Key comparison BIPM.RI(II)-K1.I-123

MEASURAND: Equivalent activity of ¹²³I

 x_i : result of measurement carried out in the SIR for the sample submitted by laboratory i

 u_i : combined standard uncertainty of x_i

Lab <i>i</i>	X i	u _i	Date of		
	/ kBq	/ kBq	measurement		
IRMM	120120	730	83-05-31		
LNE-LNHB	120020	470	83-05-31		
IRA	119450	570	85-06-27		
PTB	121400	1300	85-10-25		

Key comparison EUROMET.RI(II)-K2.I-123

MEASURAND: Equivalent activity of ¹²³I

 x_i : result of measurement carried out at laboratory i

converted to the equivalent activity through the LNE-LNHB and the IRMM

 u_i : combined standard uncertainty of x_i

Lab i	<i>x</i>	u _i / kBq	Measurement report date		
NPL	120480	440	1983		

Key comparison BIPM.RI(II)-K1.I-123

MEASURAND: Equivalent activity of ¹²³I

Key comparison reference value: the SIR reference value for this radionuclide x_R is 120.25 MBq, with a standard uncertainty u_R of 0.41 MBq (see section 4.1 of the Final Report).

The degree of equivalence of each laboratory with respect to the reference value is given by a pair of terms: $D_i = (x_i - x_R)$ and U_i , its expanded uncertainty (k = 2), both expressed in MBq, with n the number of laboratories, $U_i = 2[(1 - 2/n)u_i^2 + (1/n^2)\Sigma u_i^2]^{1/2}$ when each laboratory has contributed to the computation of x_R (see *Metrologia*, 42, 140-144).

The degree of equivalence between two laboratories is given by a pair of terms: $D_{ij} = D_i - D_j = (x_i - x_j)$ and U_{ij} , its expanded uncertainty (k = 2), both expressed in MBq. The approximation $U_{ii} \sim 2(u_i^2 + u_i^2)^{1/2}$ is used in the computation of the pair-wise degrees of equivalence.

Linking EUROMET.RI(II)-K2.I-123 (1976) to BIPM.RI(II)-K1.I-123

The value x_i is the equivalent activity for laboratory i participant in EUROMET.RI(II)-K2.I-123 having been normalized to the value of the LNE-LNHB and IRMM as the linking laboratories (see Final Report).

The degree of equivalence of laboratory *i* participant in EUROMET.RI(II)-K2.I-123 with respect to the key comparison reference value is given by a pair of terms: $D_i = (x_i - x_R)$ and U_i , its expanded uncertainty (k = 2), both expressed in MBq. The approximation $U_i = 2(u_i^2 + u_R^2)^{1/2}$ is used in the Matrix of equivalence.

The degree of equivalence between two laboratories i and j, one participant in BIPM.RI(II)-K1.I-123 and one in EUROMET.RI(II)-K2.I-123 or both participants in EUROMET.RI(II)-K2.I-123, is given by a pair of terms expressed in MBq: $D_{ij} = D_i - D_j$ and U_{ij} , its expanded uncertainty (k = 2), approximated by $U_{ij} = 2(u_i^2 + u_j^2 - 2fu_i^2)^{1/2}$ with I being the linking laboratory when each laboratory is from the EUROMET and f is the correlation coefficient.

These statements make it possible to extend the BIPM.RI(II)-K1.I-123 matrix of equivalence to all participants in EUROMET.RI(II)-K2.I-123

Key comparison BIPM.RI(II)-K1.I-123

Matrix of equivalence

Lab *j*

Lab <i>i</i>		IRMM		LNE-LNHB		IRA		PTB		NPL		
❖	D_i	U _i	D_{ij}	U _{ij}	D_{ij}	U ij						
	/ MBq		/ MBq		/ MBq		/ MBq		/ MBq		/ MBq	
IRMM	-0.1	1.3			0.1	1.7	0.7	1.9	-1.3	3.0	-0.4	1.4
LNE-LNHB	-0.2	1.1	-0.1	1.7			0.6	1.5	-1.4	2.8	-0.5	0.9
IRA	-0.8	1.2	-0.7	1.9	-0.6	1.5			-2.0	2.8	-1.0	1.4
PTB	1.2	2.0	1.3	3.0	1.4	2.8	2.0	2.8			0.9	2.7
_												
NPL	0.2	1.2	0.4	1.4	0.5	0.9	1.0	1.4	-0.9	2.7		

Left part of the graph: participants in BIPM.RI(II)-K1.I-123 **Right part of the graph**: participant in EUROMET.RI(II)-K2.I-123

Black squares: participants' results prior to 1985

Note: The right-hand axis shows approximate relative values only