BUREAU INTERNATIONAL DES POIDS ET MESURES

International comparison of activity measurements of a solution of ³H (January 2009)

Participating laboratory:

 $T_{1/2} = (4 \ 496.862 \ d; u = 9.131 \ d)^*$

Ampoule number _____

Mass of solution, according to distributing laboratory ____g

Name(s) of the person(s) who carried out the measurements:

Date:

Please send the filled-in form and any additional information to the BIPM *not later than* **May 31, 2009.**

^{*} M.M. Bé et al., *Monographie BIPM-5*, Table of radionuclides, Vol. 3, 2006, 210 pp, p. 1

A. Preliminary measurements

A.1. Method used for preliminary measurements

- calibrated ionization chamber	YES 🗆	NO 🗆
- well crystal	YES 🗆	NO 🗆
- other method	YES	NO 🗆

A.2. Results obtained

Radioactivity concentration, in kBq g^{-1} (2009-05-31, 0 h UTC)

- before opening the original ampoule	
date of this measurement	
- after transfer to another ampoule	
date of this measurement	

Total mass of solution found in the ampoule____ g

A.3. Adsorption tests

Please take into account the adsorption tests in the evaluation of the final results.

A.3.1. Adsorption tests carried out with liquid-scintillation	n counting	
- Count-rate after two rinsings:	S	, ⁻¹
(converted to activity by applying the measured detection	efficiency).	
Thus, activity remaining in the "empty" original ampoule	:F	3q.
Date of this test:		
Number of additional rinsings		-
Final residual count-rate:		_
Thus, final residual activity:		_
Date of final test measurements:		_•

Please explain the measuring procedure used:

A.3.2. Adsorption tests carried out with proportional counting

Please rinse the ampoule with an aggressive solution to remove most of the activity and prepare solid source(s) to measure this residual activity.

Activity remaining in the "empty" original ____ Bq. Date of this test ____.

A.4. Impurity checks* :

Method of measurement _____, Nuclide _____, Impurity to ³H ratio _____ and its uncertainty _____ at reference date (2009-05-31, 0 h UTC).

Please note that any impurity determination is considered to be an important part of the comparison.

^{*} Please give this information for each impurity found.

B. Source preparation

B.1. Methods used for source preparation:

Possible remarks about drying, precipitation, foils used (gold-coated or not, number, etc.), type of balance used...

B.2. Solutions, sources

B.2.1. For photon counting and electron counting (if relevant)

Diluent:

dilution numbe	ilution	питье	r
----------------	---------	-------	---

	1	2	3	
- dilution factor				
possible remarks				
- number of sources prepared				
- disposed mass of solution (approx.)				

B.2.2. For liquid-scintillation counting

Diluent	
Dilution factor	
Scintillator used to prepare the sources	
Volume of scintillator used	 cm ³
Chemicals used to stabilize the solution	
Substances used as quenching agent	
Type of vials used	

C. Procedures used for the activity measurements

Method of measurement used

(e.g. efficiency tracing method with a pressurized proportional counter, efficiency tracing method with a liquid-scintillation spectrometer, CIEMAT/NIST or TDCR method or by means of any other experimental devices)

Please list the values for all the decay-scheme parameters (branching ratios, transition intensities, internal conversion coefficients, etc.) relevant to your measurements.

In case you used more than one method, please assemble the relevant information on separate sheets.

D. Detectors, counting equipment

D.1. Photon counting

D.1.1. Scintillator detector			
Crystal material		Solid angle	sr
Number of crystals		Well type YES	□ NO □
Crystal diameter	mm	Crystal height	mm
Well diameter	mm	Well depth	mm
Window material		Thickness	mm
Distance between photon co	unter and source		mm
Resolution at	keV,	FWHM [*] %,	keV

Please add a typical pulse-height spectrum.

D.1.2. Semiconductor detector

	Solid angle		sr
	Well type YES	□ NO	
	Coaxial	🗆 Planar	
mm	Volume		cm^3
	Window thickness		mm
unter and source			mm
keV,	FWHM [*] %,		keV
	mm mm 	Solid angleWell typeYESCoaxialmmVolumeWindow thicknessunter and source keV, FWHM* %,	Solid angle Well type YES NO Coaxial Planar Window thickness unter and source %,

Please add a typical pulse-height spectrum and an efficiency curve.

^{*} full width at half maximum

Radionuclides used for an efficiency determination (if relevant)

 $P_{\gamma}(\%)$

D.1.3. Other detectors used

D.2. Photon and/or electron counting

D.2.1. Proportional counter			
Solid angle	sr		
Wall material		Height of each half	mm
Anode			
Nature			
Wire diameter	mm	Wire length	mm
Distance from source	e mm		
Voltage applied	kV		
Gas			
Nature			
Pressure			
(above atmospheric pressure	e) MPa		

Remarks

D.2.2. Liquid-scintillation equipment

D.2.2.1. CIEMAT/NIST method

D.2.2.1.1. Characterization of	the liquid-scintillation counter (LSC)
Type of the counter		
Age		
Quench parameter		
Nuclide used as external stand	ard	
Efficiency obtained with an un	quenched standard of ³ H	
Background (unquenched stand	dard in toluene scintillator,	
0 to 2000 or more keV)		
Options used (e.g. low-level co	ounting)	
D.2.2.1.2. Characterization of	<i>the tracer</i> (e. g. ⁵⁴ Mn)	
Standard used and its origin		
Uncertainty on the standard		
Date of preparation of the trace	er samples	
Chemical composition of the tr	racer samples	
D.2.2.2. TDCR method		
D.2.2.2.1. Characteristics of th	ne experimental equipment	
Type of phototubes		
Operating temperature		
Coincidence resolving time		
Type of dead time	extending	non-extending \Box
Minimum dead-time length		μs
Efficiency variation method:		
	- defocusing	
	- grey filters	
	- chemical quenching	
	- other ones (please describe)	
External standard (³ H or other)) used	
for the determination of the fig	ure of merit	

(For other detector or additional channels, please give information on appropriate sheets.)

D.4. Parameters of counting equipment

(Give a brief description, e.g. in the form of a block diagram.)

D.4.1. Photon counting

8	a) Discrimination level	keV	
	(or window)		
ł	b) Dead times and their uncer	tainties (standard deviation)	
	Dead time	$\tau_1 = ____ \mu s; u = __$	μs
	Type of dead time	extending	non-extending \Box
	Method used for measurem	nent	
D.3.2. <i>E</i>	Electron counting		
8	a) Discrimination level	keV	
	(or window)		
ł	b) Dead times and their uncer	tainties (standard deviation)	
	Dead time	$\tau_2 = \mu s; u =$	μs
		2	
	Type of dead time	extending	non-extending \Box
	Method used for measurem	nent	
D130	Coincidence unit (if relevant)		

D.4.3. *Coincidence unit (if relevant)* Coincidence resolving time

 $\tau_{\rm R} = _____ \ \mu s; \ u = ____ \ \mu s$

Method used for measurement	

D.4.4. *Other modules used* (for LSC see section D.2.2.)

E. Relevant data, corrections and uncertainties

E.1. Date of measurement of ³H

(Mean date on which your measurements were carried out)

E.2. Measuring data

E.2.1. Photons	
Dead time µs	Number of sources measured
Background rate s ⁻¹	Typical count rate s ⁻¹
Typical time for one measurement	\$
Discrimination threshold or window	keV
E.2.2. Electrons	
Dead time µs	Number of sources measured
Background rate s ⁻¹	Typical count rate s ⁻¹
Typical time for one measurement	\$
Discrimination threshold or window	keV
E.2.3. Extrapolation of efficiency function	
Maximum achieved efficiency	%
Method used for varying the efficiency	

Number of degrees of freedom _____ Please add a figure, if possible. E.2.4. Liquid-scintillation parameters Numerical codes used ____ *kB* value ____

Formula used to calculate the ionization quenching correction factor $Q(E)$	
Are M, N, captures taken into account?	
Are M, N, x-ray and Auger electrons taken into account?	
Model used to evaluate the interaction probability of	
the photons with the scintillator	
Values used for cross section of interaction	
E.2.5. Calculated data for the liquid-scintillation method	
Total efficiency ³ H	

E.2.6. *Corrections applied*

unit

E.2.7 Uncertainty components*, in % of the activity concentration, due to

	Sensitivity factors	Type A or B method	Remarks
counting statistics	 		
weighing	 		
dead time	 		
background	 		
pile-up	 		
counting time	 		
adsorption	 		
impurities	 		
tracer	 		
input parameters and statistical model	 		
quenching	 		
interpolation from calibration curve	 		
decay-scheme parameters	 		
half life			
$(T_{1/2} = 4\ 496.862\ \mathrm{d};$			
u = 9.131 d)	 		
self absorption	 		
extrapolation of efficiency curve other offects (if relevant)	 		
(explain)	 		
combined uncertainty (as quadratic sum of all uncertainty components)	 		

^{*} The uncertainty components are to be considered as approximations of the corresponding standard deviations (see also *Metrologia*, 1981, **17**, 73 and *Guide to expression of uncertainty in measurement*, ISO, corrected and reprinted 1995).

F. Combination of individual results

(obtained from the individual dilutions, source preparation, etc.)

How have the individual results been used for arriving at the final result (statistical weights)?

G. Final result for a given method

(Please, for each method used, give the following information)

The radioactivity concentration of the 3 H solution on the reference date (2009-05-31, 0 h UTC) is

_____ kBq g⁻¹,

and the combined uncertainty is

_____ kBq g⁻¹, ____ %

Remarks

H. Laboratory final result

If several measuring methods were used, please indicate below the value to be considered for the evaluation of the degree of equivalence (according to the CIPM MRA), and its method of calculation.

The radioactivity concentration of the 3 H solution on the reference date (2009-05-31, 0 h UTC) is

_____ kBq g⁻¹,

and the combined uncertainty is

_____ kBq g⁻¹, ____ %

Remarks