Update of the BIPM comparison

BIPM.RI(II)-K1.Zn-65 of activity measurements of the radionuclide 65 Zn to include the 2015 result of the LNMRI-IRD (Brazil) and the 2018 result of the LNE-LNHB (France)

C. Michotte¹, S. Courte¹, R. Coulon¹, M. Nonis¹, G. Ratel¹, S. Judge¹, C. Fréchou², C. Bobin², C. J. da Silva³, R. L. da Silva³, J. U. Delgado³ and J. A. Rangel³

 1 Bureau International des Poids et Mesures, Pavillon de Breteuil, F-92312 Sèvres Cedex, France.

 2 Université Paris-Saclay, CEA, List, Laboratoire National Henri Becquerel (LNE-LNHB), F-91120 Palaiseau, France.

 3 Laboratorio Nacional de Metrologia das Radiações Ionizantes (LNMRI-IRD), Rio de Janeiro, Brazil.

E-mail: cmichotte@bipm.org

Abstract Since 1977, 19 laboratories have submitted 22 samples of ⁶⁵Zn to the International Reference System (SIR) for activity comparison at the Bureau International des Poids et Mesures (BIPM), with comparison identifier BIPM.RI(II)-K1.Zn-65. The LNMRI-IRD (Brazil) and the LNE-LNHB (France) are the latest participants in the comparison and the key comparison reference value (KCRV) has been updated. The degrees of equivalence between each equivalent activity measured in the SIR and the updated KCRV have been calculated and the results are given in the form of a table. A graphical representation is also given.

1. Introduction

The SIR for activity measurements of γ -ray-emitting radionuclides was established in 1976. Each national metrology institute (NMI) may request a standard ampoule from the BIPM that is then filled with 3.6 g of the radioactive solution. For radioactive gases, a different standard ampoule is used. Each NMI completes a submission form that details the standardization method used to determine the absolute activity of the radionuclide and the full uncertainty budget for the evaluation. The ampoules are sent to the BIPM where they are compared with standard sources of ²²⁶Ra using pressurized ionization chambers. Details of the SIR method, experimental set-up and the determination of the equivalent activity $A_{\rm e}$, are all given in [1]. From its inception until 31 December 2022, the SIR has been used to measure 1045 ampoules to give 799 independent results for 72 different radionuclides. The SIR makes it possible for national laboratories to check the reliability of their activity measurements at any time. This is achieved by the determination of the equivalent activity of the radionuclide and by comparison of the result with the key comparison reference value determined from the results of primary standardizations. These comparisons are described as BIPM continuous comparisons and the results form the basis of the BIPM key comparison database (KCDB) of the Comité International des Poids et Mesures Mutual Recognition Arrangement (CIPM MRA) [2]. The comparison described in this report is known as the BIPM.RI(II)-K1.Zn-65 key comparison. The results of earlier participations in this key comparison were published previously [3,4].

2. Participants

Laboratory details are given in Table 1, with the earlier submissions being taken from [3, 4]. The dates of measurement in the SIR given in Table 1 are used in the KCDB and all references in this report.

NMI or labora- tory	Previous acronyms or other insti- tutes	Full name	Country	Regional Metrology Organi- zation (RMO)	Date of SIR mea- surement yyyy-mm-dd
ANSTO	AAEC	Australian Nuclear Science and Technology Organisa- tion	Australia	APMP	1977-10-17
ASMW	-	Amt für Standardisierung, Meßwesen und Warenprü- fung	former East Germany	-	1977-11-22
BARC	-	Bhabha Atomic Research Centre	India	APMP	2006-11-29
BKFH	OMH, MKEH	Government Office of the Capital City Budapest	Hungary	EURAMET	1978-10-10 1985-12-05 1995-07-17
CMI	UVVVR, CMI-IIR	Czech Metrological Insti- tute	Czechia	EURAMET	1980-09-03
LNE- LNHB	LMRI, LPRI, BNM- LNHB	Université Paris-Saclay, CEA, List, Laboratoire National Henri Becquerel	France	EURAMET	1982-12-01 1999-11-26 2018-12-14
LNMRI- IRD	IEA, IPEN ^a	Laboratorio Nacional de Metrologia das Radiações Ionizantes	Brazil	SIM	2015-12-15

Table 1: Details of the participants in the BIPM.RI(II)-K1.Zn-65.

NMI or labora- tory	Previous acronyms or other insti- tutes	Full name	Country	RMO	Date of SIR mea- surement yyyy-mm-dd
NIST	NBS	National Institute of Stan- dards and Technology	United States	SIM	1999-05-04 2001-11-27
NMIJ	ETL	National Metrology Insti- tute of Japan	Japan	APMP	1994-12-06
NPL	-	National Physical Labora- tory	United King- dom	EURAMET	1979-09-06
PTB	-	Physikalisch-Technische Bundesanstalt	Germany	EURAMET	1978-03-10 1987-12-02
PTKMR	PDS, PSPKR, P3KRBiN	Pusat Teknologi Kesela- matan dan Metrologi Ra- diasi	Indonesia	APMP	1993-09-30

... Continuation of Table 1.

^a IEA, IPEN are other institutes of the country.

3. NMI standardization methods

Each NMI that submits ampoules to the SIR has measured the activity either by a primary standardization method or by using a secondary method, for example a calibrated ionization chamber. In the latter case, the traceability of the calibration needs to be clearly identified to ensure that appropriate correlations are taken into account.

A brief description of the standardization methods used by the laboratories, the activities submitted, the relative standard uncertainties and the half life used by the participants are given in Table 2. The uncertainty budgets for the new submissions are given in Appendix D attached to this report; previous uncertainty budgets are given in the earlier K1 reports [3, 4]. The list of acronyms used to summarize the methods is given in Appendix E.

The half life used by the BIPM is 244.1(2) days as published in NDS 1975 [5], which is in agreement with 244.01(9) days, the value published in the BIPM Monographie 5 [6]. The SIR data could be revised using the new half life. However, the updated degrees of equivalence would not differ significantly as the SIR measurements were carried out within a few months from the reference date.

NMI or labora- tory	Method used and the acronym	$\begin{array}{c} {\bf Activity} \\ A_i/{\bf kBq} \end{array}$	Relati standa uncert /10 ⁻²	ard	Reference date	Half life /d	
			A	В	yyyy-mm- dd		
ANSTO	4π Beta- γ coincidence (4P- PC-MX-NA-GR-CO)	454.9	0.2	0.26	1977-10-03 00:00 UT	243.8	
ASMW	$4\pi \text{EC-}\gamma$ coincidence (4P- PC-MX-NA-GR-CO)	2793 ^b	0.3	0.3	1977-10-01 12:00 UT	-	
		2786	0.3	0.3			
BARC	$\begin{array}{c} 4\pi \text{Beta-}\gamma \text{ coincidence } (4\text{P-} \\ \text{PC-BP-NA-GR-CO}) \end{array}$	1582	0.99	0.36	2006-05-05 06:30 UT	243.9	
BKFH	4π (x,e(A),Beta+)- γ coincidence (4P-PP-MX-NA-GR-CO)	2015 ^b	0.05	0.2	1978-10-01 12:00 UT	244.1(2) [5]	
		2016	0.05	0.2			
	$\begin{array}{c} 4\pi(\mathbf{x},\mathbf{e}(\mathbf{A}),\mathbf{Beta}+)-\gamma \text{coinci-}\\ \text{dence} (4\mathbf{P}-\mathbf{PP}-\mathbf{MX}-\mathbf{NA}-\mathbf{GR}-\\ \mathbf{CO}) \end{array}$	3621	0.05	0.21	1985-12-15 12:00 UT	243.9(2) [7]	
	$\frac{4\pi(\mathbf{x},\mathbf{e}(\mathbf{A}),\mathbf{Beta}+)-\gamma \text{ coinci-}}{\text{dence } (4P-PP-MX-NA-GR-}$ CO)	3045	0.05	0.2	1995-07-01 00:00 UT	244.26(26) [8]	
CMI	$4\pi x - \gamma$ (4P-PC-MX-NA-	3521	0.07	0.67	1980-07-31	243.9	
	GR-CO)				10:00 UT		
LNE-	$4\pi PPC-\gamma$ (4P-PP-MX-NA-	2290 ^b	0.06	0.21	1982-11-08	-	
LNHB	GR-CO)	2289	0.06	0.21	12:00 UT		
	$4\pi x - \gamma$ coincidence (4P-PP- XR-NA-GR-CO)	1877	0.1	0.2	1999-07-12 12:00 UT	244.06(10) [9]	
	$4\pi LS-\gamma$ anti-coincidence (4P-LS-MX-NA-GR-AC)	4031	0.27	0.11	2018-11-13 12:00 UT	244.01(9)	
LNMRI- IRD	$4\pi\beta \text{LS-}\gamma(\text{NaI(Tl)})$ anti- coincidence (4P-LS-BP- NA-GR-AC)	327.8	0.35	0.55	2015-09-29 12:00 UT		
NIST	ionization chamber cal- ibrated in 1970 using $4\pi(e^+,x)-\gamma$ coincidence $(4P-IC-GR-00-00-00 \& 4P-PC-MX-NA-GR-CO)$	1712	0.06	0.63	1999-04-22 19:00 UT	244.06(10) [9]	
	ionization chamber cal- ibrated in 1970 using $4\pi(e^+,x)-\gamma$ coincidence (4P-IC-GR-00-00-00 & 4P-PC-MX-NA-GR-CO)	14859	0.08	0.63	2001-11-15 12:00 UT	[9]	
NMIJ	4π (x,e(A),Beta+)- γ coincidence (4P-PC-MX-NA-GR-CO)	1694	0.11	0.32	1994-12-01 12:00 UT	-	

Table 2: Standardization methods of the participants for $^{65}\mathrm{Zn.}$

NMI or	Method used and the	Activity	Relativ	e	Reference	Half	life
labora-	acronym	$A_i/{f kBq}$	standar	ď	date	$/\mathbf{d}$	
tory			uncerta	\mathbf{inty}			
			$/10^{-2}$				
			Α	В	yyyy-mm-		
					dd		
NPL	ionization chamber (4P-IC-	5587^{b}	0.12	0.69	1979-09-01		
	$GR-00-00-00)^{a}$				00:00 UT		
		5721	0.12	0.69			
PTB	ionization chamber (4P-IC-	11326	0.02	0.14	1978-01-01		
	$GR-00-00-00)^{a}$				00:00 UT		
	ionization chamber cali-	4246	0.07	0.68	1987-11-01		
	brated in 1980 by $4\pi PC-\gamma$				00:00 UT		
	and $4\pi PPC-\gamma$ coincidence						
	(4P-IC-GR-00-00-00 &						
	4P-PC-MX-NA-GR-CO &						
	4P-PP-MX-NA-GR-CO)						
PTKMR	$4\pi PC-\gamma$ (4P-PC-MX-NA-	445.1	0.2	0.21	1993-09-01		
	GR-CO)				12:00 UT		

Continuation of Table 2.

 $^{\rm a}$ calibrated by primary measurements of Zn-65 in 1977 by the method 4P-PP-MX-NA-GR-CO for the PTB and in 1979 by the method 4P-PC-MX-GR-CO for the NPL

^b Several samples submitted

Details regarding the solutions submitted are shown in Table 3, including any impurities, when present, as identified by the laboratories. When given, the standard uncertainties on the evaluations are shown.

NMI or	Chemical	Solvent conc.	Carrier	Density	Relative activity of
laboratory	composi-		conc.		any impurity ^a
	tion				
/ SIR year		$/(\mathrm{mol}\mathrm{dm}^{-3})$	$/(\mu \mathrm{g}\mathrm{g}^{-1})$	$/(g cm^{-3})$	
ANSTO 1977	$ZnCl_2$ in HCl	0.1	$ZnCl_2 < 50$	1	< 0.1 %
ASMW 1977	$ZnCl_2$ in HCl	0.1	$ZnCl_2:20$	-	< 0.1 %
BARC 2006	$ZnCl_2$ in HCl	0.1	$ZnCl_2:20$	1	-
BKFH 1978	$ZnCl_2$ in HCl	0.1	Zn:108	-	60 Co: 0.005(1) %
1985	$ZnCl_2$ in HCl	0.1	Zn:40	-	60 Co: 0.0050(15) %
1995	$ZnCl_2$ in HCl	0.1	$ZnCl_2:25$	-	-
CMI 1980	$ZnCl_2$ in HCl	0.08	$ZnCl_2:50$	-	< 0.1 %
LNE-LNHB	$ZnCl_2$ in HCl	0.11	$ZnCl_2:64$	1	75 Se: 0.003(2) %
1982					
					60 Co: 0.007(3) %
1999	$ZnCl_2$ in HCl	0.1	Zn ⁺⁺ :10	1.001	⁶⁰ Co: 0.0010(1) %
2018	$ZnCl_2$ in HCl	0.1	$ZnCl_2:26$	1.00103	$^{51}Cr: 0.22(9) \%$
					152 Eu: 0.019(8) %
LNMRI-IRD	ZnCl in HCl	0.5	ZnCl:20	1.013	-
2015					
NIST 1999	$ZnCl_2$ in HCl	1	$ZnCl_2:300$	1.014(1)	-
2001	$ZnCl_2$ in HCl	1	$ZnCl_2:400$	1.014(1)	-
NMIJ 1994	$ZnCl_2$ in HCl	0.1	$ZnCl_2:50$	1	-

Table 3: Details of each solution of 65 Zn submitted.

Continuation of Table 5.										
NMI or	Chemical	Solvent conc.	Carrier	Density	Relative activity of					
laboratory	composi-		conc.		any impurity ^a					
	tion									
/ SIR year		$/(\mathrm{mol}\mathrm{dm}^{-3})$	$/(\mu \mathrm{g}\mathrm{g}^{-1})$	$/({ m gcm^{-3}})$						
NPL 1979	$ZnCl_2$ in HCl	0.1	$ZnCl_2:60$	1.001	-					
PTB 1978	$ZnCl_2$ in HCl	0.1	$ZnCl_2:30$	1	< 0.01 %					
1987	$ZnCl_2$ in HCl	0.1	$ZnCl_2: 30$	1	-					
PTKMR	$ZnCl_2$ in HCl	1	$ZnCl_2:10$	1	-					
1993										

Continuation of Table 3.

^a The ratio of the activity of the impurity to the activity of 65 Zn at the reference date

4. Results

All the submissions to the SIR since its inception in 1976 are maintained in a dedicated database based on CSV formatted files controlled by the Git version control system [10]. Machine-readable versions of this report (XML and JSON documents) are attached to this document [11]. The latest submission has added 2 ampoules for the activity measurements for ⁶⁵Zn giving rise to 22 ampoules in total.

The SIR equivalent activity, A_{ei} , for each ampoule received from each NMI, *i*, including both previous and new results, is given in Table 4. The relative standard uncertainties arising from the measurements in the SIR are also shown. This uncertainty is additional to that declared by the NMI $(u(A_i))$ for the activity measurement shown in Table 2. Although submitted activities are compared with a given source of ²²⁶Ra, all the SIR results are normalized to the radium source number 5 [1]. Table 4 also shows the comparison results selected for the KCRV as explained in section 4.1.

The LNMRI/IRD SIR measurement was repeated after two months producing a comparison result in agreement within standard uncertainty.

NMI or labo-	Mass m_i	A_i	226 Ra	$A_{\mathbf{e}i}$	Relative	u _{ci}	$A_{\mathbf{e}i}$ for
ratory			source		uncert.		KCRV
					from		
					SIR		
/ SIR year	$/\mathbf{g}$	/kBq		/kBq	/10 ⁻⁴	/kBq	/kBq
ANSTO 1977	$3.635\ 1$	454.9	2	29610	9	100	29 610(100)
ASMW 1977	3.510 45	2793	3	29 494	6	130	$29 \ 480(130)^{\rm a}$
	3.501 40	2786	3	29473	6	130	-
BARC 2006	$3.557 \ 92$	1582	2	29 126	10	310	29 130(310)
BKFH 1978	3.602 0	2015	3	29 699	7	65	-
	3.602 7	2016	3	29691	7	64	-
1985	3.603 7	3621	3	29 763	5	66] -
1995	3.61	3045	3	29 690	5	63	-

Table 4: Results of SIR measurement of ⁶⁵Zn.

NMI or labo-	m_i	A_i	226 Ra	$A_{\mathbf{e}i}$	Relative	$u_{\mathbf{c},i}$	$A_{\mathbf{e}}$ for KCRV
ratory			source		uncert.		
					from		
					SIR		
/ SIR year	$/\mathbf{g}$	$/\mathbf{kBq}$		/kBq	/10 ⁻⁴	$/\mathbf{kBq}$	$/\mathbf{kBq}$
CMI 1980	3.557 59	3521	3	29780	5	200	-
LNE-LNHB	$3.621 \ 38$	2290	3	29695	8	69	-
1982							
	3.620 35	2289	3	29682	7	67	-
1999	$3.552 \ 07$	1877	2	29800	9	69	-
2018	3.749 9	4031	3	29715	6	88	$29\ 715(88)$
LNMRI-IRD	3.530 41	327.8	1	29 890	14	200	29 890(200)
2015							
NIST 1999	$3.706\ 8(2)$	1712	3	29840	6	190	$29\ 840(190)$
2001	$3.783 \ 9(2)$	14859	4	29 680	4	190	-
NMIJ 1994	3.595 8	1694	3	29750	6	100	-
NPL 1979	3.482 9	5587	3	29 799	6	210	-
	3.566 8	5721	3	29783	5	210	-
PTB 1978	$3.659 \ 5(1)$	11 326	4	29 680	4	44	-
1987	3.627 7	4246	3	29670	5	200	-
PTKMR 1993	3.5375	445.1	1	28540	11	89	- b

... Continuation of Table 4.

^a An average value and average uncertainty between all submitted samples is used for the KCDB [12]. ^b Result identified as an outlier

4.1. The key comparison reference value

In May 2013, the CCRI(II) decided to calculate the key comparison reference value (KCRV) by using the power-moderated weighted mean [13] rather than an unweighted mean, as had been the policy. This type of weighted mean is similar to a Mandel-Paule mean in that the NMIs' uncertainties may be increased until the reduced chi-squared value is one. In addition, it allows for a power α smaller than two in the weighting factor. As proposed in [13], α is taken as 2 - 3/N where N is the number of results selected for the KCRV. Therefore, all SIR key comparison results can be selected for the KCRV with the following provisions:

- (a) results for solutions standardized by only primary techniques are accepted, with the exception of radioactive gas standards (for which results from transfer instrument measurements that are directly traceable to a primary measurement in the laboratory may be included);
- (b) each NMI or other laboratory may use only one result (normally the most recent result or the mean if more than one ampoule is submitted);
- (c) results more than 20 years old are included in the calculation of the KCRV but are not included in data shown in the KCDB or in the plots in this report, as they have expired;

- (d) possible outliers can be identified on a mathematical basis and excluded from the KCRV using the normalized error test with a test value of 2.5 and using the modified uncertainties;
- (e) results can also be excluded for technical reasons; and
- (f) the CCRI(II) is always the final arbiter regarding excluding any data from the calculation of the KCRV.

Although the KCRV may be modified when other NMIs participate, on the advice of the Key Comparison Working Group of the CCRI(II), such modifications are made only by the CCRI(II) during one of its biennial meetings, or by consensus through electronic means (e.g., email) as discussed at the CCRI(II) meeting in 2013.

The results of the CCRI(II)-K2.Zn-65 comparison were linked to the SIR through the measurement of all the CCRI(II)-K2 ampoules in the SIR in 2002. Consequently those results that conform with the provisions indicated above were included in the KCRV [14].

Using the recent SIR results produces an updated KCRV for 65 Zn in 2018 of **29** 730(39) kBq with the power $\alpha = 1.833$ that has been calculated using the previously published results, selected as shown in Table 4, for the ANSTO (1977), ASMW (1977), NIST (1999), BARC (2006), LNMRI-IRD (2015), LNE-LNHB (2018) and the CCRI(II)-K2 results for the BKFH (2002), CMI (2002), CNEA (2002), IFIN-HH (2002), IRA (2002), JRC (2002), KRISS (2002), NMIJ (2002), NMISA (2002), NPL (2002), PTB (2002), and the VNIIM (2002). This can be compared with the previous KCRV values of 29 710(40) kBq published in 2004 [3] and 29 740(43) kBq published in 2015 [4].

4.2. Degrees of equivalence

Every participant in a comparison is entitled to have one result included in the KCDB as long as the NMI is a signatory or designated institute listed in the CIPM MRA and the result is valid (i.e., not older than 20 years). No recent submission has been identified as a pilot study so the most recent result of each NMI is normally eligible for inclusion on the KCDB platform of the CIPM MRA [2]. An NMI may withdraw its result only if all other participants agree. The results of the CCRI(II)-K2.Zn-65 comparison are older than 20 years and were withdrawn from the KCDB.

The degree of equivalence of a given measurement standard is the degree to which this standard is consistent with the KCRV [2]. The degree of equivalence is expressed quantitatively in terms of the deviation from the key comparison reference value and the expanded uncertainty of this deviation (k = 2). The degree of equivalence between any pair of national measurement standards is expressed in terms of their difference and the expanded uncertainty of this difference and is independent of the choice of key comparison reference value.

4.2.1. Comparison of a given NMI result with the KCRV

The degree of equivalence of the result of a particular NMI, i, with the key comparison reference value is expressed as the difference D_i between the values

$$D_i = A_{\rm ei} - \rm KCRV \tag{1}$$

and the expanded uncertainty (k = 2) of this difference, U_i , known as the equivalence uncertainty; hence

$$U_i = 2u(D_i) \tag{2}$$

When the result of the NMI i is included in the KCRV with a weight w_i , then

$$u^{2}(D_{i}) = (1 - 2w_{i})u_{i}^{2} + u^{2}(\text{KCRV})$$
(3)

However, when the result of the NMI i is not included in the KCRV, then

$$u^2(D_i) = u_i^2 + u^2(\text{KCRV}) \tag{4}$$

The introductory text in Appendix A is the one agreed by the CCRI(II) for all the K1 comparisons.

4.2.2. Comparison between pairs of NMI results

The degree of equivalence between the results of any pair of NMIs, i and j, is expressed as the difference D_{ij} in the values

$$D_{ij} = D_i - D_j = A_{ei} - A_{ej} \tag{5}$$

and the expanded uncertainty (k = 2) of this difference, $U_{ij} = 2u(D_{ij})$, where

$$u^{2}(D_{ij}) = u_{i}^{2} + u_{j}^{2} - 2u(A_{ei}, A_{ej})$$
(6)

where any obvious correlations between the NMIs (such as a traceable calibration, correlations normally coming from the SIR, or from the linking factor in the case of linked comparison) are subtracted using the covariance $u(A_{ei}, A_{ej})$ (see [15] for more detail). However, the CCRI decided in 2011 that these pair-wise degrees of equivalence no longer need to be published as long as the methodology is explained.

Table B1 shows the matrix of all the degrees of equivalence as they will appear in the KCDB. It should be noted that for consistency within the KCDB, a simplified level of nomenclature is used with A_{ei} replaced by x_i . The introductory text is that agreed for the comparison. The graph of the results in Table 5, corresponding to the degrees of equivalence with respect to the KCRV (identified as x_R in the KCDB), is shown in Figure C1. This graphical representation indicates in part the degree of equivalence between the NMIs but obviously does not take into account the correlations between the different NMIs. It should be noted that the final data in this paper, while correct at the time of publication, will become out-of-date as NMIs make new comparisons. The formal results under the CIPM MRA [2] are those available in the KCDB.

5. Conclusion

The BIPM continuous key comparison for ⁶⁵Zn, BIPM.RI(II)-K1.Zn-65, currently comprises 3 valid results. The KCRV has been recalculated to include the latest result from the LNE-LNHB (France), and the LNMRI-IRD (Brazil). The results have been analyzed with respect to the updated KCRV, providing degrees of equivalence for 3 national metrology institutes. The degrees of equivalence have been approved by the CCRI(II) and are published in the BIPM key comparison database. Other results may be added when other NMIs contribute ⁶⁵Zn activity measurements to this comparison or take part in other linked comparisons.

6. References

- Ratel, G. The Système International de Référence and its application in key comparisons, Metrologia, 2007, 44(4), S7-S16.
- [2] CIPM MRA: Mutual recognition of national measurement standards and of calibration and measurement certificates issued by national metrology institutes, International Committee for Weights and Measures, 1999, pp. 45, Technical Supplement revised in October 2003 (pages 38-41).
- [3] Ratel G. and Michotte C. *Metrologia*, 2004, **41**, 06014.
- [4] Michotte C. et al Metrologia, 2015, **52**, 06007.
- [5] Auble R.L., Nuclear data sheets for A = 65, Nuclear Data Sheets 16:3, 1975, 351-382.
- [6] Bé M.-M., Chisté V., Dulieu C., Browne E., Chechev V., Kuzmenko N., Helmer R., Nichols A., Schöfeld E., Dersch R., *Table of radionuclides*, Monographie BIPM-5, 2006, Vol. 3.
- [7] BNM-CEA, Table de Radionucléides, Version : 1984, BNM-LNHB, Gif-sur-Yvette.
- [8] IAEA-TECDOC-619, X-ray and gamma-ray standards for detector calibration, 1991, Vienna, IAEA.
- [9] BNM-CEA/DTA/DAMRI/LPRI, 1998, Nucléide, Nuclear and Atomic Decay Data Version: 1-98 19/12/98 CD ROM, BNM-LNHB, Gif-sur-Yvette.
- [10] Coulon R., Courte S., Judge S., Michotte C. and Nonis M., Digitalization of the reporting of key comparisons for radionuclide metrology, *Measurement Science and Technology*, 2021, 33 024003.
- [11] Coulon R., Grasso Toro F., Michotte C. Machine-readable data and metadata of international key comparisons in radionuclide metrology, *Measurement Science and Technology*, 2023, 34 074009.
- [12] Woods M.J., Reher D.F.G. and Ratel G., Equivalence in radionuclide metrology, Applied Radiation and Isotopes, 2000, 52(3), 313-318.
- [13] Pommé S. and Keightley J., Determination of a reference value and its uncertainty through a power-moderated mean, *Metrologia*, 2015, 52(3), S200.
- [14] Michotte C. et al Metrologia, 2015, 52, 06007.
- [15] Michotte C. and Ratel G., Correlations taken into account in the KCDB, CCRI(II) working document, 2003, CCRI(II)/03-29.

Key comparison BIPM.RI(II)-K1.Zn-65

MEASURAND: Equivalent activity of ⁶⁵Zn

Key comparison reference value: the SIR reference value $x_{\rm R}$ for this radionuclide is 29730 kBq, with a standard uncertainty, $u_{\rm R}$ equal to 39 kBq (see Section 4.1 of the Final Report). The value x_i is taken as the equivalent activity for a laboratory *i*.

and U_i , its expanded uncertainty (k = 2), both expressed in MBq, and $U_i = 2((1 - 2w_i)u_i^2 + u_R^2)^{1/2}$, where w_i is the weight of The degree of equivalence of each laboratory with respect to the reference value is given by a pair of terms: $D_i = (x_i - x_R)$ laboratory i contributing to the calculation of $x_{\rm R}$.

Appendix B. Table of degrees of equivalence for BIPM.RI(II)-K1.Zn-65

Table B1: The table of degrees of equivalence for $\rm BIPM.RI(II)\text{-}K1.Zn\text{-}65$

NMI i	D_i / \mathbf{MBq}	U_i / \mathbf{MBq}
BARC	-0.60	0.61
LNMRI-IRD	0.16	0.40
LNE-LNHB	-0.01	0.18

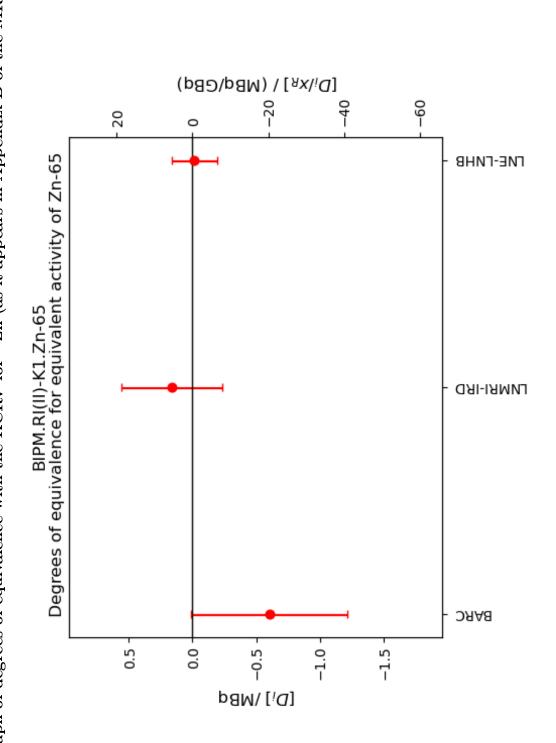


Figure C1. Degrees of equivalence for equivalent activity of ⁶⁵Zn.

Appendix D. Uncertainty budgets for the activity of $^{65}\mathrm{Zn}$ submitted to the SIR

Detailed Uncertainty Budget

Laboratory: LNE-LNHB; Radionuclide: ⁶⁵Zn ; Ampoule number: BIPM n°2

Uncertainty components*, in % of the activity concentration, due to

Evaluation		Comments	type	sensitivity factor
Counting statistics	0.1	8 LS sources measured	A	1
Weighing	0.1	Gravimetric method	В	1
Dead time	0.01	Live time technique	В	1
Background	0.05		A	1
Extrapolation technique	0.22	PMT defocusing	A	1
Impurities	0.1	Gamma-spectrometry	A	1
Decay-scheme parameters	0.05	PK values correction	В	1
Decay correction	0.01		В	1
Combined uncertainty (as	0.29			
quadratic sum of all				
uncertainty component)				

^{*} The uncertainty components are to be considered as approximations of the corresponding standard deviations (see also *Metrologia*, 1981, 17, 73 and *Guide to expression of uncertainty in measurement*, ISO, corrected and reprinted 1995).

Detailed Uncertainty Budget

Laboratory: LNMRI/IRD; Radionuclide: Zn-65 ; Ampoule number: 74L15 .

Uncertainty components*, in % of the activity concentration, due to

		Remarks	Evaluation	Relative
			type (A or B)	sensitivity
				Factor
counting statistics	0.36		Α	
weighing	0.05		B	
dead time	0.01		B	
background	0.35		B	
pile-up				
counting time				
adsorption				
impurities				
tracer input parameters				
and statistical model				
quenching interpolation from				
calibration curve				
decay-scheme parameters half life $(T_{1/2} = _244.01 _ _ _$	0.01		B	
$u = _ 0.09_)$ self absorption	,		B	
extrapolation of efficiency curve	0.41		B	
other effects (if relevant) (explain)	22232			
combined uncertainty (as quadratic sum of all uncertainty components)	0.65			niger daar 'aant bije, 'nier daar jaak

^{*} The uncertainty components are to be considered as approximations of the corresponding standard deviations (see also *Metrologia*, 1981, **17**, 73 and *Guide to expression of uncertainty in measurement*, <u>http://www.bipm.org/en/publications/guides/</u>

Appendix E. Acronyms used to identify different measurement methods

Each acronym has six components, geometry-detector (1)-radiation (1)-detector (2)-radiation (2)-mode. When a component is unknown, ?? is used and when it is not applicable 00 is used.

Geometry	acronym	Detector	acronym
4π	4P	proportional counter	PC
defined solid angle	SA	press. Prop. Counter	PP
2 π	2P	liquid scintillation counting	LS
undefined solid angle	UA	NaI(Tl)	NA
		Ge(HP)	GH
		Ge(Li)	GL
		Si(Li)	SL
		CsI(Tl)	CS
		ionization chamber	IC
		grid ionization chamber	GC
		Cerenkov detector	CD
		calorimeter	CA
		solid plastic scintillator	SP
		PIPS detector	PS
		CeBr3	СВ

Radiation	acronym	Mode	acronym
positron	РО	efficiency tracing	ET
beta particle	BP	internal gas counting	IG
Auger electron	AE	CIEMAT/NIST	CN
conversion electron	CE	sum counting	SC
mixed electrons	ME	coincidence	СО
bremsstrahlung	BS	anticoincidence	AC
gamma rays	GR	coincidence counting with	CT
		efficiency tracing	
x-rays	XR	anticoincidence counting	AT
		with efficiency tracing	
photons $(x + \gamma)$	PH	triple-to-double coincidence	TD
		ratio counting	
photons + electrons	PE	selective sampling	SS
alpha particle	AP	high efficiency	HE
mixture of various radi-	MX	digital coincidence counting	DC
ation			

Final report - December 2023

Examples of methods	acronym
$4\pi(\text{PC})\beta$ - γ coincidence counting	4P-PC-BP-NA-GR-CO
$4\pi(\text{PPC})\beta$ - γ coincidence counting	4P-PP-MX-NA-GR-CT
eff. trac	
defined solid angle α -particle	SA-PS-AP-00-00-00
counting with a PIPS detector	
4π (PPC)AX- γ (GeHP)-	4P-PP-MX-GH-GR-AC
anticoincidence counting	
$4\pi \text{CsI-}\beta, \text{AX}, \gamma \text{ counting}$	4P-CS-MX-00-00-HE
calibrated IC	4P-IC-GR-00-00-00
internal gas counting	4P-PC-BP-00-00-IG