Key comparison BIPM.EM-K10.b

MEASURAND: DC voltage, Josephson standards, NOMINAL VALUE: 10 V

Lab i	X,	u _i	Date of
Lub /	/ nV	/ nV	measurement
LNE	1.2	1.2	May 1994
PTB	-0.3	0.5	Jan 1998
SP	1.4	1.2	Jan 1998
SMU	14	11	May 1999
NPL	-1.5	2.2	Sep 2004
NRC	2.8	3.1	Oct 2004
CEM	0.4	1.5	Sep 2005
NMIJ	-1.2	1.3	Oct 2005
BEV	1.1	3.5	Nov 2005
INETI	0.8	4.6	Mar 2006
INMETRO	19	16	Apr 2006
NMIA	0.9	1.7	May 2006
VSL	-1.5	1.8	Oct 2006
KRISS	1.7	1.3	Feb 2008
LNE (1)	-4.3	1.5	Dec 2007
LNE (2)	-0.1	0.1	Dec 2007
NIST (1)	1.5	1.4	Mar 2009
NIST (2)	-0.8	1.0	Mar 2009
SMD (1)	0.3	3.3	Nov 2009
SMD (2)	-0.4	1.3	Nov 2009
EIM (1)	11.0	17.1	Mar 2010
EIM (2)	-0.6	2.0	Mar 2010
NMC, A*STAR (1)	-39.0	6.3	Sep 2010
NMC, A*STAR (2)	0.4	1.0	Sep 2010
VNIIM (1)	1.1	2.9	Nov 2010
VNIIM (2)	-0.1	2.0	Nov 2010
CMI (1)	14.1	11.1	Feb 2011
CMI (2)	9.6	10.3	Feb 2011
CENAM (1)	2.5	1.3	Sep 2011
CENAM (2)	-0.6	0.7	Sep 2011
METAS	0.3	1.0	Jan 2012
MSL (1)	-2.9	6.4	Apr 2011
MSL (2)	2.5	4.0	Apr 2011
NIM (1)	0.9	3.3	Nov 2013
NIM (2)	-0.2	0.9	Nov 2013
INM(RO)	3.3	2.6	Jun 2014
PTB (1)	-1.9	1.7	Oct 2014
PTB (2)	0.7	0.5	Oct 2014
DMDM (1)	-2.6	2.7	Jun 2015
DMDM (2)	-0.1	1.5	Jun 2015
NIMT (1)	-2.4	2.9	Nov 2015
NIMT (2)	-1.0	2.6	Nov 2015

 x_i : result of measurement carried out by laboratory i expressed as the difference from the BIPM value u_i : combined standard uncertainty of x_i

- (1) initial result
- (2) final result following technical improvements during the comparison

Key comparison SIM.EM.BIPM-K10.b

MEASURAND: DC voltage, Josephson standards

NOMINAL VALUE: 10 V

SIM.EM.BIPM-K10.b is a bilateral key comparison between NIST and NRC conducted from August 13 to August 17, 2007.

d_{NIST-NRC}: reported difference between NIST CJVS (Compact Josephson Voltage Standard) and NRC JVS

 $U_{\text{NIST-NRC}}$: expanded uncertainty (k = 2) of $d_{\text{NIST-NRC}}$

 $d_{NIST-NRC} = -0.28 \text{ nV}$ $U_{NIST-NRC} = 2.07 \text{ nV}$

Key comparison SIM.EM.BIPM-K10.b.1

MEASURAND: DC voltage, Josephson standards

NOMINAL VALUE: 10 V

SIM.EM.BIPM-K10.b.1 is a bilateral key comparison between INMETRO and NIST conducted in June 2009.

 $d_{\text{INMETRO-NIST}}$: reported difference between INMETRO JVS and NIST CJVS

 $u_{\text{INMETRO-NIST}}$: combined standard uncertainty of $d_{\text{INMETRO-NIST}}$

 $d_{INMETRO-NIST} = 0.54 \text{ nV}$ $u_{INMETRO-NIST} = 1.48 \text{ nV}$

Key comparison COOMET.EM.BIPM-K10.b

MEASURAND: DC voltage, Josephson standards

NOMINAL VALUE: 10 V

COOMET.EM.BIPM-K10.b is a bilateral key comparison between VNIIM and BelGIM conducted from 4 September 2014 to 8 August 2014.

d_{BelGIM-VNIIM}: reported difference between BelGIM JVS and VNIIM JVS, obtained using a transportable VNIIM JVS

 $U_{\text{BelGIM-VNIIM}}$: expanded uncertainty (k = 2) of $d_{\text{BelGIM-VNIIM}}$

 $d_{\text{BelGIM-VNIIM}} = 0.99 \text{ nV}$ $U_{\text{BelGIM-VNIIM}} = 3.0 \text{ nV}$ BIPM.EM-K10.b, SIM.EM.BIPM-K10.b, SIM.EM.BIPM-K10.b.1, and COOMET.EM.BIPM-K10.b

Key comparison BIPM.EM-K10.b

MEASURAND: DC voltage, Josephson standards

NOMINAL VALUE: 10 V

Key comparison reference value: the BIPM value.

Since 2004, its standard uncertainty has been evaluated to be typically 0.04 nV and is included in the u_i 's values.

The degree of equivalence of each laboratory with respect to the reference value is given by a pair of terms: $D_i = x_i$ and its expanded uncertainty (k = 2), $U_i = 2u_i$, both expressed in nV.

When required, the degree of equivalence between two laboratories i and j can be computed by two terms: $D_{ij} = D_i - D_j = (x_i - x_j)$ and its expanded uncertainty (k = 2), U_{ij} , both expressed in nV. $U_{ij} = 2[u_i^2 + u_j^2 - 2\text{cov}(i,j)]^{1/2}$, where cov(i,j) is the estimated covariance that takes into account the correlation introduced by the BIPM measurements.

Linking SIM.EM.BIPM-K10.b to BIPM.EM-K10.b

The degree of equivalence of NIST with respect to the reference value is given by a pair of terms: $D_{\text{NIST}} = (d_{\text{NIST-NRC}} + D_{\text{NRC}})$ and its expanded uncertainty (k = 2), U_{NIST} , both expressed in nV. $U_{\text{NIST}} = (U_{\text{NIST-NRC}}^2 + U_{\text{NRC}}^2)^{1/2}$.

No pair-wise degrees of equivalence involving NIST have been explicitely computed.

Linking SIM.EM.BIPM-K10.b.1 to BIPM.EM-K10.b

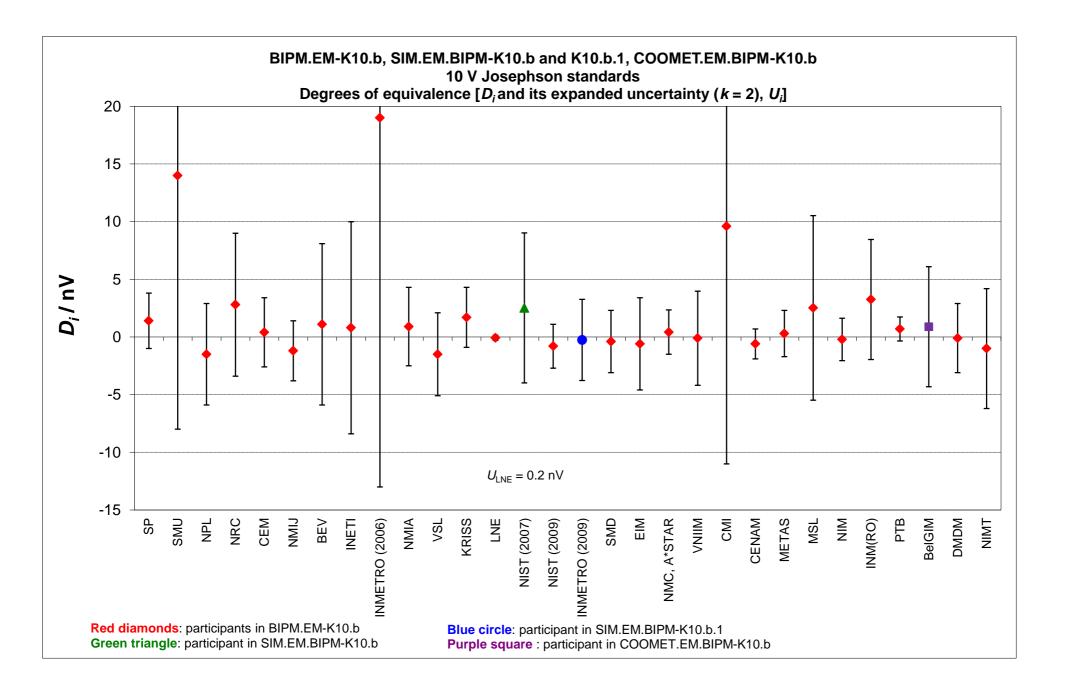
The degree of equivalence of INMETRO with respect to the reference value is given by a pair of terms: $D_{\text{INMETRO}} = (d_{\text{INMETRO-NIST}} + D_{\text{NIST}})$ and its expanded uncertainty (k = 2), U_{INMETRO} , both expressed in nV. $U_{\text{INMETRO-NIST}}^2 + (U_{\text{NIST}}/2)^2]^{1/2}$. The values taken for NIST are the most recent ones (2009).

No pair-wise degrees of equivalence involving INMETRO have been explicitely computed.

Linking COOMET.EM.BIPM-K10.b to BIPM.EM-K10.b

The degree of equivalence of BelGIM with respect to the reference value is given by a pair of terms: $D_{\text{BelGIM}} = (d_{\text{BelGIM-VNIIM}} + D_{\text{VNIIM}})$ and its expanded uncertainty (k = 2), U_{BelGIM} , both expressed in nV. $U_{\text{BelGIM-VNIIM}}^2 + U_{\text{VNIIM}}^2]^{1/2}$.

No pair-wise degrees of equivalence involving BelGIM have been explicitely computed.


DC voltage, Josephson standards, 10 V Matrix of equivalence

Lab *i* ∏

Lab /				
◊	D_i	U _i		
	/ nV			
SP	1.4	2.4		
SMU	14	22		
NPL	-1.5	4.4		
NRC	2.8	6.2		
CEM	0.4	3.0		
NMIJ	-1.2	2.6		
BEV	1.1	7.0		
INETI	0.8	9.2		
INMETRO (2006)	19	32		
NMIA	0.9	3.4		
VSL	-1.5	3.6		
KRISS	1.7	2.6		
LNE*	-0.1	0.2		
NIST* (2009)	-0.8	1.9		
SMD*	-0.4	2.7		
EIM*	-0.6	4.0		
NMC, A*STAR*	0.4	1.9		
VNIIM*	-0.1	4.1		
CMI*	9.6	20.6		
CENAM*	-0.6	1.3		
METAS	0.3	2.0		
MSL*	2.5	8.0		
NIM*	-0.2	1.8		
INM(RO)	3.3	5.2		
PTB*	0.7	1.0		
DMDM	-0.1	3.0		
NIMT	-1.0	5.2		
NIST (2007)	2.5	6.5		
INMETRO (2009)	-0.3	3.5		
BelGIM (2014)	0.89	5.2		

Only the most recent comparison is retained

^{*} The degrees of equivalence are computed using the final result following technical improvements in the comparison setup

