

Asia-Pacific Metrology Programme

APMP Key Comparison

APMP.L-K1.1

Calibration of gauge blocks by interferometry

Final Report – Results

Contents

1. Introduction	2
2. Organization	2
2.1 Participants	2
2.2 Participants' details	2
2.3 Comparison schedule	3
2.4 Handling and transport	3
3. Description of artefacts	3
4. Reported results	1
5. Analysis of the results	1
5.1 Discussion	1
5.2 Weighting factors and the Reference Value	1
5.3 Uncertainties	5
5.4 Analysis using En values	5
5.5 Stability of the artefacts ϵ	5
5.6 Birge Ratios tests	5
Critical Figures from Appendix B7-12	2
Appendices	
A: Reporting Forms:	
A1 Measurement results report form	3
A2 Surface quality report form	1
A3 Measurement instruments report form15	5
A4 Measurement uncertainty report form16	5
A5 Return fax form	7
B: taken from Excel spread sheet	
Schedule 1	Ĺ
Measurement results	Ĺ
Summary and En number	2
Participants equipment	3
Participant uncertainty	1
	ſ
Birge ratios	5

1. Introduction

It was decided to carry out a regional key comparison on gauge block measurements to follow up the previous comparison APMP.L-K1. The National Metrology Institute of Japan (NMIJ/AIST) acts as the pilot laboratory as APMP.L-K1.

The plan of APMP.L-K1.1 was announced at the meeting of The Asia Pacific Metrology Programme's Technical Committee for Length (APMP/TCL), which was held in Beijing in October 2004. The technical protocol and artefacts is modelled on that of APMP.L-K1.

A goal of dimensional metrology key comparisons is to compare routine calibration services offered by NMIs to clients. Uncertainty claims should match those listed in Appendix C of the Mutual Recognition Agreement (MRA) [BIPM, 1999]. To this end, participants in this comparison agree to use the same apparatus and methods as routinely applied to client artefacts.

The participant's replies have been collated into an Excel spreadsheet and are shown in Appendix B in an Excel workbook. These results are identified in the text with a B pre-fix.

2. Organization

2.1 Participants

APMP member laboratories were invited to join the comparison by the pilot laboratory. The service tested in this comparison is the measurement of central length of gauge blocks covering the range 0.5 mm to 100 mm to a standard uncertainty of less than approximately 50 nm.

	INTERFEROMETRIC MEASURE	EMENTS
Yu-Ping Lan	CMS	Tel: +886-3-5732147
_	Center for Measurement Standards	Fax: +886-3-5726445
	321 Kuang Fu Rd, Section 2 Bldg 16,	e-mail: Yu-PingLan@itri.org.tw
	30042 Hsinchu	
	TAIWAN R.O.C.	
K.P. Chaudhary	NPLI	Tel: +91-11-25732965
	National Physical Laboratory	Fax: +91-11-25732965
	Dr.K.S. Krishnan Road,	e-mail: kpc@mail.nplindia.ernet.in
	New Delhi – 110 012	
	INDIA	
Akiko Hirai	NMIJ	Tel: +81-29-861-4283
(Pilot)	National Metrology Institute of Japan	Fax: +81-29-861-4080
	Central 3, 1-1-1 Umezono	e-mail: a-hirai@aist.go.jp
	Tsukuba, Ibaraki 305-8563	
	JAPAN	
Ahmad Makinudin Bin	NML-SIRIM,	Tel: +603-877-81600
Dahlan	Lot PT 4803	Fax: +603-877-81661
	Bandar Baru Salak Tinggi	e-mail: ahmadmd@sirim.my
	43900 Sepang, Selangor	
	MALAYSIA	
Eleanor Howick	MSL/IR	Tel: +64-4-9313-530
	Measurement Standards Laboratory of	Fax: +64-4-9313-117
	New Zealand	e-mail :E.Howick@irl.cri.nz
	Industrial Research	
	Gracefield Road	
	PO Box 31-310	
	NEW ZEALAND	

2.2 Participants' details

Anusorn Tonmueanwai	NIMT	Tel: +66-2354-3700 ext. 121
	National Institute of Metrology	Fax: +66-2354-3692
	(Thailand)	e-mail : anusorn@nimt.or.th
	75/7 Rama VI Road, Thungphyathai,	
	Rajthevi, Bangkok 10400	
	THAILAND	
Bui Quoc Thu	VMI	Tel: +84-4-8361129
	Vietnam Metrology Institute	Fax: +84-4-7564260
	No 8 Hoang QuocViet Road, Cau Giay	e-mail: vmi@fpt.vn
	District	
	Hanoi	
	VIETNAM	

Table 1.	Participant's	details	at the	start	of the	comparison
	1					1

2.3 Comparison schedule

The comparison was carried out in a mixed form, circulation and star-type. Two circulation groups have been chosen with the pilot measuring before and after each group. Table B1 shows the original schedule and the actual schedule of participants.

2.4 Handling and transport

After the circulation, it was unable to measure the gauge block of 0.5 mm at the pilot laboratory because of damage. Four other gauge blocks have been damaged on one of the surfaces. It was able to wring the left surface of the gauge block of 1.1 mm in the last measurement at the pilot laboratory, however, the wringing quality was low because of the damage. The other artefacts showed some scratches, but were still in an acceptable condition for interferometric measurements.

3. Description of artefacts

The set contains 10 steel gauge blocks. The gauge blocks are of rectangular cross section, according to the international standard ISO 3650. The thermal expansion coefficient of the gauge block of 100 mm has been measured by the pilot laboratory. This value of the thermal expansion coefficient is applied to all gauge blocks.

Identification	Nominal length	Expansion coeff.	Manufacturer
	(mm)	$(10^{\circ} K^{\circ})$	
040792	0.5	10.6 ± 0.1	Mitutoyo
040330	1.01	10.6 ± 0.1	Mitutoyo
040163	1.1	10.6 ± 0.1	Mitutoyo
042650	6	10.6 ± 0.1	Mitutoyo
051520	7	10.6 ± 0.1	Mitutoyo
043000	8	10.6 ± 0.1	Mitutoyo
041583	15	10.6 ± 0.1	Mitutoyo
030770	80	10.6 ± 0.1	Mitutoyo
040779	90	10.6 ± 0.1	Mitutoyo
042033	100	10.6 ± 0.1	Mitutoyo

Table 2.	Descript	tion of ga	uge blocks
----------	----------	------------	------------

4. Reported results

The Technical Protocol asked the participants to report the followings with the specified form:

- A1: The central length measured in two orientations and the uncertainty for the average of these measurements , see Form A1 (Measurement results) .
- A2: The observed condition of the measurement surfaces, see Form A2 (Inspection of the measurement surfaces)
- A3: A description of the type of interferometer, the light sources, the method of fringe fraction determination, the method used for determination of refractive index of the air, the range of gauge block temperature during measurement and phase correction, see Form A3 (Description of the measurement instrument).
- A4: The Uncertainty budget, see Form A4 (Uncertainty of measurement)

5. Analysis of the results

5.1 Discussion

The aim of this analysis is to find a key reference value which can be used to determine the deviations of the results of each laboratory. As APMP.L-K1, the weighted mean values are used as key reference values after excluding the measured value which corresponded to an absolute En number larger than one based on one-by-one procedure. Very similar key comparisons have been completed for Gauge blocks (CCL-K1, APMP.L-K1) and for Long Gauge blocks (CCL-K2, APMP.L-K2). The policy using a weighted mean as a key reference value has been agreed by all the participants of APMP.L-K1.1 before the Draft B becomes open to the public.

On the other hand, the values of CMS are also excluded from key reference values calculations because CMS reported their values with wrong phase corrections caused by mistakes in calculating the phase correction values. CMS explains that the correct phase correction values are 20 nm larger than those actually used in the reported values.

5.2 Weighting Factors and the Reference Value

Let the measured deviation from nominal size reported by each participant be x_{i} , where the number of laboratories is given by *I*. Since the gauge blocks have different lengths, thermal expansion coefficients, material properties *etc*, it is reasonable to expect that the data comes from separate populations (one per gauge block) and so analysis should be on a gauge-by-gauge basis.

Thus, for a particular gauge block:

Each laboratory reports a measured value, x_i , and its associated standard uncertainty $u(x_i)$. The normalised weight, w_i , for the result x_i is given by:

 $w_i = C \cdot \frac{1}{\left[u(x_i)\right]^2} \tag{1}$

where the normalising factor, C, is given by:

$$C = \frac{1}{\sum_{i=1}^{l} \left(\frac{1}{u(x_i)}\right)^2}$$
(2)

Then the weighted mean, \overline{x}_{w} , is given by:

$$\overline{x}_{w} = \sum_{i=1}^{I} w_{i} \cdot x_{i}$$
(3)

The simple mean uses a weighting factor of one and is given by:

$$\overline{x}_a = \sum_{i=1}^{I} \frac{x_i}{I} \tag{4}$$

Each participant, including the pilot, should only contribute once to any determination of a reference value. The comparison reference value \overline{x}_{RV} can be set equal to the simple mean (\overline{x}_a - Equation 4) or the weighted mean (\overline{x}_w - Equation 3), and these options are discussed below.

5.3 Uncertainties

If the artefact uncertainty is ignored, the uncertainty of the reference value can be calculated as either the internal $u_{int}(\bar{x}_{RV})$ or external $u_{ext}(\bar{x}_{RV})$ standard deviation. The internal standard deviation is based on the estimated uncertainties $u(x_i)$ as reported by the participants:

$$u_{\text{int}}(\overline{x}) = \sqrt{\frac{1}{\sum_{i=1}^{l} \left(\frac{1}{u(x_i)}\right)^2}} = \sqrt{C}$$
(5)

The external standard deviation is the standard deviation of the spread of the residuals $x_i - \overline{x}_{RV}$, weighted by the uncertainties $u(x_i)$:

$$u_{ext}\left(\overline{x}\right) = \sqrt{\frac{1}{(I-1)} \cdot \frac{\sum_{i=1}^{I} w_i \left(x_i - \overline{x}_{RV}\right)^2}{\sum_{i=1}^{I} w_i}}$$
(6)

The residuals have an uncertainty which results from the measured value $(x_{i \pm} u(x_{i}))$ and the reference value $(\overline{x}_{RV} \pm u(\overline{x}_{RV}))$. The uncertainty of the reference value is taken to be the internal uncertainty and the uncertainty of the artefact $u_{art}(\overline{x}_{RV})$. The internal uncertainty can be viewed as setting a limit to the knowable accuracy of any artefact length, given the uncertainty of each measurement. The artefact uncertainty sets a limit on the stability of the artefact during the comparison. The pilot's measurements provide the best information on artefact changes, given that the same instrument and method were used each time. The uncertainty of the artefact is obtained by the standard deviation of measurements at the pilot laboratory.

The uncertainty for each participant's residual is therefore given by:

$$u(x_{i} - \bar{x}_{RV}) = \sqrt{[u(x_{i})]^{2} - [u_{int}(\bar{x}_{w})]^{2} + [u_{art}(\bar{x}_{pilot})]^{2}}$$
(7)

The internal uncertainty is subtracted from the participant's uncertainty because their result has already pulled the reference value in their direction (it has a negative correlation). This could be avoided by excluding them from the reference value they are compared with, but this approach is not used here.

5.4 Analysis using En values

A check for statistical consistency of the results with their associated uncertainties can be made by calculating the E_n value for each laboratory, where E_n is defined as the ratio of the deviation from the weighted mean, divided by the uncertainty of this deviation, taken for a coverage factor of k=2:

$$E_n = \frac{x_i - \bar{x}_{RV}}{2 \cdot u \left(x_i - \bar{x}_{RV} \right)} \tag{8}$$

 E_n values should be less than 1, if the participant's result and uncertainty are consistent with the reference value. These values are shown in Table B12 and Fig B11

5.5 Stability of the artefacts

The pilot measured the artefact three times, that is before, middle of, and after the circulation. The uncertainty of the artefact is obtained by the standard deviation of the three measurements at the pilot laboratory.

Most of the artefacts show good stabilities, however, there are some gauges having rather large variation. Because the surfaces of some gauge blocks were deteriorated especially at the third measurement, the wringing quality might be rather poor. The pilot evaluated the value of phase correction by measuring an auxiliary gauge on a platen and a gauge block, and calculated their difference. Several auxiliary gauges and gauge blocks were used for the evaluation of the phase correction to average the effect of the surface damage, however the phase correction might be somewhat large.

The results and uncertainties of the first and third measurements at the pilot laboratory aren't used in calculations of the reference values. The results of the three measurements at the pilot laboratory have effects on the analysis using E_n values through the uncertainty of the artefacts.

5.6 Birge ratios tests

The statistical consistency of a comparison can also be investigated by the Birge ratio R_B , which compares the observed spread of the results with the spread expected from the individual reported uncertainties.

The application of least squares algorithms and the χ^2 -test leads to the Birge ratio:

$$R_B = \frac{u_{ext}(\bar{x}_w)}{u_{int}(\bar{x}_w)} \tag{9}$$

The Birge ratio has an expectation value of $R_B = 1$, when considering standard uncertainties. For a coverage factor of k = 2, the expectation value is increased and the data in a comparison are consistent provided that

$$R_{B} < \sqrt{1 + \sqrt{8/(I-1)}} \tag{10}$$

where *I* is the number of laboratories. For the case I = 6, a value of $R_B < 1.505$ indicates consistency.

Only one measurement from the pilot is used. The pilot's value NMIJ2 is used because this is towards the middle of the comparison.

The Birge ratios are shown in Table B15 and summarised below in Table 3.

The Birge ratio should be less than 1.50 and this is roughly the case for all gauges.

Gauge Length [mm]	0.5	1.01	1.1	6	7	8	15	80	90	100
Birge ratios	0.63	0.93	1.43	1.17	1.19	0.64	0.68	0.69	1.05	0.77

Table 3. Birge ratios.

CRITICAL FIGURES FROM APPENDIX B

Figure 1 to 10: Measurement data from each participant with error bars corresponding to combined standard uncertainty.

Fig. 1, 2

APMP.L-K1.1-Final.doc

Fig. 3, 4

APMP.L-K1.1-Final.doc

Fig. 5, 6

Fig. 7, 8

Fig. 9, 10

APMP.L-K1.1-Final.doc

Figure 11: En values

Appendix A Reporting Forms

Measurement results:

Steel gauge blocks:

Id. no.	nom. length	(deviati	central length on from nominal	uncert. (1s)	eff. deg. of freedom	
	<i>L</i> (mm)	Δl left (μm)	Δl right (μ m)	Δl (µm)	u_c (nm)	n _{eff}
040792	0.5					
040330	1.01					
040163	1.1					
042650	6					
051520	7					
043000	8					
041583	15					
030770	80					
040779	90					
042033	100					

A1

Inspection of the measurement surfaces, steel gauge blocks

APMP.L-K1.1-Final.doc

Description of the measurement instrument

Make and Type of interferometer..... Light sources / Wave lengths used: Method of fringe fraction determination: Method used for determination of refractive index of the air: Range of gauge block temperature during measurements: Phase correction: material of reference flats phase correction applied (give range, gauge block material if applicable) steel

Uncertainty of measurement

x_i	$u(x_i)$	n _i	$c_i = \partial l / \partial x_i$	$u_i(l)$ / nm

Combined standard uncertainty: $u_c(I) =$

A5

Telefax Telefax Telefax Telefax

To: Akiko Hirai National Metrology Institute of Japan

> Central 3, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8563 Japan Fax: +81-29-861-4080 e-mail: a-hirai@aist.go.jp

From: (participating laboratory)

We confirm having received the standar	rds of the follow-up comparison of APMP. L-K1 on gauge block
measurement on	(date).
After visual inspection	
no damage has been noticed.	
the following damage(s) must be	reported:
_	
Date:	Signature:

.....

.....

Table 1

Table 2 Steel 0.5mm S/N 040792

							Non-weighte	ed	Weighted				Institute number for x	ef	
	_		4/ (um)	4/ (um)	A ((1100))	(nm)	~ ~	$(x, y,)^2$	$u^{-2}(x)$	$u^{-2}(x) * x$	wi after				Fig1: Steel 0.5 mm S/N 040792
	Economy	Laboratory		∆r _{right} (um)			Ai A O F O	(^x _i -x _{ref})	u (x _i)	$u(x_i)x_i$	convergence	40.070			5
4	New Zeala	nMSL	0.0140	0.0090	0.0110	20.0	14.250	203.063	0.003	0.028	0.066	13.373	6	40	
-	Inailand	NIMI	-0.0010	-0.0010	-0.0010	11.0	2.250	5.063	0.008	-0.008	0.217	1.116		Ē	т
	i Malaysia	SIRIM	-0.0120	-0.0110	-0.0120	15.0	-8.750	76.563	0.004	-0.053	0.117	8.910	Consistent RB	<u>т</u> 20 т	NIMT
	Japan	NMIJ2	-0.0020	-0.0030	-0.0020	8.6	1.250	1.563	0.014	-0.027	0.355	0.570	1.505	i i i	
ť	Taiwan	CMS	-0.0160	-0.0320	-0.0240	14.0	-20.750	430.563	0.005	-0.122	0.134	57.644	0	E NMIJ1	
	Vietnam	VIVII	0.0090	-0.0040	0.0025	14.0	5.750	33.063	0.005	0.013	0.134	4.459		ية ₂₀₋	MSL VMI
2	India	NPLI	-0.0190	-0.0160	-0.0180	15.4	-14.750	217.563	0.004	-0.076	0.111	24.057		ance	SIRÎM L
	Japan	NMIJ1	0.0110	0.0020	0.0070	8.6	10.250	105.063	0.014	0.095	0.355	37.455		9 40-	±
	Japan	INIVIIJ3	-	-	-	-	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!		ā	
								convergence)	26.282		sum(wi)	1.000	RB	00	Laboratory
Non-	weighted me	ean [nm]						uint(x)	5.127		sum(wi(xi-xi	r 52.484	0.632		Laboratory
Xa	-3.2500)						uart(xpilot)	6.364		uext(x)	3.240			
ц(х.)	4 2303							· · · /			()				
1 ct	1.2000	, 													
Woig	hted mean [nml													
vveig	2 2664														
×w	-3.2004	•													
u(x _w)	5.1266	5													
			x _i -x _{RV}	U(x _i -x _{RV})	En	O: good									
	New Zeala	n MSL	14.266	40.705	0.350	0									
	Thailand	NIMT	2.266	23.257	0.097	0									
	Malaysia	SIRIM	-8.734	30.933	-0.282	0									
	Japan	NMIJ2	1.266	18.781	0.067	0									
	Taiwan	CMS	-20.734	28.998	-0.715	0									
	Vietnam	VMI	5.766	28.998	0.199	0									
	India	NPLI	-14.734	31.710	-0.465	0									
	Japan	NMIJ1	10.266	18.781	0.547	0									

10.266 18.781 0.547 O #VALUE! #VALUE! #VALUE! #VALUE! Japan NMIJ3 Yellow cells are not used to calculate the weighted mean.

Table 3 Steel 1.01mm S/N 040330

							Non-weighte	ed	Weighted				Institute number for xref	
	Economy	Laboratory	$\Delta I_{\text{left}}(\text{um})$	$\Delta I_{right}(um)$	∆/(um)	u _c (nm)	x _i -x _{ref}	(x _i -x _{ref}) ²	u ⁻² (x _i)	u ⁻² (x _i)*x _i	wi after convergence	wi(xi-xref)^2	1	Fig2: Steel 1.01 mm S/N 040330
2	New Zealan	MSL	0.0370	0.0480	0.0420	20.0	2.417	5.840	0.003	0.105	0.066	0.970	6	80
3	Thailand	NIMT	0.0070	0.0460	0.0270	11.0	-12.583	158.340	0.008	0.223	0.218	27.095		
4	Malaysia	SIRIM	0.0240	0.0250	0.0250	15.0	-14.583	212.674	0.004	0.111	0.117	20.261	Consistent RB	토 60 <u></u>
5	Japan	NMIJ2	0.0390	0.0400	0.0400	8.6	0.417	0.174	0.014	0.541	0.356	1.204	1.505	
6	Taiwan	CMS	0.0230	-0.0060	0.0090	14.0	-30.583	935.340	0.005	0.046	0.134	114.189	0	
7	Vietnam	VMI	0.0350	0.0480	0.0415	14.0	1.917	3.674	0.005	0.212	0.134	1.497		ן פַּ אַשָּׁאַז עַר אָאָד 🚽 אַ אַדע אַדע גענע איז אַ אַדע אווער איז אַרע אווער איז איז אַ אַדע גענער איז איז א
8	India	NPLI	0.0590	0.0650	0.0620	15.5	22.417	502.507	0.004	0.258	0.110	62.259		
1	Japan	NMIJ1	0.0410	0.0400	0.0400	8.6	0.417	0.174	0.014	0.541	0.356	1.204		
g	Japan	NMIJ3	0.0570	0.0440	0.0500	8.6	10.417	108.507	0.014	0.676	0.356	49.881		
								C (after cor	26.320		sum(wi)	1.000	RB	20-
Non-weight	ed mean [nm	1]						uint(x)	5.130		sum(wi(xi-xi	113.286	0.928	Laboratory
Xa	39.5833							uart(xpilot)	5.774		uext(x)	4.760		
u(x _a)	5.4259													
1st							1							
Weighted n	nean [nm]													
	20 1600													

x _w	38.1608	3				
u(x _w)	5.1303	3				
			x _i -x _{RV}	$U(x_i-x_{RV})$	En	O: good
	New Zeala	in MSL	3.839	40.349	0.095	0
	Thailand	NIMT	-11.161	22.629	-0.493	0
	Malaysia	SIRIM	-13.161	30.464	-0.432	0
	Japan	NMIJ2	1.839	17.997	0.102	0
	Taiwan	CMS	-29.161	28.497	-1.023	Х
	Vietnam	VMI	3.339	28.497	0.117	0
	India	NPLI	23.839	31.449	0.758	0
	Japan	NMIJ1	1.839	17.997	0.102	0
	Japan	NMI.I3	11 839	17 997	0.658	0

Table 4 Steel 1.1mm S/N 040163

							Non-weight	ed	Weighted				Institute number for xref		
	Economy	Laboratory	$\Delta I_{\text{left}}(\text{um})$	$\Delta I_{right}(um)$	∆/(um)	u _c (nm)	x _i -x _{ref}	(x _i -x _{ref}) ²	u ⁻² (x _i)	u ⁻² (x _i)*x _i	wi after convergence	wi(xi-xref)^2	21		Fig3: Steel 1.1 mm S/N 040163
	2 New Zealar	MSL	-0.0070	0.0050	-0.0010	20.0	4.917	24.174	0.003	-0.003	0.066	6.559	6	50	
	3 Thailand	NIMT	-0.0160	-0.0310	-0.0240	11.0	-18.083	327.007	0.008	-0.198	0.218	37.033		200	т
	4 Malaysia	SIRIM	-0.0220	-0.0270	-0.0250	15.0	-19.083	364.174	0.004	-0.111	0.117	23.090	Consistent RB	<u>는</u> 30	
	5 Japan	NMIJ2	-0.0240	-0.0120	-0.0180	8.6	-12.083	146.007	0.014	-0.243	0.357	17.636	1.505	ina	
	6 Taiwan	CMS	-0.0100	-0.0440	-0.0270	14.0	-21.083	444.507	0.005	-0.138	0.135	34.601	0	혼 10	NMIJ1 NPLI
	7 Vietnam	VMI	0.0080	0.0070	0.0075	14.0	13.417	180.007	0.005	0.038	0.135	45.938		L IO	T NIMT SIRIM CMS I NMIJ3
	8 India	NPLI	0.0200	0.0300	0.0250	15.7	30.917	955.840	0.004	0.101	0.107	138.540		8	
	1 Japan	NMIJ1	-0.0140	-0.0110	-0.0120	8.6	-6.083	37.007	0.014	-0.162	0.357	0.379		- - - - -	
	9 Japan	NMIJ3	-	0.0140	0.0140	12.5	19.917	396.674	0.006	0.090	0.169	105.320		μŪ	
								C (after co	26.393		sum(wi)	1.000	RB	50-	
Non-weigh	ited mean [nm	ן [uint(x)	5.137		sum(wi(xi-x	r 268.795	1.427		Laboratory
x _a	-5.9167							uart(xpilot)	17.010		uext(x)	7.332			
u(x _a)	8.1593														

u(x _a)	8.1593	5				
1st						
Weightee	d mean [nm]					
x _w	-10.9701	I				
u(x _w)	5.1374	ł				
			x _i -x _{RV}	$U(x_i-x_{RV})$	En	O: good
	New Zeala	in MSL	9.970	51.495	0.194	0
	Thailand	NIMT	-13.030	39.189	-0.332	0
	Malaysia	SIRIM	-14.030	44.179	-0.318	0
	Japan	NMIJ2	-7.030	36.710	-0.191	0
	Taiwan	CMS	-16.030	42.846	-0.374	0
	Vietnam	VMI	18.470	42.846	0.431	0
	India	NPLI	35.970	45.141	0.797	0
	Japan	NMIJ1	-1.030	36.710	-0.028	0

 Japan
 NMIJ3
 24.970
 40.948
 0.610
 O

 Yellow cells are not used to calculate the weighted mean.
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Table 5 Steel 6 mm S/N 042650

5.2275

New Zealan MSL

Malaysia

Thailand NIMT

SIRIM

u(x_w)

							Non-weight	ed	Weighted				Institute number for xref						
	Economy	Laboratory	$\Delta I_{\text{left}}(\text{um})$	$\Delta I_{right}(um)$	∆/(um)	u _c (nm)	x _i -x _{ref}	(x _i -x _{ref}) ²	u ⁻² (x _i)	u ⁻² (x _i)*x _i	wi after convergence	wi(xi-xref)^2	21			Fig4: Steel 6 mm S/N	042650		
2	2 New Zealan	MSL	0.0210	0.0260	0.0240	20.0	-2.917	8.507	0.003	0.060	0.068	0.049	6	80	-				
3	3 Thailand	NIMT	0.0190	0.0150	0.0170	11.0	-9.917	98.340	0.008	0.140	0.226	8.543		ت ت				_	
4	1 Malaysia	SIRIM	0.0050	0.0070	0.0060	15.0	-20.917	437.507	0.004	0.027	0.121	35.724	Consistent RB	<u> </u>			т		
5	5 Japan	NMIJ2	0.0140	0.0220	0.0180	8.6	-8.917	79.507	0.014	0.243	0.369	9.802	1.505	mina	MSL	-		•	NMIJ3
6	6 Taiwan	CMS	0.0180	0.0080	0.0130	14.0	-13.917	193.674	0.005	0.066	0.139	14.365	0	ê 40	T	NIMT	0110	1	•
7	Vietnam	VMI	0.0490	0.0420	0.0455	15.0	18.583	345.340	0.004	0.202	0.121	60.665		Lou o	+ +	T SIRIM T	T V	I NPL	1 I
8	3 India	NPLI	0.0380	0.0640	0.0510	17.1	24.083	580.007	0.003	0.174	0.093	72.482		8 20	NMIJ1		•		
1	Japan	NMIJ1	0.0240	0.0270	0.0260	8.6	-0.917	0.840	0.014	0.352	0.369	3.000			Ļ. +	🕂 🛉 NMI.	2		
9	Japan	NMIJ3	0.0470	0.0250	0.0360	8.6	9.083	82.507	0.014	0.487	0.369	61.004		Ξ		T			
								C (after co	27.327		sum(wi)	1.000	RB	20-					
Non-weight	ted mean [nm	n]						uint(x)	5.228		sum(wi(xi-x	r 187.266	1.171			Labora	tory		
x _a	26.9167							uart(xpilot)	9.018		uext(x)	6.120							
u(x _a)	7.1861																		
1st							1												
Weighted n	nean [nm]																		
x _w	23.1506																		

Japan	NMIJ2	-5.151	22.624	-0.228	0	
Taiwan	CMS	-10.151	31.623	-0.321	0	
Vietnam	VMI	22.349	33.407	0.669	0	
India	NPLI	27.849	37.225	0.748	0	
Japan	NMIJ1	2.849	22.624	0.126	0	
Japan	NMIJ3	12.849	22.624	0.568	0	
Vallauraall		ماييم امم مداه	أمينا مطلمه	سمممسا سمغما		-

Yellow cells are not used to calculate the weighted mean.

 $x_i x_{RV} = U(x_i x_{RV})$

0.849 42.615

-6.151 26.458

-17.151 33.407

En O: good

0 0

0

0.020

-0.232

-0.513

Table 6 Steel 7 mm S/N 051520

							Non-weight	ed	Weighted				Institute number for xref	
	Economy	Laboratory	$\Delta I_{\text{left}}(\text{um})$	$\Delta I_{right}(um)$	∆/(um)	u _c (nm)	x _i -x _{ref}	(x _i -x _{ref}) ²	u ⁻² (x _i)	u ⁻² (x _i)*x _i	wi after convergence	wi(xi-xref)^2	21	Fig5: Steel 7 mm S/N 051520
2	New Zealar	MSL	-0.0100	-0.0030	-0.0070	20.0	11.583	134.174	0.003	-0.018	0.069	15.859	6	40 -
3	8 Thailand	NIMT	-0.0390	-0.0380	-0.0390	11.0	-20.417	416.840	0.008	-0.322	0.227	63.856		
4	Malaysia	SIRIM	-0.0360	-0.0400	-0.0380	15.0	-19.417	377.007	0.004	-0.169	0.122	30.371	Consistent RB	<u><u> </u></u>
5	Japan	NMIJ2	-0.0300	-0.0080	-0.0190	8.6	-0.417	0.174	0.014	-0.257	0.371	3.824	1.505	I i E I I I I I I I I I I I I I I I I I
6	Taiwan	CMS	-0.0110	-0.0610	-0.0360	14.0	-17.417	303.340	0.005	-0.184	0.140	26.591	0	
7	Vietnam	VMI	-0.0090	-0.0200	-0.0145	15.0	4.083	16.674	0.004	-0.064	0.122	7.246		je nmiji sirim I cms ♦ [⊥] ♦
8	3 India	NPLI	-0.0080	0.0190	0.0060	17.4	24.583	604.340	0.003	0.020	0.091	72.068		
1	Japan	NMIJ1	-0.0250	-0.0340	-0.0290	8.6	-10.417	108.507	0.014	-0.392	0.371	17.080		© -40MSLNMIJ2 ↓ VMI
g	Japan	NMIJ3	-0.0040	-0.0240	-0.0140	8.6	4.583	21.007	0.014	-0.189	0.371	24.996		
								C (after cor	27.414		sum(wi)	1.000	RB	-60
Non-weight	ed mean [nm	1]						uint(x)	5.236		sum(wi(xi-xre	193.224	1.187	Laboratory
x _a	-18.5833							uart(xpilot)	7.638		uext(x)	6.216		
u(x _a)	7.1861													
1 ct							1							

u(x _a)	7.1861					
1st						
Weighted n	nean [nm]					
x _w	-22.2119					
u(x _w)	5.2359					
			xi-x _{RV}	U(x _i -x _{RV})	En	O: good
	New Zealar	n MSL	15.212	41.517	0.366	0
	Thailand	NIMT	-16.788	24.651	-0.681	0
	Malaysia	SIRIM	-15.788	31.995	-0.493	0
	Japan	NMIJ2	3.212	20.482	0.157	0
	Taiwan	CMS	-13.788	30.128	-0.458	0
	Vietnam	VMI	7.712	31.995	0.241	0
	India	NPLI	28.212	36.534	0.772	0
	Japan	NMIJ1	-6.788	20.482	-0.331	0
	Japan	NMIJ3	8.212	20.482	0.401	0

Table 7 Steel 8 mm S/N 043000

New Zealan MSL

							Non-weight	ed	Weighted				Institute number for xref	
								, ,2	-2	-24	wi after			
	Economy	Laboratory	$\Delta I_{\text{left}}(\text{um})$	$\Delta I_{right}(um)$	$\Delta I(um)$	u _c (nm)	X _i -X _{ref}	(X _i -X _{ref}) ⁻	u⁻(x _i)	u⁻(x _i)*x _i	convergence	wi(xi-xref)^2	1	Fig6: Steel 8 mm S/N 043000
2	New Zealan	MSL	0.0140	0.0210	0.0170	20.0	16.833	283.361	0.003	0.043	0.070	16.946	6	co.
3	Thailand	NIMT	0.0120	-0.0030	0.0050	11.0	4.833	23.361	0.008	0.041	0.231	2.963		F
4	Malaysia	SIRIM	-0.0070	-0.0110	-0.0090	15.0	-9.167	84.028	0.004	-0.040	0.124	13.459	Consistent RB	트 40 · · · · · · · · · · · · · · · · · ·
5	Japan	NMIJ2	-0.0040	0.0140	0.0050	8.6	4.833	23.361	0.014	0.068	0.377	4.847	1.505	
6	Taiwan	CMS	-0.0100	-0.0330	-0.0220	14.0	-22.167	491.361	0.005	-0.112	0.142	78.082	0	
7	Vietnam	VMI	0.0080	-0.0260	-0.0090	16.0	-9.167	84.028	0.004	-0.035	0.109	11.829		
8	India	NPLI	-0.0040	-0.0120	-0.0080	17.7	-8.167	66.694	0.003	-0.026	0.089	7.899		8 20- MSL NIME NIME
1	Japan	NMIJ1	0.0050	0.0160	0.0110	8.6	10.833	117.361	0.014	0.149	0.377	34.663		
9	Japan	NMIJ3	0.0130	0.0190	0.0160	8.6	15.833	250.694	0.014	0.216	0.377	80.266		2 40- G
								C (after co	27.911		sum(wi)	1.000	RB	60- L
Non-weight	ed mean [nm	1]						uint(x)	5.283		sum(wi(xi-x	r 57.943	0.644	Laboratory
x _a	0.1667							uart(xpilot)	5.508		uext(x)	3.404		
u(x _a)	4.3391													
1st]							
Weighted m	nean [nm]													
x _w	1.4161													
u(x _w)	5.2831													

Thailand	NIMT	3.584	22.219	0.161	0
Malaysia	SIRIM	-10.416	30.161	-0.345	0
Japan	NMIJ2	3.584	17.479	0.205	0
Taiwan	CMS	-23.416	28.172	-0.831	0
Vietnam	VMI	-10.416	32.151	-0.324	0
India	NPLI	-9.416	35.537	-0.265	0
Japan	NMIJ1	9.584	17.479	0.548	0
Japan	NMIJ3	14.584	17.479	0.834	0
Vallauriaall			منمين مطلام		

 $x_i - x_{RV} = U(x_i - x_{RV})$

15.584 40.121

En

0.388

O: good

0

Table 8 Steel 15 mm S/N 041583

							Non-weight	ed	Weighted				Institute number for xref	
	-		A. (um)	A. (um)		(nm)	~ ~	$(x, y,)^2$	$u^{-2}(x)$	$u^{-2}(v) * v$	wi after			Fig7: Steel 15 mm, S/N 041583
	Economy	Laboratory	$\Delta I_{\text{left}}(\text{um})$	$\Delta I_{right}(um)$	∆/(um)	u _c (mm)	X _i -X _{ref}	(X _i -X _{ref})	u (x _i)	u (x _i) x _i	convergence	wi(xi-xiei)/2	21	
2	New Zealan	MSL	0.0270	0.0190	0.0230	20.0	1.417	2.007	0.003	0.058	0.074	0.122	6	60
3	Thailand	NIMT	0.0280	0.0140	0.0210	11.0	-0.583	0.340	0.008	0.174	0.246	0.127		F MSI
4	Malaysia	SIRIM	0.0120	0.0080	0.0100	16.0	-11.583	134.174	0.004	0.039	0.116	15.977	Consistent RB	
5	Japan	NMIJ2	0.0210	0.0230	0.0220	8.8	0.417	0.174	0.013	0.284	0.385	0.031	1.505	
6	Taiwan	CMS	-0.0180	-0.0110	-0.0150	14.0	-36.583	1338.340	0.005	-0.077	0.152	204.903	0	lē NMIJ1 ⊥ ♦ ± vMI ♦ ±
7	Vietnam	VMI	0.0480	0.0370	0.0425	17.0	20.917	437.507	0.003	0.147	0.103	44.520		
8	India	NPLI	0.0070	0.0140	0.0110	19.9	-10.583	112.007	0.003	0.028	0.075	8.641		8 20-
1	Japan	NMIJ1	0.0300	0.0280	0.0290	8.8	7.417	55.007	0.013	0.374	0.385	20.401		
g	Japan	NMIJ3	0.0240	-	0.0240	8.8	2.417	5.840	0.013	0.310	0.385	2.004		
								C (after cor	29.789		sum(wi)	1.000	RB	60- L
Non-weight	ed mean [nm	ן [uint(x)	5.458		sum(wi(xi-x	r 69.417	0.683	Laboratory
Xa	21.5833							uart(xpilot)	3.606		uext(x)	3.726		
u(x _a)	4.7826													
1st														

u(x _a)	4.7826					
1st						
Weighted n	nean [nm]					
x _w	21.7175					
u(x _w)	5.4579					
			x _i -x _{RV}	$U(x_i - x_{RV})$	En	O: good
	New Zeala	n MSL	1.282	39.152	0.033	0
	Thailand	NIMT	-0.718	20.417	-0.035	0
	Malaysia	SIRIM	-11.718	30.933	-0.379	0
	Japan	NMIJ2	0.282	15.576	0.018	0
	Taiwan	CMS	-36.718	26.774	-1.371	Х
	Vietnam	VMI	20.782	32.998	0.630	0
	India	NPLI	-10.718	38.947	-0.275	0
	Japan	NMIJ1	7.282	15.576	0.468	0
	Japan	NMIJ3	2.282	15.576	0.147	0

Table 9 Steel 80 mm S/N 030770

							Non-weight	ed	Weighted				Institute number for xref
	Economy	Laboratory	∆/ _{left} (um)	$\Delta I_{right}(um)$	∆/(um)	u _c (nm)	x _i -x _{ref}	$(x_i - x_{ref})^2$	u ⁻² (x _i)	u ⁻² (x _i)*x _i	wi after convergence	wi(xi-xref)^2	21 Fig8: Steel 80 mm S/N 030770
2	New Zealan	MSL	-0.0950	-0.0810	-0.0880	24.0	-16.750	280.563	0.002	-0.153	0.116	13.045	6
3	Thailand	NIMT	-0.0650	-0.0680	-0.0670	19.0	4.250	18.063	0.003	-0.186	0.185	19.944	
4	Malaysia	SIRIM	-0.0930	-0.0900	-0.0920	21.0	-20.750	430.563	0.002	-0.209	0.151	32.303	Consistent RB
5	Japan	NMIJ2	-0.0810	-0.0790	-0.0800	12.5	-8.750	76.563	0.006	-0.512	0.427	2.914	
6	Taiwan	CMS	-0.1010	-0.1180	-0.1090	17.0	-37.750	1425.063	0.003	-0.377	0.231	230.712	
7	Vietnam	VMI	-0.0710	-0.0640	-0.0675	29.0	3.750	14.063	0.001	-0.080	0.079	7.757	Ē ₉₀ . Milj1 ⊥ CMS NPLI⊥
8	India	NPLI	-0.0320	-0.0340	-0.0330	40.0	38.250	1463.063	0.001	-0.021	0.042	82.162	
1	Japan	NMIJ1	-0.0710	-0.0700	-0.0700	12.5	1.250	1.563	0.006	-0.448	0.427	23.307	± ↓ ↓ ↓ ↓ ↓ ↓ ↓
9	Japan	NMIJ3	-0.0650	-0.0780	-0.0710	12.5	0.250	0.063	0.006	-0.454	0.427	17.424	ă l
Non-weight	ed mean [nm]						uint(x)	8.168		sum(wi) sum(wi(xi-xi	1.000 158.124	RB 130- 0.688 Laboratory
x _a	-71.2500							uart(xpilot)	5.508		uext(x)	5.624	
u(x _a)	8.7233						_						
1st Weighted m	ean (nm)												
Xw	-77.3879												
u(x _w)	8.1683												
	New Zealan	MSL	x _i -x _{RV} -10.612	U(x _i -x _{RV}) 46.459	En -0.228	O: good O							

					-
New Zeala	in MSL	-10.612	46.459	-0.228	0
Thailand	NIMT	10.388	36.034	0.288	0
Malaysia	SIRIM	-14.612	40.230	-0.363	0
Japan	NMIJ2	-2.612	21.896	-0.119	0
Taiwan	CMS	-31.612	31.788	-0.994	0
Vietnam	VMI	9.888	56.731	0.174	0
India	NPLI	44.388	79.085	0.561	0
Japan	NMIJ1	7.388	21.896	0.337	0
Japan	NMI.I3	6 388	21 896	0 292	0

Table 10 Steel 90 mm S/N 040340

							Non-weighte	d	Weighted				Institute number
	Economy	Laboratory	$\Delta I_{\text{left}}(\text{um})$	∆/ _{right} (um)	∆/(um)	u _c (nm)	x _i -x _{ref}	(x _i -x _{ref}) ²	u ⁻² (x _i)	u⁻²(x _i)*x _i	wi after convergence	wi(xi-xref)^2	I
	2 New Zealan	MSL	-0.0630	-0.0610	-0.0620	25.0	-2.800	7.840	0.002	-0.099	0.133	62.365	5
	3 Thailand	NIMT	-0.0250	-0.0250	-0.0250	21.0	34.200	1169.640	0.002	-0.057	0.188	44.289	
	4 Malaysia	SIRIM	-0.0640	-0.0570	-0.0600	22.0	-0.800	0.640	0.002	-0.124	0.172	66.350	Consistent RB
	5 Japan	NMIJ2	-0.0450	-0.0450	-0.0450	13.4	14.200	201.640	0.006	-0.251	0.463	10.062	1.554
	6 Taiwan	CMS	-0.0240	-0.0860	-0.0550	18.0	4.200	17.640	0.003	-0.170	0.256	55.120	0
	7 Vietnam	VMI	0.0510	0.0620	0.0565	31.0	115.700	13386.490	0.001	0.059	0.086	810.360	
	8 India	NPLI	-0.0960	-0.1110	-0.1040	43.1	-44.800	2007.040	0.001	-0.056	0.045	181.204	
	1 Japan	NMIJ1	-0.0350	-0.0360	-0.0350	13.4	24.200	585.640	0.006	-0.195	0.463	13.167	
	9 Japan	NMIJ3	-0.0360	-	-0.0360	13.4	23.200	538.240	0.006	-0.200	0.463	8.694	
								C (after cor	n 83.048		sum(wi)	1.000	RB
Non-w	eighted mean [nm]							uint(x)	9.113		sum(wi(xi-xr	364.271	1.047
x _a	-59.2000							uart(xpilot)	5.508		uext(x)	9.543	
$u(\mathbf{x})$	13 0131												

u(x _a)	13.013	1								
1st							2nd (VMI exc	luded)		
Weighted I	mean [nm]									
x _w	-40.335	7					x _w	-48.7041		
u(x _w)	8.743	1					u(x _w)	9.1131		
			x _i -x _{RV}	U(x _i -x _{RV})	En	O: good	x _i -x _{RV}	U(x _i -x _{RV})	En	O: good
	New Zeala	ncMSL	-21.664	48.120	-0.450	0	-13.296	47.845	-0.278	0
	Thailand	NIMT	15.336	39.744	0.386	0	23.704	39.410	0.601	0
	Malaysia	SIRIM	-19.664	41.852	-0.470	0	-11.296	41.535	-0.272	0
	Japan	NMIJ2	-4.664	23.104	-0.202	0	3.704	22.525	0.164	0
	Taiwan	CMS	-14.664	33.340	-0.440	0	-6.296	32.941	-0.191	0
	Vietnam	VMI	96.836	60.494	1.601	Х	105.204	60.276	1.745	Х
	India	NPLI	-63.664	85.123	-0.748	0	-55.296	84.968	-0.651	0
	Japan	NMIJ1	5.336	23.104	0.231	0	13.704	22.525	0.608	0
	Japan	NMIJ3	4.336	23.104	0.188	0	12.704	22.525	0.564	0

Yellow cells are not used to calculate the weighted mean Red cells have absolute En over one.

Table 11 Steel 100 mm S/N 042033

							Non-weight	ed	Weighted				Institute nu	imbr
	Economy	Laboratory	∆/ _{left} (um)	$\Delta I_{right}(um)$	∆/(um)	u _c (nm)	x _i -x _{ref}	(x _i -x _{ref}) ²	u ⁻² (x _i)	u ⁻² (x _i)*x _i	wi after convergence	wi(xi-xref)^2	1	
	2 New Zealar	MSL	0.0880	0.0440	0.0660	26.0	-4.900	24.010	0.001	0.098	0.132	7.245		5
	3 Thailand	NIMT	0.0710	-	0.0710	22.0	0.100	0.010	0.002	0.147	0.184	1.077		_
	4 Malaysia	SIRIM	0.0460	0.0530	0.0490	23.0	-21.900	479.610	0.002	0.093	0.168	100.261	Consistent	RB
	5 Japan	NMIJ2	0.0720	0.0580	0.0650	14.3	-5.900	34.810	0.005	0.318	0.435	30.839	1.554	
	6 Taiwan	CMS	0.0460	0.0230	0.0350	18.0	-35.900	1288.810	0.003	0.108	0.274	405.187	0	
	7 Vietnam	VMI	0.1150	0.0920	0.1035	33.0	32.600	1062.760	0.001	0.095	0.082	73.888		
	8 India	NPLI	0.2670	0.2020	0.2350	46.2	164.100	26928.810	0.000	0.110	0.042	1087.819		
	1 Japan	NMIJ1	0.0620	0.0640	0.0630	14.3	-7.900	62.410	0.005	0.308	0.435	47.227		
	9 Japan	NMIJ3	-	0.0640	0.0640	14.3	-6.900	47.610	0.005	0.313	0.435	38.598		
								C (after con	88.934		sum(wi)	1.000	RB	_
Non-weig	hted mean [nm	ןר]						uint(x)	9.430		sum(wi(xi-x	r 213.309	0.774	
x _a	70.9000							uart(xpilot)	1.000		uext(x)	7.303		
u(x _a)	8.9476													
1st							2nd (NPLI e	excluded)			T			
Weighted	mean [nm]													
x _w	73.4207						x _w	66.6883						
u(x _w)	9.2400						u(x _w)	9.4305						
			x _i -x _{RV}	U(x _i -x _{RV})	En	O: good	x _i -x _{RV}	U(x _i -x _{RV})	En	O: good				
	New Zealar	MSL/IR	-7.421	48.647	-0.153	0	-0.688	48.500	-0.014	0				
	Thailand	NIMT	-2.421	39.981	-0.061	0	4.312	39.803	0.108	0				
	Malaysia	SIRIM	-24.421	42.172	-0.579	0	-17.688	42.003	-0.421	0				
	Japan	NMIJ2	-8.421	21.919	-0.384	0	-1.688	21.592	-0.078	0				
	Taiwan	CMS	-38.421	30.960	-1.241	Х	-31.688	30.729	-1.031	Х				
	Vietnam	VMI	30.079	63.392	0.474	0	36.812	63.279	0.582	0	1			
	India	NPLI	161.579	90.555	1.784	Х	168.312	90.477	1.860	Х				
	Japan	NMIJ1	-10.421	21.919	-0.475	0	-3.688	21.592	-0.171	0				
	Japan	NMIJ3	-9.421	21.919	-0.430	0	-2.688	21.592	-0.125	0				

NMIJ3 Japan Yellow cells are not used to calculate the weighted mean.

Red cells have absolute En over one.

Table 12 Summary and En number

(a) 1st (All institu	tes except CMS	are used for Re	ference values)				Xi-Xref	2*u(Xi-Xr	ef)	
Nominal Length [mm]	0.5	1.01	1.1	6	7	8		80	90	100
MSL	14 ± 41	4 ± 40	10 ± 51	1 ± 43	15 ± 42	16 ± 40	1 ± 39	-11 ± 46	-22 ± 48	-7 ± 49
NIMT	2 ± 23	-11 ± 23	-13 ± 39	-6 ± 26	-17 ± 25	4 ± 22	-1 ± 20	10 ± 36	15 ± 40	-2 ± 40
SIRIM	-9 ± 31	-13 ± 30	-14 ± 44	-17 ± 33	-16 ± 32	-10 ± 30	-12 ± 31	-15 ± 40	-20 ± 42	-24 ± 42
NMIJ	1 ± 19	2 ± 18	-7 ± 37	-5 ± 23	3 ± 20	4 ± 17	0 ± 16	-3 ± 22	-5 ± 23	-8 ± 22
CMS	-21 ± 29	-29 ± 28	-16 ± 43	-10 ± 32	-14 ± 30	-23 ± 28	-37 ± 27	-32 ± 32	-15 ± 33	-38 ± 31
VMI	6 ± 29	3 ± 28	18 ± 43	22 ± 33	8 ± 32	-10 ± 32	21 ± 33	10 ± 57	97 ± 60	30 ± 63
NPLI	-15 ± 32	24 ± 31	36 ± 45	28 ± 37	28 ± 37	-9 ± 36	-11 ± 39	44 ± 79	-64 ± 85	162 ± 91

Xi-Xref 2*u(Xi-Xref)

(b) After conv	ergence									
Nominal Length		/								
[mm]	0.5	1.01	1.1	6	7	8	15	80	90	100
MSL	14 ± 41	4 ± 40	10 ± 51	1 ± 43	15 ± 42	16 ± 40	1 ± 39	-11 ± 46	-13 ± 48	-1 ± 49
NIMT	2 ± 23	-11 ± 23	-13 ± 39	-6 ± 26	-17 ± 25	4 ± 22	-1 ± 20	10 ± 36	24 ± 39	4 ± 40
SIRIM	-9 ± 31	-13 ± 30	-14 ± 44	-17 ± 33	-16 ± 32	-10 ± 30	-12 ± 31	-15 ± 40	-11 ± 42	-18 ± 42
NMIJ	1 ± 19	2 ± 18	-7 ± 37	-5 ± 23	3 ± 20	4 ± 17	0 ± 16	-3 ± 22	4 ± 23	-2 ± 22
CMS	-21 ± 29	-29 ± 28	-16 ± 43	-10 ± 32	-14 ± 30	-23 ± 28	-37 ± 27	-32 ± 32	-6 ± 33	-32 ± 31
VMI	6 ± 29	3 ± 28	18 ± 43	22 ± 33	8 ± 32	-10 ± 32	21 ± 33	10 ± 57	105 ± 60	37 ± 63
NPLI	-15 ± 32	24 ± 31	36 ± 45	28 ± 37	28 ± 37	-9 ± 36	-11 ± 39	44 ± 79	-55 ± 85	168 ± 90

(c) En number after convergence Nominal Length 1.01 [mm] MSL 0.5 1.1 7 15 80 90 100 6 8 0.35 0.10 0.19 0.02 0.37 0.39 0.03 -0.23 -0.28 -0.01 NIMT 0.10 -0.49 -0.33 -0.23 -0.68 0.16 -0.04 0.29 0.60 0.11 -0.28 -0.43 -0.32 -0.51 -0.49 -0.35 -0.38 -0.36 -0.27 -0.42 NMIJ 0.07 0.10 -0.19 -0.23 0.16 0.21 0.02 -0.12 0.16 -0.08 CMS VMI -0.72 -0.37 -1.37 -0.99 -0.19 -1.03 -1.02 -0.32 -0.46 -0.83 0.20 0.12 0.43 0.67 0.24 -0.32 0.63 0.17 0.58 1.75 NPLI -0.46 0.76 0.80 0.75 0.77 -0.26 -0.28 0.56 -0.65 1.86

Red cells mean absolute En over one.

Civis's values are excluded from key reference values calculation because Civis reported their values with wrong phase corrections.

APMP.L-K1.1-Final.xls,Equip

Table 13 Measurement instruments and conditions reported by the participating laboratories

	Make and Type of interferometer	Light sources / Wavelengths used	Method of fringe fraction determination	Method used for determination of refractive	Range of gauge block	Material of	Phase correction applied for steel
		5		index of the air	temperature during	reference flats	
Laboratory					measurements		
	NPL Hilger Type TN 190.2 gauge block	HP5500C Zeeman stabilised helium-neon laser,	The fringe fraction is determined by computer analysis of a fringe image acquired	Calibrated sensors measure air temperature,	The gauge temperature was in	steel	
	interferometer. This is a Fizeau type	wavelength in vacuum = 632.991417 nm.	by a video camera. The fringe pattern is modelled by two sets of parallel lines,	pressure and humidity before and after ezch	the range 20.00 C to 20.16 C		
	interferometer and has been modified to	Mercury-198 lamp, green line, wavelength in	separately fitted by a least squares method to the gauge block and to the platen	fringe measurement. The revised Edlen	for all measurements.		
	include a fibre optic feed for the laser light,	vacuum = 546.22705 nm	areas of the image. The fringe fraction along the centre line of the gauge block is	equations given in [3] are used to calculate the			-10.2 pm
MSL	a video camera to observe the fringe		then calculated from the line positions and interpolated to the centre of the gauge	refractive index of the air.			-10.2 1111
	pattern, and motors to select the	Note: The Mercury lamp green line is only used	block [2].				
	wavelength and gauge block. All this is	to determine the fringe order. The gauge length					
	done under computer control [1].	is calculated from the fringe fraction obtained					
		from the laser source.					
NIMT	Mitutoyo, Twyman-Green interferometer	Stabilized He-Ne laser / Wavelength used	Computerized phase difference angle determination with "8-point Average 4-slit"	Modified Edlen equation	20+-0.3 C	Quartz	42 nm
INIIVII		632.990940 nm	method				42 1111
	NPL-TESA gauge block interferometer	Two frequency-stabilised He-Ne lasers with	The gauge blocks were calibrated by interferometric measurement using the	The refractive index of air was calculated using	Air temperature range: 19.871	Tungsten Carbide	
	based on Twyman-Green Interferometer	wavelengths 633 nm and 543 nm were used.	exact-fraction method. Interference fringes were observed using a CCD camera	the Edlen formula. Data from air temperature	C to 20.153 C		
SIRIM			linked to a PC. After stabilisation, a series of measurement consisting of not less	probe, pressure transducer and dew point	Gauge block temp: 19.902 C to		-6 nm
OIIVIN			than three length determinations was carried out. Corrections due to	meter were input to the computer automatically.	20.194 C		01111
			tempoerature, humidity and atmospheric pressure were calculated automatically.				
	NRLM-Tsugami GB interferometer based	Zeeman stabilized 633 nm He-Ne laser, lodine	The fringe ftaction is determined by computer analysis of a fringe image acquired	The refractive index of the air is determined by	19.98 C to 20.03 C	steel	
	on Twyman-Green's interferometer	stabilized frequency-doubled Nd:YAG laser 532	by a CCD camera.	using Ciddor's equation (Applied Optics, Vol.35,			
NML		nm, Rubidium stabilized 782 nm diode laser		No.9, pp.1566-1573 (1996). The environmental			9 7 nm
141110				data of air temperature, air pressure, dew point			
				and CO2 content in the equipment were			
		÷		measured.	(a		
CMS	Brown and Sharpe GBI300 Twyman-Green	Stabilized He-Ne laser: 633 nm and 543 nm	Phase stepping method	Edlen's equation	(20.0+-0.1) C	steel	-57 nm
	type gauge block interferometer				T () (-
	1. Gauge blocks are measured by the	He-Ne stabilized laser sources wavelength 633	The tringe fraction of gauge block are measured by CCD camera and seizaed by	The refractive index of air, n, is determined by	The temperature of gauge	steel	
	TESA upd gauge blocks comparator with	nm	trame grabber of image processor.	the Edlens's equation by using the measured	blocks is within 0.5 C of 20.0		
	uncertainty $U = (0.07 + 0.5L)$ mm; [L]:m			values of air temperature, pressure, relative			
	within half wavelength I = 633 nm.			humidity.	The temperature of gauge		
	2. Gauge blocks are wrung to a steel				block is measured three times,		
VMI	platen and viewed with an intererometer-				at the start, half way through		11 nm
	Michelson type. Measurements are made				the measurement and at the		
	of the path difference between the top of				end, using two thermometers.		
	the gauge block and the platen in				The temperature change		
	wavelength. The fringe position are				during the measurement is		
	determined by the length of gauge block				less than 0.02 C.		
	and the wavelength of the light.	Monochromatic radiation of Cd114 isotopic long	Eve estimation	Modified Edlen equation	Stabilized at 20 20 C - 20 60 C	Tungeten Carbido	
	190 202/52714 Eizoou Tupo	monochromatic radiation of Cult 14 isotopic lamp	Lye countation		and maximum variation of	i ungsten Garbide	
NPLI	100 302/32/14, Fizedu Type				temperature from the stabilized		25 nm
					values is < 0.02 C		

[1] E.F.Howick and C.M. Sutton, Improvements to a 1960's Hilger gauge block interferometer, in Recent Developments in Optical Gauge Block Metrology, SPIE Proceedings 3477 (1998).

[2] E.F. Howick, L.R. Watkins and S.M. Tan, Automation of a 1960's Hilger gauge block interferometer, Metrologia 40, 139 (2003).

[3] R. Muijlwijk, Update of the Edlen Formulae for the Refractive Index of Air, Metrologia 25, 189 (1988)

Table 14 Summary of measurement uncertainty

Standard uncertainty $u(L) = [a, b^{*}L] = SQRT(a^{2}+(b^{*}L)^{2})$

Coeff.	а	b	Length (m)	0.0005	0.00101	0.0011	0.006	0.007	0.008	0.015	0.08	0.09	0.1
MSL	0.02	0.17		0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.024	0.025	0.026
NIMT	0.011	0.19		0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.019	0.020	0.022
SIRIM	0.015	0.171		0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.020	0.021	0.023
NMIJ	0.0086	0.114		0.009	0.009	0.009	0.009	0.009	0.009	0.009	0.013	0.013	0.014
CMS	0.014	0.12		0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.017	0.018	0.018
VMI	0.014	0.189		0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.021	0.022	0.024
NPLI	0.015	0.31		0.015	0.015	0.015	0.017	0.017	0.017	0.020	0.040	0.043	0.046

The pilot's comments: For the MRA we show u(L) and this is what we hope to demonstrate in the Key Comparison. Unfortunately the Technical Protocol did not specifically ask participants to state their uncertainty this way, although many did. I have attempted to extract the a and b coefficients from the informatiuon supplied and this is shown in the table. Please check your values and let me know if you want a change.

This table shows the calculated uncertainties by the formulae with [a, b*L] format, which is equal to SQRT(a²+(b*L)²).

Blue cells mean some difference between the formulae and the uncertainty reported with the central lengths. Light blue cells mean slight difference between the formulae and the uncertainty reported with the central lengths.

NPLI represent the formulae with a+b*L format.

2009/7/2

Table 15 Birge ratio

Gauge Length [mm]	0.5	1.01	1.1	6	7	8	15	80	90	100
Birge Ratio	0.63	0.93	1.43	1.17	1.19	0.64	0.68	0.69	1.05	0.77
consistent RB less than	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.55	1.55