant in	COOMET.RI(II)-	K2.Eu-152			
having been normalize	d to the value of the VNIIM	as the linking lat	ooratory.				
The degree of equivale	nce of laboratory / particip	pant in COOMET.	(III)-K2.Eu-152 w	ith respect to th	e key comparisor	i reference value is	given
by a pair of terms: $D_i =$	$(x_i - x_R)$ and U_i , its expansion	nded uncertainty	$\kappa = 2$), both exp	oressed in wildq.			
The approximation U _i	$= 2(u_i^- + u_R^-)^{n-1}$ is used in t	the following table	e as none of the	participants in C	200ME1.RI(II)-K2.	Eu-152 contributed	to
the calculation of x_R .							
Alben remuland the de-						2 and any in	
COOMET.RI(II)-K2.Eu-15	2, or one participant in CC	RI(II)-K2.Eu-152 ar	nd one in COOM	ET.RI(II)-K2.Eu-1	52,	2 and one in	
or both participant in C	OOMET.RI(II)-K2.Eu-152, is	given by a pair of	terms: $D_{ij} = D_i$	- D _j and U _{ij} , its	expanded uncer	tainty ($k = 2$),	
approximated by U _{ij} ~	$2(u_i^2 + u_j^2 - 2fu_i^2)^{1/2}$ with I	being the linking	laboratory whe	n each laborato	ry is from the CO	OMET.RI(II)-K2	
and f is the correlation	coefficient.						
These statements make	it possible to extend the E	BIPM.RI(II)-K1.Eu-1	52 matrices of e	quivalence to th	e other participa	nts in COOMET.RI(II)-K2.Eu-152

Lab i			
\$	Di	Ui	
	/ MBq		
NIST	-0.03	0.13	
VNIIM	0.08	0.12	
LNE-LNHB	0.01	0.12	
CNEA	-0.15	0.17	
BARC	-0.09	0.27	
BEV	-0.05	0.23	
BIPM	0.13	0.16	
CIEMAT	-0.31	0.12	
CMI-IIR	0.05	0.16	
ENEA-INMRI	-0.26	0.12	
IFIN-HH	-0.04	0.32	
IRA	-0.12	0.09	
IRMM	0.00	0.13	
KRISS	0.21	0.09	
LNMRI/IRD	-0.16	0.29	
MKEH	0.02	0.10	
NIM	-0.07	0.20	
NMIJ	0.12	0.20	
NPL	0.05	0.27	
NRC	0.11	0.10	
POLATOM	-0.04	0.10	
РТВ	0.01	0.12	
BelGIM	0.03	0.23	
CENTIS-DMR	0.11	0.41	
SMU	0.10	0.23	

Appendix 1. Uncertainty budgets for the activity of ¹⁵²Eu submitted to the SIR

Relative standard uncertainties	$u_i \times 10^4$	
	evaluated	by method
Contributions due to	Α	В
couting statistics	5	—
weighing	10	3
dead time	17	—
counting time	_	0.01
impurities	_	8
background	1	_
half-life	_	0.002
interpolation from calibration curve	_	31
extrapolation	14	—
Quadratic summation	25	32
Relative combined standard uncertainty, u_c	4	1

VNIIM 2009, 4P-NA-GR-00-00-HE

VNIIM 2009, 4P-PC-BP-NA-GR-CO

Relative standard uncertainties	$u_i \times 10^4$	
	evaluated	by method
Contributions due to	Α	В
couting statistics	6.3	-
weighing	10	3
dead time	—	2
resolving time	2	—
counting time	_	0.01
impurities	_	8
background	13	_
half-life	-	0.002
extrapolation	46	—
Quadratic summation	49	9
Relative combined standard uncertainty, u_c	5	0

LNE-LNHB 2009, 4P-NA-GR-00-00-HE

Relative standard uncertainties	$u_i \times 10^4$	
	evaluated	by method
Contributions due to	Α	В
couting statistics	3	—
weighing	_	5
dead time	_	1
impurities	_	3
background	5	_
half-life	_	1
efficiency calculation, including decay-scheme parameters	-	10
extrapolation of efficiency curve	_	30
Quadratic summation	6	32
Relative combined standard uncertainty, u_c	3	3

CNEA 2011, 4P-PC-BP-NA-GR-CO

Relative standard uncertainties	$u_i \times 10^4$	
	evaluated	by method
Contributions due to	Α	В
couting statistics	46	_
weighing	—	25
dead time	_	0.1
resolving time	-	0.1
background	16×10 ⁻⁵	—
half-life	_	0.012
extrapolation of efficiency curve	7.9	-
Quadratic summation	47	25
Relative combined standard uncertainty, u_c	5	3

Appendix 2. Acronyms used to identify different measurement methods

Each acronym has six components, geometry-detector (1)-radiation (1)-detector (2)-radiation (2)-mode. When a component is unknown, ?? is used and when it is not applicable 00 is used.

Geometry	acronym	Detector	acronym
4π	4P	proportional counter	PC
defined solid angle	SA	press. prop. counter	PP
2π	2P	liquid scintillation counting	LS
undefined solid angle	UA	Nal(TI)	NA
		Ge(HP)	GH
		Ge(Li)	GL
		Si(Li)	SL
		CsI(TI)	CS
		ionization chamber	IC
		grid ionization chamber	GC
		bolometer	BO
		calorimeter	CA
		PIPS detector	PS
Radiation	acronym	Mode	acronym
positron	PO	efficiency tracing	ET
beta particle	BP	internal gas counting	IG
Auger electron	AE	CIEMAT/NIST	CN
conversion electron	CE	sum counting	SC
mixed electrons	ME	coincidence	со
bremsstrahlung	BS	anti-coincidence	AC
gamma rays	GR	coincidence counting with efficiency tracing	СТ
X - rays	XR	anti-coincidence counting with efficiency tracing	AT
photons (x + γ)	PH	triple-to-double coincidence ratio counting	TD
alpha - particle	AP	selective sampling	SS
mixture of various radiations	MX	high efficiency	HE

Examples method	acronym
$4\pi(PC)\beta$ - γ -coincidence counting	4P-PC-BP-NA-GR-CO
4π (PPC) β - γ -coincidence counting eff. trac.	4P-PP-MX-NA-GR-CT
defined solid angle α -particle counting with a PIF	PS detector SA-PS-AP-00-00-00
4π (PPC)AX- γ (Ge(HP))-anticoincidence counting	4P-PP-MX-GH-GR-AC
4π CsI- β ,AX, γ counting	4P-CS-MX-00-00-HE
calibrated IC	4P-IC-GR-00-00-00
internal gas counting	4P-PC-BP-00-00-IG