

Evaluation of the decay data

Alan L. Nichols¹, Tibor Kibédi²

¹ Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom ² Department of Nuclear Physics and Accelerator Applications, Australian National University, Canberra, Australia

This new evaluation was completed including the literature available by end of June 2021.

Tables of decay data with the decay scheme p.	2-7
Comments on the present evaluationp.	8-14

1 Decay Scheme

 131 Cs undergoes 100% EC decay directly to the stable ground state of 131 Xe. This very simple nuclear decay scheme consists of only one EC transition, along with arrays of atomic X-ray and Auger-electron emissions.

Le ¹³¹Cs décroît par capture électronique à 100 % vers l'état fondamental, stable, du ¹³¹Xe. Ce schéma de désintégration très simple ne comprend qu'une seule transition, suivie d'émissions de photons X et d'électrons Auger.

2 Nuclear Data

 $\begin{array}{rrrr} T_{1/2}(^{131}{\rm Cs}~) &:& 9{,}681~~(16)~~{\rm d}\\ Q^+(^{131}{\rm Cs}~) &:& 358{,}00~~(18)~~{\rm keV} \end{array}$

2.1 Electron Capture Transitions

	$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$	Probability (%)	Nature	$\lg ft$	P_K	P_L	P_M
$\epsilon_{0,0}$	358,00 (18)	100	allowed	$5,\!580$	0,83566 (30)	0,12757 (7)	0,02824 (12)

3 Atomic Data

3.1 Xe

ω_K	:	0,888	(5)
$\bar{\omega}_L$:	0,097	(5)
n_{KL}	:	0,902	(4)

3.1.1 X Radiations

	$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$	Relative probability		
$\mathrm{X}_{\mathrm{K}_{\mathrm{tot}}}$	30,631 - 35,819	188		
$\begin{array}{c} \mathrm{K}\alpha_2\\ \mathrm{K}\alpha_1 \end{array}$	$30,631 \\ 30,978$	$53,92 \\ 100$	}	$K\alpha$
$egin{array}{c} \mathrm{K}eta_3\ \mathrm{K}eta_1\ \mathrm{K}eta_5^{\prime\prime}\ \mathrm{K}eta_5^{\prime\prime}\ \mathrm{K}eta_5^{\prime\prime} \end{array}$	34,925 34,993 35,252 35,266	9,33 18,14 0,090 0,132	<pre>}</pre>	$\mathrm{K}'eta_1$
KN KO	35,819 - 35,832 35,979 - 35,981	$5,83 \\ 0,58$		
$\rm X_{L_{tot}}$	3,7956 - 5,2886	21,81		
$\rm X_{\rm M_{\rm tot}}$	0,2769 - 1,0378	$1,\!36$		
$\rm X_{\rm N_{\rm tot}}$	0,0929 - 0,2088	0,517		

3.1.2 Auger Electrons

	$\frac{\rm Energy}{\rm (keV)}$	Relative probability
Auger K_{tot}	24,398 - 33,721	149,8
KLL	24,398 - 25,789	100
KLX	28,987 - 30,780	$44,\!97$
KXY	33,493 - 35,569	4,81
${\rm Auger} \ {\rm L_{tot}}$	0,1350 - 4,5518	1550
${\rm Auger}~{\rm M}_{\rm tot}$	$0,\!0146 - 0,\!7217$	3758
Auger $\rm N_{tot}$	0,0018 - 0,0974	9440

4 Electron Emissions

		$\begin{array}{c} {\rm Energy} \\ {\rm (keV)} \end{array}$	Electrons (per 100 disint.)
$e_{AN_{\rm tot}}$	(Xe)	0,0018 - 0,0974	571 (171)
$e_{AM_{\rm tot}}$	(Xe)	0,0146 - 0,7217	227~(70)
$e_{AL_{\rm tot}}$	(Xe)	0,1350 - 4,5518	94(14)
$e_{AK_{\rm tot}}$	(Xe)	24,398 - 33,721	9,1~(14)
	KLL	$24,\!398 - 25,\!789$	6,0 (9)
	KLX	28,987 - 30,780	2,72 (41)
	KXY	33,493 - 35,569	0,291 (44)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy (keV)	Photons (per 100 disint.)	
XN _{tot} XM _{tot} XL _{tot}	(Xe) (Xe) (Xe)	0,0929 - 0,2088 0,2769 - 1,0378 3,7956 - 5,2886 30,631 - 35,819	0,21 (6) 0,54 (16) 8,6 (9) 75 (7)	
$\begin{array}{c} XK\alpha_2\\ XK\alpha_1 \end{array}$	(Xe) (Xe) (Xe)	30,631 30,978	$21,4 (21) \\39,6 (40)$	K α
$egin{array}{c} { m XK}eta_3\ { m XK}eta_1\ { m XK}eta_5^{\prime\prime}\ { m XK}eta_5^{\prime\prime} \end{array}$	(Xe) (Xe) (Xe) (Xe)	34,925 34,993 35,252 35,266	$egin{array}{c} 3,70&(37)\ 7,2&(7)\ 0,0354&(35)\ 0,052&(5) \end{array}$	$\left. \right\} \mathbf{K}^{'}\beta_{1}$
XKN XKO	(Xe) (Xe)	35,828 35,980	$\begin{array}{c} 2,31 \ (23) \\ 0,229 \ (23) \end{array}$	

6 Main Production Modes

$$\label{eq:Ba} \begin{split} ^{130}Ba(n,\gamma)^{131}Ba(EC)^{131}Cs \\ ^{nat}Ba(n,xn)^{131}Ba(EC)^{131}Cs \\ ^{131}Xe(p,n)^{131}Cs \\ ^{133}Cs(p,3n)^{131}Ba(EC)^{131}Cs \end{split}$$

7 References

- S. KATCOFF. Phys. Rev. 72 (1947) 1160 (T_{1/2})
- F.-C. YU, D. GIDEON, J.D. KURBATOV. Phys. Rev. 71 (1947) 382 (T_{1/2})
- L. YAFFE, M. KIRSCH, S. STANDIL, J.M. GRUNLUND. Phys. Rev. 75 (1949) 699 $(T_{1/2})$
- B.R. JOSHI, G.M. LEWIS. Proc. Phys. Soc. (London) 76 (1960) 349 $(\mathrm{P_L}/\mathrm{P_K},\,\mathrm{T_{1/2}})$
- N.L. LARK, M.L. PERLMAN. Phys. Rev. 120 (1960) 536 $\rm (T_{1/2})$
- W.S. LYON. J. Inorg. Nucl. Chem. 25 (1963) 1079 (T_{1/2})
- G. SCHULZ. Nucl. Phys. A101 (1967) 177
- $(P_{\rm L}/P_{\rm K})$
- J.F. Emery, S.A. Reynolds, E.I. Wyatt, G.I. Gleason. Nucl. Sci. Eng. 48 (1972) 319 $({\rm T}_{1/2})$
- J. PLCH, J. ZDERADICKA, L. KOKTA. Int. J. Appl. Radiat. Isot. 25 (1974) 433 $(T_{1/2}, P_{\rm K})$
- F. LAGOUTINE, J. LEGRAND, C. BAC. Int. J. Appl. Radiat. Isot. 26 (1975) 131 $({\rm T}_{1/2})$
- G. FULLER. J. Phys. Chem. Ref. Data 5 (1976) 835 (Spin, dipole and quadrupole moments)
- F.P. LARKINS. At. Data Nucl. Data Tables 20 (1977) 311 (Auger electrons)
- S.T. PERKINS, D.E. CULLEN, M.H. CHEN, J.H. HUBBELL, J. RATHKOPF, J. SCOFIELD. Lawrence Livermore National Laboratory report UCRL-50400 30 (1991) (Atomic data)
- D.E. CULLEN, S.T. PERKINS, S.M. SELTZER. Appl. Radiat. Isot. 44 (1993) 1343 (Atomic data)
- E. SCHÖNFELD. PTB report PTB-6.33-95-2 (1995)
 (P_K, P_L, P_M, P_N, P_O)
- E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (Atomic data)
- A. KOVALIK, V.M. GOROZHANKIN, A.F. NOVGORODOV, M.A. MAHMOUD, N. COURSOL, E.A. YAKUSHEV, V.V. TSUPKO-SITNIKOV. J. Electron Spectros. Relat. Phenom. 95 (1998) 231 (Auger-electron spectra)
- E. SCHÖNFELD. Appl. Radiat. Isot. 49 (1998) 1353
 (P_K, P_L, P_M, P_N, P_O)
- E. SCHÖNFELD, G. RODLOFF. PTB report PTB-6.11-98-1 (1998) (Auger electrons)
- E. SCHÖNFELD, G. RODLOFF. PTB report PTB-6.11-1999-1 (1999) $\rm (X_{\rm K})$
- E. SCHÖNFELD, H. JANSSEN. Appl. Radiat. Isot. 52 (2000) 595 $(\mathrm{P}_{\mathrm{X}},\,\mathrm{P}_{\mathrm{Ae}})$
- I.M. BAND, M.B. TRZHASKOVSKAYA, C.W. NESTOR JR., P.O. TIKKANEN, S. RAMAN. At. Data Nucl. Data Tables 81 (2002) 1
 - (Theoretical ICC)
- R.D. DESLATTES, E.G. KESSLER JR., P. INDELICATO, L. DE BILLY, E. LINDROTH, J. ANTON. Rev. Mod. Phys. 75 (2003) 35 (X-ray energies)
- B. KUMAR, K. SINGH, D. MEHTA, N. SINGH, S.S. MALIK, E.S. PAUL, A. GORGEN, S. CHMEL, R.P. SINGH, S. MURALITHAR. Eur. Phys. J. A24 (2005) 13
- $(^{131}Cs$ nuclear structure)
- YU. KHAZOV, I. MITROPOLSKY, A. RODIONOV. Nucl. Data Sheets 107 (2006) 2715 (Nuclear levels)
- H. VON GARREL, P. VON BRENTANO, C. FRANSEN, G. FRIESSNER, N. HOLLMANN, J. JOLIE, F. KAPPELER, L. KAUBLER, U. KNEISSL, C. KOHSTALL, L. KOSTOV, ET AL. Phys. Rev. C73 (2006) 054315 (¹³¹Xe nuclear structure)

- S. SIHOTRA, R. PALIT, Z. NAIK, K. SINGH, P.K. JOSHI, A.Y. DEO, J. GOSWAMY, S.S. MALIK, D. MEHTA, C.R. PRAHARAJ, H.C. JAIN, N. SINGH. Phys. Rev. C78 (2008) 034313 (¹³¹Cs nuclear structure)
- B.Q. LEE, T. KIBÉDI, A.E. STUCHBERY, K.A. ROBERTSON. Compt. Math. Methods Med. article ID 651475 (2012) (Atomic radiation)
- B.Q. LEE, T. KIBÉDI, A.E. STUCHBERY, K.A. ROBERTSON, F.G. KONDEV. EPJ Web of Conferences 63 (2013) 01002
- (Auger electrons)
- N.J. STONE. IAEA report INDC(NDS)-0658 (2014) (Spin, dipole and quadrupole moments)
- X. MOUGEOT. Phys. Rev. C
91 (2015) 055504; Erratum: Phys. Rev. C
92 (2015) 059902 $(\beta\text{-decay},\,\text{BetaShape code})$
- B.Q. LEE, H. NIKJOO, J. EKMAN, P. JONSSON, A.E. STUCKBERY, T. KIBÉDI. Int. J. Radiat. Biol. 92 (2016) 641 (Atomic radiation)
- N.J. STONE. IAEA report INDC(NDS)-0794 (2019) (Spin, dipole moments)
- X. MOUGEOT. Appl. Radiat. Isot. 154 (2019) 10888
4 $(\mathrm{EC}/\beta^+$ decay)
- J. KARTHEIN, D. ATANASOV, K. BLAUM, S. ELISEEV, P. FILIANIN, D. LUNNEY, V. MANEA, M. MOUGEOT, D. NEIDHERR, Y. NOVIKOV, L. SCHWEIKHARD, A. WELKER, F. WIENHOLTZ, K. ZUBER. Hyperfine Interactions 240 (2019) 61
- (Measured Q_{EC})
- B.P.E. TEE, T. KIBÉDI, B.Q. LEE, M. VOS, R. DU RIETZ, A.E. STUCHBERY. EPJ Web of Conferences 232 (2020) 01006
- (Atomic radiation)
- M. WANG, W.J. HUANG, F.G. KONDEV, G. AUDI, S. NAIMI. Chin. Phys. C45 (2021) 030003 (Q)

¹³¹Cs – Comments on evaluation of decay data

by A. L. Nichols¹ and T. Kibédi²

¹ Department of Physics, University of Surrey, Guildford GU2 7XH, UK ² Department of Nuclear Physics, The Australian National University (ANU), Canberra ACT, Australia

Evaluated: March 2015, May – June 2021

Evaluation Procedures

Limitation of Relative Statistical Weight Method (LWM) and other analytical techniques were applied to average numbers throughout the evaluation. The uncertainty assigned to the average value was always greater than or equal to the smallest uncertainty of the values used to calculate the average.

Decay Scheme

¹³¹Cs ($T_{\frac{1}{2}}$ = 9.681 days) decays 100% by electron capture decay (Q_{EC} = 358.00 (18) keV) directly to the stable ground state of ¹³¹Xe (2021Wa16). Thus, the very simple nuclear decay scheme consists only of one EC transition, along with arrays of atomic X-ray and Auger-electron emissions.

Nuclear Data

There is an interest in the EC decay of ¹³¹Cs as a potentially suitable electron and X-ray emitter for microdosimetry and radiotherapy in nuclear medicine.

Half-life of ¹³¹Cs

The measurements of 1960La06, 1972Em01, 1974Pl04 and 1975La16 were adopted to give a weighted mean half-life of 9.681 (16) days based on the LWM and NRM techniques (Avetools code, version 3.0, 11 December 2014, ENSDF utility program).

Reference	Half-life (d)	Comments
1947Ka01	10.2	uncertainty unspecified - therefore not included in weighted-mean analysis of the data set.
1947Yu01	10.0 ± 0.3	insufficient detail concerning activity analysis and assigned uncertainty; also defined as an outlier - therefore not included in weighted-mean analysis of the data set.
1949Ya02	9.6 ± 0.1	defined as an outlier - therefore not included in weighted-mean analysis of the data set.
1960Jo09	9.6	uncertainty unspecified - therefore not included in weighted-mean analysis of the data set.
1960La06	9.69 ± 0.05	
1963Ly02	9.83 ± 0.28	superseded by 1972Em01 (both measurements undertaken at ORNL) - therefore not included in weighted-mean analysis of the data set.
1972Em01	9.70 ± 0.03	
1974P104	9.688 ± 0.004	low questionable uncertainty increased from ± 0.004 to ± 0.016 d to reduce weighting to below 50%.
1975La16	9.66 ± 0.05	uncertainty expressed at the 3σ confidence level as ± 0.05 d; adjusted to the 1σ confidence level and rounded up to ± 0.02 d.
Recommended value	9.681 ± 0.016	uncertainty has been adjusted from ± 0.011 to ± 0.016 d to align with the smallest uncertainty of the values used to calculate the recommended average value.

Limitation of relative statistical weight method (LWM), normalised residual method (NRM), Rajeval technique, bootstrap method, and Mandel-Paule approach were considered in the analysis of the data set.

Analytical method	Half-life (d)	χ²/(N-1)	$\chi^2/(N-1)_{critical}$
LWM	9.681 ± 0.011	0.58	3.78
NRM	9.681 ± 0.011	0.58	2.60
Rajeval	9.683 ± 0.012	0.48	—
Bootstrap	9.686 ± 0.010	0.65	—
Mandel-Paule	null result	-	-

A half-life of (9.681 \pm 0.016) days is recommended, as quantified primarily by the LWM and NRM analytical procedures.

Q value

A high-precision measurement by means of the ISOLTRAP mass spectrometer at ISOLDE/CERN has furnished an accurately quoted value of 358.00 (17) keV (2019Ka48). This study impacted significantly on the atomic mass evaluation of Wang *et al* (2021Wa16) to furnish a recommended Q_{EC} value for ¹³¹Cs EC decay to the stable ground state of ¹³¹Xe of 358.00 (18) keV, which has been adopted.

Gamma-ray energies and emission probabilities

Although extensive studies have been undertaken of the complex collective structures of both ¹³¹Cs (2005Ku10, 2008Si26) and ¹³¹Xe (2006Vo04), their findings have little direct impact on defining the simple ground-state to ground-state EC-decay of ¹³¹Cs. Nevertheless, these wide-ranging band structure studies do provide some supporting evidence for the spins and parities of the ¹³¹Cs and ¹³¹Xe ground states (2006Kh09).

Nuclear level number	Nuclear level energy (keV)	Spin and parity ‡		
0	0.0	5/2 +	9.681 (16) d	¹³¹ Cs
0	0.0	3/2 +	stable	¹³¹ Xe
*a · · · · · · · · · · · · · · · · · · ·				

Spins-parities of the ground-state nuclear levels of ¹³¹Cs and ¹³¹Xe (2006Kh09).

[‡] Spin and moments defined in regularly updated compilations and evaluations (1976Fu06, 2014StZZ, 2019StZV).

EC Transition

Energy

The energy of the ground-state to ground-state EC transition is defined by the adopted Q_{EC} -value of 358.00 (18) keV (2021Wa16).

Transition Probability

The transition probability of the single EC decay is 100%. BetaShape code, version 2.2, 7 June 2021, was used to determine log*ft* and fractional electron-capture probabilities P_K , P_L , P_M , P_N and P_O (LNHB analysis program (2015Mo10, 2019Mo35)). Measurements of the P_K capture and P_L/P_K capture ratios provide significant support for these well-defined calculations (1960Jo09, 1967Sc15). However, the log*ft* value of 5.5804 (27) as calculated over-precisely to five significant figures has been modified to 5.580 (3) on the basis of more realistic datum.

EC-decay data of ¹³¹Cs as calculated by the BetaShape code, version 2.2 (2015Mo10, 2019Mo35).

		$E_{EC} (keV)^*$	$\mathbf{P}_{\mathrm{EC}}\left(\% ight)$	¹³¹ Cs	¹³¹ Xe	transition type	log ft	P _K	PL	P _{L1}	P _{L2}	P _{L3}
EC	C _{0,0}	358.00 (18)	100	5/2 +	3/2 +	allowed	5.580 (3)	0.83566 (30)	0.12757 (7)	0.12403 (10)	0.0003540 (29)	-
										P _M	P _N	Po

Measurements of P_K and P_L/P_K ratio in the EC decay of ¹³¹Cs.

P _K	PL	/P _K
1974Pl04	1960Jo09	1967Sc15
0.832 (8)	0.0153 (8)	0.0155 (2)

Atomic Data

Experimental and theoretical datasets of X-ray and Auger-electron energies and emission probabilities for the atomic de-excitation of ¹³¹Xe have been measured and calculated by various means (for example, 1995ScZY, 1996Sc06, 1998Sc28, 1998ScZM, 1999ScZX, 2000Sc47, 1998Ko78 and 2003De44). Accurate measurements of the emission probabilities are highly desirable to assist in defining with confidence these particularly important parameters identified with the EC decay of ¹³¹Cs. Furthermore, relatively low-energy X-ray emissions need to be quantified with confidence and good accuracy in order to calculate excitation functions, and so ensure the optimum production and purity of ¹³¹Cs with confidence.

Electron energies were determined from electron binding energies tabulated by Larkins (1977La19), and Xe: $\omega_{K} = 0.888$ (5); $\varpi_{L} = 0.097$ (5); $n_{KL} = 0.902$ (4) were initially taken from 1996Sc06. Both the X-ray and Auger-electron spectra for the EC decay of ¹³¹Cs have been calculated by means of the BrIccEmis code, as described in 2012Le09, 2016Le19 and 2020TeZY in order to achieve the necessary detail and resolution of spectral lines for confident application in microdosimetry. A vacancy reaching the valence shell is immediately filled by an electron from the surrounding condensed-phase material to generate more atomic radiation, and this process will terminate when all such vacancies are filled below the valence shell. Transition energies within each propagation step were derived from the atomic binding energies determined by means of the relativistic Dirac-Fock approach employed in the RAINE code (2002Ba85), along with the application of a semi-empirical correction procedure that aligns these energies more fully with known spectral data (2020TeZY). Fixed transition rates were obtained from the EADL database (1991PeZY, 1993Cu08). Resulting mean X-ray energies, 95% confidence energy ranges, and emission probabilities. Intensity cut-off for these listings is 0.01 per 100 decays. As defined by

1991PeZY, uncertainties in these theoretical X-ray emission probabilities are 10% for the K and L shells and 30% for the outer shells, whereas uncertainties in the theoretical Auger-electron emission probabilities are <15% for the K and L shells (except for Coster-Kronig and super Coster-Kronig transitions) and 30% for the outer shells.

More detailed Auger-electron spectral measurements and individual component analyses can be found in the experimental studies of Kovalík *et al.* (1998Ko78). Absolute and relative energies of the LMM + LMX, KLL and KLM + KLX Auger transitions in Xe were determined along with their relative intensities. These and individual Auger transition data were shown to be in good agreement with *ab initio* calculations undertaken during a series of planned development phases of the BrIccEmis code (2013LeZX, 2020TeZY) that includes energy corrections to account for the Breit and quantum electrodynamic (QED) effects. The X-ray and Auger-electron data tabulated above were calculated from a more recent version of BrIccEmis (ENSDF analysis program, 26 May 2021), which continues to exhibit good agreement overall with the original measurements in terms of the shape of the spectrum, and the energies and intensities of the individual Auger peaks (1998Ko78). Future intentions are to focus on the introduction of the relativistic multiconfiguration Dirac-Fock method (MCDF) and Monte-Carlo techniques.

		Mean Energy (keV)	Energy (keV), 95% confidence range	Photons per 100 disint.
X _{tot}	(Xe)	28.559	4.2876 - 35.819	83.91
XK _{tot}	(Xe)	31.632	30.631 - 35.819	74.52
XKL ₂	(Xe)	30.631	30.631	21.37
XKL ₃	(Xe)	30.978	30.978	39.64
XKM	(Xe)	34.972	34.925 - 34.993	10.98
XKM_2	(Xe)	34.925	34.925	3.697
XKM ₃	(Xe)	34.993	34.993	7.193
XKM_4	(Xe)	35.252	35.252	0.0354
XKM5	(Xe)	35.266	35.266	0.0520
XKN	(Xe)	35.828	35.819 - 35.832	2.307
XKO	(Xe)	35.980	35.979 - 35.981	0.2287
XL _{tot}	(Xe)	4.4876	3.7956 - 5.2886	8.648
XM_{tot}	(Xe)	0.6797	0.2769 - 1.0378	0.5394
XN _{tot}	(Xe)	0.1173	0.0929 - 0.2088	0.2050

X-ray energies and emission probabilities of ¹³¹Cs (BrIccEmis code).

Auger-electron energies and emission probabilities of ¹³¹Cs (BrIccEmis code).

		Mean Energy (keV)	Energy (keV), 95% confidence range	Electrons per 100 disint.
Auger total	(Xe)	0.7072	0.00197 - 4.0972	900.7
Auger Ktot	(Xe)	26.859	24.398 - 33.721	9.056
Auger KLL	(Xe)	25.218	24.398 - 25.789	6.046
Auger KLX	(Xe)	29.727	28.987 - 30.780	2.719
Auger KXY	(Xe)	34.161	33.493 - 35.569	0.291
Auger L _{tot}	(Xe)	3.0998	0.1350 - 4.5518	93.75
Auger Coster-Kronig LLX	(Xe)	0.3073	0.0661 - 0.5900	13.84
Auger LMM	(Xe)	3.3875	2.7428 - 4.1477	60.65
Auger LMX	(Xe)	4.1474	3.7300 - 4.7935	17.92
Auger LXY	(Xe)	4.9133	4.5912 - 5.5289	1.338
Auger M _{tot}	(Xe)	0.3791	0.0146 - 0.7217	227.2
Auger Coster-Kronig MMX	(Xe)	0.0965	0.0067 - 0.2834	61.96
Auger MXY	(Xe)	0.4921	0.3183 - 0.7582	162.7
Auger Ntot	(Xe)	0.0298	0.0018 - 0.0974	570.7
Auger super Coster-Kronig NNN	(Xe)	0.0115	0.0020 - 0.0554	10.82
Auger Coster-Kronig NNX	(Xe)	0.0475	0.0043 - 0.0938	141.0
Auger NXY	(Xe)	0.0244	0.0014 - 0.1056	418.9

Auger-electron (upper panel) and X-ray (lower panel) spectra of ¹³¹Cs EC decay:

Total energy release per decay as determined from the BrIccEmis studies:

Gamma rays:	0.0000 keV
Conversion electrons:	0.0000 keV
X-rays:	23.9637 keV
Auger electrons:	6.3699 keV

The final X-ray and Auger-electron spectra were effectively evaluated from one million simulated nuclear decay events – these spectra consist of 76 X-ray transition types, and 685 Auger-electron transition types. Both component spectra of the Auger-electron and X-ray emissions as calculated by the BrIccEmis code (26 May 2021) for the EC decay of ¹³¹Cs are shown in the figure above.

Main Production Modes for ¹³¹Cs

Data Consistency

A Q_{EC}-value of 358.00 (18) keV has been adopted from the atomic mass evaluation of Wang et al. (2021Wa16), and compared with the Q-value calculated by summing the contributions of the individual emission(s) of the ¹³¹Cs EC-decay process (i.e., only a single EC transition):

calculated Q-value = 358.00(18) keV

Percentage deviation from the Q-value of Wang *et al.* is (0.00 ± 0.05) %, which supports the derivation of a fully consistent decay scheme with a small variant based only on \pm 0.18 keV uncertainty of Q_{EC}. This particularly high consistency is based on the simplicity of the decay scheme, with only one allowed EC transition probability of 100% directly from the ¹³¹Cs ground state to the daughter ¹³¹Xe ground state.

References

1947Ka01	S. Katcoff, New Barium and Cesium Isotopes: $12.0d Ba^{131}$, $10.2d Cs^{131}$ and Long-lived Ba^{133}, Phys. Rev. 72 (1947) 1160-1164. [¹³¹ Cs half-life]
1947Yu01	Fu-chun Yu, D. Gideon, J.D. Kurbatov, Disintegration by Consecutive Orbital Electron Captures ${}_{56}\text{Ba}^{131} \rightarrow {}_{55}\text{Cs}^{131} \rightarrow {}_{54}\text{Xe}^{131}$, Phys. Rev. 71 (1947) 382. [¹³¹ Cs half-life]
1949Ya02	L. Yaffe, M. Kirsch, S. Standil, J.M. Grunlund, The Chain ${}_{56}Ba^{130}(n,\gamma){}_{56}Ba^{131} \rightarrow {}_{55}Cs^{131} \rightarrow {}_{54}Xe^{131}$, Phys. Rev. 75 (1949) 699-700. [¹³¹ Cs half-life]
1960Jo09	B.R. Joshi, G.M. Lewis, On the Measurement of Orbital Electron Capture with Particular Reference to ¹³¹ Cs, Proc. Phys. Soc. (London) 76 (1960) 349-354.
	$[^{131}$ Cs half-life, P _L /P _K]
1960La06	N.L. Lark, M.L. Perlman, K-electron Excitation Accompanying K Capture in Cs ¹³¹ , Phys. Rev. 120 (1960) 536-542. [¹³¹ Cs half-life, probability of vacant K shell]
1963Ly02	W.S. Lyon, Decay of ¹³¹ Ba- ¹³¹ Cs, J. Inorg. Nucl. Chem. 25 (1963) 1079-1083. [¹³¹ Cs half-life]
1967Sc15	G. Schulz, Electron Capture Ratios in the Decay of 83 Rb, 84 Rb, 131 Cs and 185 Os, Nucl. Phys. A101 (1967) 177-186. [P _L /P _K]
1972Em01	J.F. Emery, S.A. Reynolds, E.I Wyatt, G.I. Gleason, Half-lives of Radionuclides - IV, Nucl. Sci. Eng. 48 (1972) 319-323. [¹³¹ Cs half-life]
1974P104	J. Plch, J. Zderadička, L. Kokta, Coincidence Methods of Standardization for ¹³¹ Cs and Measurement of Decay Parameters, Int. J. Appl. Radiat. Isot. 25 (1974) 433-444. $[\omega_{K}, P_{K}\omega_{K}, P_{K}, ^{131}Cs$ half-life]
1975La16	F. Lagoutine, J. Legrand, C. Bac, Périodes de Quelques Radionucléides, Int. J. Appl. Radiat. Isot. 26 (1975) 131-135. [¹³¹ Cs half-life]
1976Fu06	G.H. Fuller, Nuclear Spins and Moments, J. Phys. Chem. Ref. Data 5 (1976) 835-1092. [Spin, magnetic dipole moment, electric quadrupole moment]
1977La19	F.P. Larkins, Semiempirical Auger-electron Energies for Elements $10 \le Z \le 100$, At. Data Nucl. Data Tables 20 (1977) 311-387.[Auger-electron energies]
1991PeZY	S.T. Perkins, D.E. Cullen, M.H. Chen, J.H. Hubbell, J. Rathkopf, J. Scofield, Tables and Graphs of Atomic Subshell and Relaxation Data Derived from the LLNL Evaluated Atomic Data Library (EADL), $Z = 1-100$, Lawrence Livermore National Laboratory report UCRL-50400, 30 (1991). [atomic database]
1993Cu08	D.E. Cullen, S.T. Perkins, S.M. Seltzer, Photon and Electron Databases and Their Use in Radiation Transport Calculations, Appl. Radiat. Isot. 44 (1993) 1343-1347. [atomic database]

- 1995ScZYE. Schönfeld, Tables for the Calculation of Electron Capture Probabilities, PTB report PTB-
6.33-95-2, 1995.[PK, PL, PM, PN, PO]
- 1996Sc06E. Schönfeld, H. Janßen, Evaluation of Atomic Shell Data, Nucl. Instrum. Methods Phys.
Res. A369 (1996) 527-533. $[\omega_K, \varpi_L, K_{\beta}/K_{\alpha}, K_{\alpha 2}/K_{\alpha 1}, KLX/KLL, KXY/KLL]$
- 1998Ko78 A. Kovalík, V.M. Gorozhankin, A.F. Novgorodov, M.A. Mahmoud, N. Coursol, E.A. Yakushev, V.V. Tsupko-Sitnikov, The Electron Spectrum from the Atomic De-excitation of ¹³¹₅₄Xe, J. Electron Spectrosc. Relat. Phenom. **95** (1998) 231-254.

[Measured Auger-electron spectra of ¹³¹Xe]

- 1998Sc28E. Schönfeld, Calculation of Fractional Electron Capture Probabilities, Appl. Radiat. Isot. 49
(1998) 1353-1357.[PK, PL, PM, PN, Po]
- 1998ScZME. Schönfeld, G. Rodloff, Tables of the Energies of K-Auger Electrons for Elements with
Atomic Numbers in the Range from Z = 11 to Z = 100, PTB report PTB-6.11-98-1, October
1998.1998.[Auger electrons]
- 1999ScZX E. Schönfeld, G. Rodloff, Energies and Relative Emission Probabilities of K X-rays for Elements with Atomic Numbers in the Range from Z = 5 to Z = 100, PTB report PTB-6.11-1999-1, February 1999.
 [X_K]
- 2000Sc47 E. Schönfeld, H. Janβen, Calculation of Emission Probabilities of X-rays and Auger Electrons Emitted in Radioactive Disintegration Processes, Appl. Radiat. Isot. **52** (2000) 595-600. [P_X, P_{Ae}]
- 2002Ba85 I.M. Band, M.B. Trzhaskovskaya, C.W. Nestor, Jr., P.O. Tikkanen, S. Raman, Dirac–Fock Internal Conversion Coefficients, At. Data Nucl. Data Tables **81** (2002) 1-334.

[theoretical ICC]

- 2003De44 R.D. Deslattes, E.G. Kessler Jr., P. Indelicato, L. de Billy, E. Lindroth, J. Anton, X-ray Transition Energies: New Approach to a Comprehensive Evaluation, Rev. Mod. Phys. **75** (2003) 35-99. [X-ray energies]
- 2005Ku10 B. Kumar, Kuljeet Singh, D. Mehta, Nirmal Singh, S.S. Malik, E.S. Paul, A. Görgen, S. Chmel, R.P. Singh, S. Muralithar, Collective Structures of the ¹³¹Cs Nucleus, Eur. Phys. J. A24 (2005) 13-22. [¹³¹Cs nuclear structure]
- 2006Kh09 Yu. Khazov, I. Mitropolsky, A. Rodionov, Nuclear Data Sheets for A = 131, Nucl. Data Sheets **107** (2006) 2715-2930. [Nuclear levels]
- H. von Garrel, P. von Brentano, C. Fransen, G. Friessner, N. Hollmann, J. Jolie, F. Käppeler, L. Käubler, U. Kneissl, C. Kohstall, L. Kostov, A. Linnemann, D. Mücher, N. Pietralla, H.H. Pitz, G. Rusev, M. Scheck, K.D. Schilling, C. Scholl, R. Schwengner, F. Stedile, S. Walter, V. Werner, K. Wisshak, Low-lying E1, M1 and E2 Strength Distributions in ^{124,126,128,129,130,131,132,134,136}Xe: Systematic Photon Scattering Experiments in the Mass Region of a Nuclear Shape or Phase Transition, Phys. Rev. C73 (2006) 054315, 1-20.

[¹³¹Xe nuclear structure]

- S. Sihotra, R. Palit, Z. Naik, K. Singh, P.K. Joshi, A.Y. Deo, J. Goswamy, S.S. Malik, D. Mehta, C.R. Praharaj, H.C. Jain, N. Singh, Multiple Band Structure of ¹³¹Cs, Phys. Rev. C78 (2008) 034313, 1-20.
- 2012Le09B.Q. Lee, T. Kibédi, A.E. Stuchbery, K.A. Robertson, Atomic Radiations in the Decay of
Medical Radioisotopes A Physics Perspective, Comput. Math. Methods Med. article ID
651475 (2012) 1-14; doi: 10.1155/2012/651475.[Atomic radiation]

- 2013LeZX B.Q. Lee, T. Kibédi, A.E. Stuchbery, K.A. Robertson, F.G. Kondev, A Model to Realize the Potential of Auger Electrons for Radiotherapy, Proc. Heavy Ion Accelerator Symposium (HIAS2013), 8-12 April 2013, Canberra, Australia, EPJ Web of Conferences, 63 (2013) 01002, 1-5, editors: C. Simenel, M. Evers, T. Kibédi, D. Huy Luong, M. Reed, M. Srncik, A. Wallner; doi.org/10.1051/epjconf/20136301002. [Auger electrons]
- 2014StZZ N.J. Stone, Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments, IAEA report INDC(NDS)-0658, IAEA, Vienna, Austria (2014). [Spin, magnetic dipole moment, electric quadrupole moment]
- 2015Mo10 X. Mougeot, Reliability of Usual Assumptions in the Calculation of β and v Spectra, Phys. Rev. **C91** (2015) 055504, 1-12; Erratum, Phys. Rev. **C92** (2015) 059902, 1.

 $[\beta \text{ decay (BetaShape code)}]$

- 2016Le19B.Q. Lee, Hooshang Nikjoo, J. Ekman, P. Jönsson, A.E. Stuchbery, T. Kibédi, A Stochastic
Cascade Model for Auger-electron Emitting Radionuclides, Int. J. Radiat. Biol. 92 (2016)
641-653; doi: 10.3109/09553002.2016.1153810.[Atomic radiation]
- J. Karthein, D. Atanasov, K. Blaum, S. Eliseev, P. Filianin, D. Lunney, V. Manea, M. Mougeot, D. Neidherr, Y. Novikov, L. Schweikhard, A. Welker, F. Wienholtz, K. Zuber, Direct Decay-energy Measurement as a Route to the Neutrino Mass, Proc. 7th Int. Conf. Trapped Charged Particles and Fundamental Physics (TCP2018), 30 September 5 October 2018, Traverse City, Michigan, USA, Hyperfine Interactions 240 (2019) 61, 1-9, editors: R. Ringle, S. Schwarz, A. Lapierre, O. Naviliat-Cuncic, J. Singh, G. Bollen.

[Measured Q_{EC}-value]

- 2019StZV N.J. Stone, Table of Recommended Nuclear Magnetic Dipole Moments, Part I: Long-lived States, IAEA report INDC(NDS)-0794, IAEA, Vienna, Austria (2019).

[Spin, magnetic dipole moment]

- 2020TeZY B.P.E. Tee, T. Kibédi, B.Q. Lee, M. Vos, R. du Rietz, A.E. Stuchbery, Development of a New Database for Auger-electron and X-ray Spectra, Proc. Heavy Ion Accelerator Symposium (HIAS2019), 9-13 September 2019, Canberra, Australia, EPJ Web of Conferences, 232 (2020) 01006, 1-4, editors: A.J. Mitchell, S. Pavetich, D. Koll; doi.org/10.1051/epjconf/202023201006. [Atomic radiation]
- 2021Wa16 Meng Wang, W.J. Huang, F.G. Kondev, G. Audi, S. Naimi, The AME2020 Atomic Mass Evaluation (II): Tables, Graphs and References, Chin. Phys. **C45** (2021) 030003, 1-512; doi: 10.1088/1674-1137/abddaf [Q-values]

ENSDF Analysis Programs: BrIccEmis, 26 May 2021

ENSDF Utility Program: Avetools, version 3.0, 11 December 2014

LNHB Analysis Program: BetaShape, version 2.2, 7 June 2021

The above codes have undergone and will continue to undergo various forms of modification and improvement, which will be reflected in changes to the version number and date of issue into the public domain. Assistance from Xavier Mougeot (LNHB, CEA Saclay, France – BetaShape) and Tibor Kibédi (ANU, Australia – particularly BrIccEmis) concerning improved operational features of some of the above codes is gratefully acknowledged by ALN.