Update of the BIPM comparison BIPM.RI(II)-K1.Tb-161 of activity measurements of the radionuclide ¹⁶¹Tb to include the 2022 result of the NPL (United Kingdom)

C. Michotte¹, S. Courte¹, R. Coulon¹, M. Nonis¹, S. Collins², R. Shearman², S. Kolmogorova², J. Keightley², A. Pearce², N. Ramirez², E. Bendall², H. Mohamud², J. Mewburn-Crook²

 1 Bureau International des Poids et Mesures, Pavillon de Breteuil, F-92312 Sèvres Cedex, France.

² National Physical Laboratory (NPL), Hampton Road Middlesex TW11 0LW Teddington, United Kingdom.

E-mail: cmichotte@bipm.org

Abstract Since 2019, 2 laboratories have submitted 2 samples of ¹⁶¹Tb to the International Reference System (SIR) for activity comparison at the Bureau International des Poids et Mesures (BIPM), with comparison identifier BIPM.RI(II)-K1.Tb-161. Recently, the NPL (United Kingdom) participated in the comparison and the key comparison reference value (KCRV) has been evaluated for the first time. The degrees of equivalence between each equivalent activity measured in the SIR and the updated KCRV have been calculated and the results are given in the form of a table. A graphical representation is also given.

1. Introduction

The SIR for activity measurements of γ -ray-emitting radionuclides was established in 1976. Each national metrology institute (NMI) may request a standard ampoule from the BIPM that is then filled with 3.6 g of the radioactive solution. For radioactive gases, a different standard ampoule is used. Each NMI completes a submission form that details the standardization method used to determine the absolute activity of the radionuclide and the full uncertainty budget for the evaluation. The ampoules are sent to the BIPM where they are compared with standard sources of ²²⁶Ra using pressurized ionization chambers. Details of the SIR method, experimental set-up and the determination of the equivalent activity $A_{\rm e}$, are all given in [1].

From its inception until 31 December 2022, the SIR has been used to measure 1045 ampoules to give 799 independent results for 72 different radionuclides. The SIR makes

it possible for national laboratories to check the reliability of their activity measurements at any time. This is achieved by the determination of the equivalent activity of the radionuclide and by comparison of the result with the key comparison reference value determined from the results of primary standardizations. These comparisons are described as BIPM continuous comparisons and the results form the basis of the BIPM key comparison database (KCDB) of the Comité International des Poids et Mesures Mutual Recognition Arrangement (CIPM MRA) [2]. The comparison described in this report is known as the BIPM.RI(II)-K1.Tb-161 key comparison. The results of earlier participations in this key comparison were published previously [3].

Successful participation in this comparison by a laboratory may provide evidential support for Calibration and Measurement Capability (CMC) claims for ¹⁶¹Tb measured using the laboratory's method(s) used in the comparison or methods calibrated by those used for the comparison. This comparison may also be used to support CMC claims for those radionuclides measured in the laboratory using the same method and having a degree of difficulty at or below that of the radionuclide measured in this comparison as indicated in the current Measurement Methods Matrix (MMM) [4]

2. Participants

Laboratory details are given in Table 1, with the earlier submissions being taken from [3]. The dates of measurement in the SIR given in Table 1 are used in the KCDB and all references in this report.

NMI or labora- tory	Previous acronyms or other insti- tutes	Full name	Country	Regional Metrology Organi- zation (RMO)	Date of SIR mea- surement yyyy-mm-dd
IRA	IER	Institut de Radiophysique	Switzerland	EURAMET	2019-08-29
NPL	-	National Physical Labora-	United King-	EURAMET	2022-03-17
		tory	dom		

Table 1: Details of the participants in the BIPM.RI(II)-K1.Tb-161.

3. NMI standardization methods

Each NMI that submits ampoules to the SIR has measured the activity either by a primary standardization method or by using a secondary method, for example a calibrated ionization chamber. In the latter case, the traceability of the calibration needs to be clearly identified to ensure that appropriate correlations are taken into account.

A brief description of the standardization methods used by the laboratories, the activities submitted, the relative standard uncertainties and the half-life used by the participants are given in Table 2. The uncertainty budget for the new submission is

given in Appendix D attached to this report; previous uncertainty budgets are given in the earlier K1 report [3]. The list of acronyms used to summarize the methods is given in Appendix E.

The half-life used previously by the BIPM was 6.953(2) days [5] and this was changed to the more recent evaluation of 6.9625(26) days [6]. All the results in Table 4 have been updated accordingly.

NMI or	Method used and the	Activity	Relativ		Reference	Half-life
labora-	acronym	A_i/\mathbf{MBq}	standar		date	/d
tory			uncerta	\mathbf{inty}		
			$/10^{-2}$			
			Α	В	yyyy-mm- dd	
IRA	4π (PS) β - γ coincidence	61 970 ^a	0.16	0.56	2019-08-22	6.955(2)
	(4P-PS-BP-CB-GR-CO)				12:00 UT	
	4π (LS) β - γ coincidence (
	4P-LS-BP-CB-GR-CO)					
NPL	$4\pi(\text{LS})\beta$ - γ digital coinci-	54612	0.023	0.185	2022-03-14	6.9571(36)
	dence counting (4P-LS-BP-				12:00 UT	(NPL
	GH-GR-CO)					evaluation
						using [5], [8], [9])
	CIEMAT/NIST efficiency	$54486^{\rm b}$	0.032	0.261		
	tracing (4P-LS-BP-00-00-					
	CN)					

^a The activity is the mean of 25 efficiency extrapolated activities obtained with two coincidence techniques, 8 sources, from 2 dilutions, and 3 γ settings. The degrees of freedom of the twenty five efficiency extrapolations range from 40 to 77 [7].

^b The final result of 54 572(87) kBq obtained by the two methods has been calculated as a weighted mean at lowest level before application of dilution factors and inclusion of dilution uncertainty.

Details regarding the solutions submitted are shown in Table 3, including any impurities, when present, as identified by the laboratories. When given, the standard uncertainties on the evaluations are shown.

NMI or	Chemical	Solvent conc.	Carrier	Density	Relative activity of
laboratory	composi-		conc.		any impurity ^a
/ SIR year	tion				
		$/ (\mathrm{mol}\mathrm{dm}^{-3})$	$/(\mu g g^{-1})$	$/({ m gcm^{-3}})$	
IRA 2019	Tb^{3+} in HCl	0.1	25	1.000(6)	¹⁶⁰ Tb: $4.44(22)$ x10 ⁻³ %
NPL 2022	Gd ³⁺ in HCl	0.1	25	1	¹⁶⁰ Tb: $3.95(10)$ x 10^{-3} %

Table 3: Details of each solution of 161 Tb submitted.

^a The ratio of the activity of the impurity to the activity of ¹⁶¹Tb at the reference date

4. Results

All the submissions to the SIR since its inception in 1976 are maintained in a dedicated database based on CSV formatted files controlled by the Git version control system [10]. Machine-readable versions of this report (XML and JSON documents) are attached to this document [11]. The latest submission has added 1 ampoule for the activity measurements for ¹⁶¹Tb giving rise to 2 ampoules in total.

The SIR equivalent activity, A_{ei} , for each ampoule received from each NMI, *i*, including both previous and new results, is given in Table 4. The relative standard uncertainties arising from the measurements in the SIR are also shown. This uncertainty is additional to that declared by the NMI $(u(A_i))$ for the activity measurement shown in Table 2. Although submitted activities are compared with a given source of ²²⁶Ra, all the SIR results are normalized to the radium source number 5 [1]. Table 4 also shows the comparison results selected for the KCRV as explained in section 4.1.

The impurity correction of the SIR measurements amounts to 1.01 and 1.006 for the IRA and NPL, respectively. Measurements repeated at the BIPM after periods of up to 2 weeks later produced results in agreement within two combined standard uncertainty for the NPL (2022).

NMI or labo-	Mass m_i	A_i	226 Ra	$A_{\mathbf{e}i}$	Relative	$u_{\mathbf{c}i}$	$A_{\mathbf{e}i}$ for
ratory / SIR			source		uncert.		KCRV
year					from SIR		
	$/\mathbf{g}$	$/\mathbf{MBq}$		/MBq	/10 ⁻⁴	/MBq	$/{f MBq}$
IRA 2019	$3.642 \ 43(21)$	61 970	1	1710	17	10	1710(10)
NPL 2022	3.609 27	54612	2	1702.4	12	3.8	$1701.6(34)^{\rm a}$
		54486		1698.5		4.9	-

Table 4: Results of SIR measurement of ¹⁶¹Tb.

^a The result was obtained using an average between methods.

4.1. The key comparison reference value

In May 2013, the CCRI(II) decided to calculate the key comparison reference value (KCRV) by using the power-moderated weighted mean [12] rather than an unweighted mean, as had been the policy. This type of weighted mean is similar to a Mandel-Paule mean in that the NMIs' uncertainties may be increased until the reduced chi-squared value is one. In addition, it allows for a power α smaller than two in the weighting factor. As proposed in [12], α is taken as 2 - 3/N where N is the number of results selected for the KCRV. Therefore, all SIR key comparison results can be selected for the KCRV with the following provisions:

(a) results for solutions standardized by only primary techniques are accepted, with the

exception of radioactive gas standards (for which results from transfer instrument measurements that are directly traceable to a primary measurement in the laboratory may be included);

- (b) each NMI or other laboratory may use only one result (normally the most recent result or the mean if more than one ampoule is submitted);
- (c) results more than 20 years old are included in the calculation of the KCRV but are not included in data shown in the KCDB or in the plots in this report, as they have expired;
- (d) possible outliers can be identified on a mathematical basis and excluded from the KCRV using the normalized error test with a test value of 2.5 and using the modified uncertainties;
- (e) results can also be excluded for technical reasons; and
- (f) the CCRI(II) is always the final arbiter regarding excluding any data from the calculation of the KCRV.

Although the KCRV may be modified when other NMIs participate, on the advice of the Key Comparison Working Group of the CCRI(II), such modifications are made only by the CCRI(II) during one of its biennial meetings, or by consensus through electronic means (e.g., email) as discussed at the CCRI(II) meeting in 2013.

Consequently, using the recent result produces a first KCRV for ¹⁶¹Tb in 2022 of **1704.7(41) MBq** with the power $\alpha = 0.5$ that has been calculated using the previously published result, selected as shown in Table 4, for the IRA (2019), and the present NPL (2022) result.

4.2. Degrees of equivalence

Every participant in a comparison is entitled to have one result included in the KCDB as long as the NMI is a signatory or designated institute listed in the CIPM MRA and the result is valid (i.e., not older than 20 years). No recent submission has been identified as a pilot study so the most recent result of each NMI is normally eligible for inclusion on the KCDB platform of the CIPM MRA [2]. An NMI may withdraw its result only if all other participants agree.

The degree of equivalence of a given measurement standard is the degree to which this standard is consistent with the KCRV [2]. The degree of equivalence is expressed quantitatively in terms of the deviation from the key comparison reference value and the expanded uncertainty of this deviation (k = 2). The degree of equivalence between any pair of national measurement standards is expressed in terms of their difference and the expanded uncertainty of this difference and is independent of the choice of key comparison reference value.

4.2.1. Comparison of a given NMI result with the KCRV

The degree of equivalence of the result of a particular NMI, i, with the key comparison reference value is expressed as the difference D_i between the values

$$D_i = A_{\rm ei} - \rm KCRV \tag{1}$$

and the expanded uncertainty (k = 2) of this difference, U_i , known as the equivalence uncertainty; hence

$$U_i = 2u(D_i) \tag{2}$$

When the result of the NMI *i* is included in the KCRV with a weight w_i , then

$$u^{2}(D_{i}) = (1 - 2w_{i})u_{i}^{2} + u^{2}(\text{KCRV})$$
(3)

However, when the result of the NMI i is not included in the KCRV, then

$$u^2(D_i) = u_i^2 + u^2(\text{KCRV}) \tag{4}$$

The introductory text in Appendix A is the one agreed by the CCRI(II) for all the K1 comparisons.

4.2.2. Comparison between pairs of NMI results

The degree of equivalence between the results of any pair of NMIs, i and j, is expressed as the difference D_{ij} in the values

$$D_{ij} = D_i - D_j = A_{ei} - A_{ej} \tag{5}$$

and the expanded uncertainty (k = 2) of this difference, $U_{ij} = 2u(D_{ij})$, where

$$u^{2}(D_{ij}) = u_{i}^{2} + u_{j}^{2} - 2u(A_{ei}, A_{ej})$$
(6)

where any obvious correlations between the NMIs (such as a traceable calibration, correlations normally coming from the SIR, or from the linking factor in the case of linked comparison) are subtracted using the covariance $u(A_{ei}, A_{ej})$ (see [13] for more detail). However, the CCRI decided in 2011 that these pair-wise degrees of equivalence no longer need to be published as long as the methodology is explained.

Appendix B shows the matrix of all the degrees of equivalence as they will appear in the KCDB. It should be noted that for consistency within the KCDB, a simplified level of nomenclature is used with A_{ei} replaced by x_i . The introductory text is that agreed for the comparison. The graph of the results in Table 5, corresponding to the degrees of equivalence with respect to the KCRV (identified as x_R in the KCDB), is shown in Figure C1. This graphical representation indicates in part the degree of equivalence between the NMIs but obviously does not take into account the correlations between the different NMIs. It should be noted that the final data in this paper, while correct at the time of publication, will become out-of-date as NMIs make new comparisons. The formal results under the CIPM MRA [2] are those available in the KCDB.

5. Conclusion

The BIPM continuous key comparison for ¹⁶¹Tb, BIPM.RI(II)-K1.Tb-161, currently comprises 2 results. The KCRV has been evaluated for the first time including the 2019 IRA result and the latest result from the NPL (United Kingdom). The results have been analyzed with respect to the KCRV, providing degrees of equivalence for 2 national metrology institutes. The degrees of equivalence have been approved by the CCRI(II) and are published in the BIPM key comparison database. Other results may be added when other NMIs contribute ¹⁶¹Tb activity measurements to this comparison or take part in other linked comparisons.

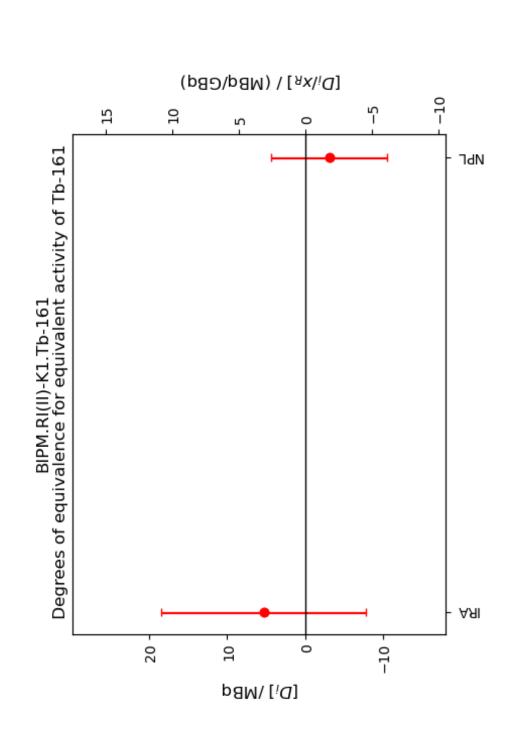
6. References

- Ratel, G. The Système International de Référence and its application in key comparisons, Metrologia, 2007, 44(4), S7-S16.
- [2] CIPM MRA: Mutual recognition of national measurement standards and of calibration and measurement certificates issued by national metrology institutes, International Committee for Weights and Measures, 1999, pp. 45, Technical Supplement revised in October 2003 (pages 38-41).
- [3] C. Michotte, S. Courte, M. Nonis, R. Coulon, S. Judge, Juget F., Nedjadi Y. and Durán M.T., Final report of the new BIPM comparison BIPM.RI(II)-K1.Tb-161 of activity measurements of the radionuclide ¹⁶¹Tb including the 2019 result of the IRA (Switzerland), *Metrologia*, 2021, 58, Tech. Suppl., 06009.
- [4] International Rules for CMC Claims in Ionizing Radiation Metrology, Consultative Committee for Ionizing Radiation metrology (CCRI), CCRI Doc 3 Version 1.0, September 2020.
- [5] Durán M. T., Juget F., Nejadi Y., Bochud F., Grundler P. V., Gracheva N., Müller C., Talip Z., van der Meulen N. P., Bailat C., Determination of ¹⁶¹Tb half-life by three measurement methods, *Appl. Radiat. Isot.*, 2020, **159**, 109085.
- [6] Mougeot X., DDEP private communication, April 2023.
- [7] Nedjadi Y., Juget F., Desorgher L., Durán M.T., Bochud F., Müller C., Talip Z., van der Meulen N.P., Bailat C., Activity standardisation of ¹⁶¹Tb, Appl. Radiat. Isot., 2020, 166, 109411.
- [8] Yongfu C., Chunguang Y., Yuzhen D., Decay data of ¹⁶¹Tb, in: Behrens J.W., Carlson A.D. (Eds.), 50 Years with Nuclear Fission Volume 2, American Nuclear Society, Inc., United States, 949-950.
- [9] Collins S.M. et al., Determination of the ¹⁶¹Tb half-life, Appl. Radiat. Isot., 2022, 182, 110140.
- [10] Coulon R., Courte S., Judge S., Michotte C. and Nonis M., Digitalization of the reporting of key comparisons for radionuclide metrology, *Measurement Science and Technology*, 2021, 33 024003.
- [11] Coulon R., Grasso Toro F., Michotte C. Machine-readable data and metadata of international key comparisons in radionuclide metrology, *Measurement Science and Technology*, 2023, 34 074009.
- [12] Pommé S. and Keightley J., Determination of a reference value and its uncertainty through a power-moderated mean, *Metrologia*, 2015, 52(3), S200.
- [13] Michotte C. and Ratel G., Correlations taken into account in the KCDB, CCRI(II) working document, 2003, CCRI(II)/03-29.

Key comparison BIPM.RI(II)-K1.Tb-161

MEASURAND: Equivalent activity of ¹⁶¹Tb

Key comparison reference value: the SIR reference value $x_{\rm R}$ for this radionuclide is 1704.7 MBq, with a standard uncertainty, $u_{\rm R}$ equal to 4.1 MBq (see Section 4.1 of the Final Report). The value x_i is taken as the equivalent activity for a laboratory *i*.


and U_i , its expanded uncertainty (k = 2), both expressed in MBq, and $U_i = 2((1 - 2w_i)u_i^2 + u_R^2)^{1/2}$, where w_i is the weight of The degree of equivalence of each laboratory with respect to the reference value is given by a pair of terms: $D_i = (x_i - x_R)$ laboratory i contributing to the calculation of $x_{\rm R}$.

Appendix B. Table of degrees of equivalence for BIPM.RI(II)-K1.Tb-161

Table B1: The table of degrees of equivalence for BIPM.RI(II)-K1.Tb-161

NMI i	D_i / \mathbf{MBq}	U_i / \mathbf{MBq}
IRA	5	13
NPL	-3.1	7.4

Appendix D. Uncertainty budgets for the activity of $^{161}\mathrm{Tb}$ submitted to the SIR

Uncertainty budget from NPL (method 1)

SIR/SIRTI reporting fo BIPM.RI(II)-K1 or BIPM.RI(II)-		active solu	ution page 3a
Measurement method		4pi(LS)-ga	amma digital coincidence counting
ACRONYM	4P-LS-G	H-BP-CO	Comments:
Activity concentration at			
reference date / kBq g ⁻¹	15	131	
Relative standard			
uncertainty / 10 ⁻²	0.	19	
Date of measurement at			Date of measurements was 2022-03-14 to 2022-03-15. Used
the NMI (YYYY-MM-DD)	2022-	-03-14	Goldstar Quanta Scintillation Cocktail
For relative methods:			
Primary methods or			
standards used for			
calibration			
Date of calibration			
Date of primary			
measurement			J
the second start is bound as a fi			
Uncertainty budget	Relative		
	uncertainty /	Evaluation	
Uncertainty component	10 ⁻²	type (A or B)	Comment
Counting statistics	0.023	A	
Background	0.003	A	
Weighing	0.02	В	
Dilution	0.070		
Dead time (LS)	0.032	В	
Dead time (HPGe)			
Resolving time			
Pulse-pile up (LS)			
Pulse-pile up (HPGe)			
Decay correction			
Impurities Extra-/Inter-polation of efficiency		В	
curve		В	
Gamma gate selection			
Accidental coincidences			
Reproducibility			
Combined standard			
uncertainty	0.19		

Uncertainty budget from the NPL (method 2)

Measurement method ACRONYM CIEMAT/NIST Efficiency Tracing Comments: Activity concentration at reference date / kBg g ⁻¹ 15096 Relative standard uncertainty / 10 ² 0.26 Date of measurement at the NMI (YYYY-MM-DD) 2022-03-18 Jote of measurement at the NMI (YYYY-MM-DD) 2022-03-18 Jote of alibration Date of calibration	SIR/SIRTI reporting fo BIPM.RI(II)-K1 or BIPM.RI(II)-		active sol	ution	page 3b	
ACRONYM 4P-LS-BP-CN Comments: Activity concentration at reference date / kBg g ¹ Relative standard uncertainty / 10 ² Date of measurement at the NMI (YYYY-MM-DD) 2022-03-18 Used Goldstar Quanta Scintillation Cocktail For relative methods: Primary methods or standards used for calibration Date of calibration Date of calibration Date of primary measurement Uncertainty budget Uncertainty budget Uncertainty subsection Counting statistics Data time 0.000 A Sample Weighing 0.000 B Dead time 0.000 B Dead time 0.000 B Dead time 0.000 B Dead time 0.000 B Counting statistics 0.000 B Dead time 0.000 B Counting tatistics 0.000 B Dead time 0.000 B Counting tatistics 0.000 B Counting tatistics 0.000 B Dead time 0.000 B Counting tatistics 0.000 B Dead time 0.000 B Tracer Deay correction 0.000 B Trace urve fitting 0.003 A Trace urve fitting 0.01 B Trace urve fitting 0.021 B Counting tatistics 0.022 B Counting tatistics 0.021 C Counting tat						
Activity concentration at reference date / kBq g ⁻¹ Relative standard uncertainty / 10 ⁻² Date of measurement at the NMI (YYY-MM-DD) 2022-03-18 Used Goldstar Quanta Scintillation Cocktail For relative methods: Primary methods or standards used for calibration Date of primary measurement Uncertainty budget Uncertainty budget Uncertainty component 10 ⁻² Vype (A or B) Comment Counting statistics 0.032 A Background 0.0006 A Background 0.0006 A Background 0.0007 B Dilution Date 0 for B Selection of kB value 0.007 B Dilution 0.007 B Dilution 0.007 B Cocktail 0.013 B Sample Decay correction 0.021 B Tracer use fitting 0.033 A tracer activity per unit mass 0.01 B Nuclear Data 0.01 B Comment 0.021 B Comment 0.021 B 0.033 A Comment 0.021 B Comment 0.021 B Comment 0.021 B Comment 0.021 B Comment 0.021 B Comment 0.021 B Comment 0.021 B Comment C	Measurement method	CIEMAT/NIST Efficiency Tracing				
reference date / kBg g ⁻¹ Relative standard uncertainty / 10 ⁻² 0.26 Date of measurement at the NMI (YYYY-MM-DD) 2022-03-18 Used Goldstar Quanta Scintillation Cocktail For relative methods: Primary methods or standards used for calibration Date of alibration Date of primary measurement Uncertainty budget Uncertainty budget Uncertainty component 10 ⁻² Uncertainty budget Uncertainty budget Uncertainty component 10 ⁻² Uncertainty component 10 ⁻² Uncertainty component 10 ⁻² Uncertainty budget Uncertainty component 10 ⁻² Uncertainty budget Uncertainty component 10 ⁻² Uncertainty budget Uncertainty component 10 ⁻² Uncertainty Counting statistics 0.032 A Evaluation Dead time 0.000 B Evaluation Cocktai 0.000 B Evaluation Trace Decay correction 0.0008 Cocktai 0.01 B Evaluation Trace Decay correction 0.0008 Cocktai 0.01 B Evaluation Trace Decay correction 0.0008 Cocktai 0.021 Combined standard Combined stan	ACRONYM	4P-LS-	-BP-CN		Comments:	
Relative standard uncertainty / 10 ² 0.26 Date of measurement at the NMI (YYY-MM-DD) 2022-03-18 Used Goldstar Quanta Scintillation Cocktail For relative methods: Primary methods or standards used for calibration	Activity concentration at					
uncertainty / 10 ⁻² 0.26 Date of measurement at the NMI (YYYY-MM-DD) 2022-03-18 Used Goldstar Quanta Scintillation Cocktail For relative methods: Primary methods or standards used for calibration	reference date / kBq g ⁻¹	15	096			
Date of measurement at the NMI (YYYY-MM-DD) 2022-03-18 Used Goldstar Quanta Scintillation Cocktail For relative methods: Primary methods or standards used for calibration Date of calibration	Relative standard					
the NMI (YYY-MM-DD) 2022-03-18 Used Goldstar Quanta Scintillation Cocktail For relative methods: Primary methods or standards used for calibration	uncertainty / 10 ⁻²	0.	26			
the NMI (YYY-MM-DD) 2022-03-18 Used Goldstar Quanta Scintillation Cocktail For relative methods: Primary methods or standards used for calibration						
Image methods: Primary methods or standards used for calibration Date of calibration Date of calibration Date of primary measurement Uncertainty budget Counting statistics Counting statistics <td col<="" td=""><td></td><td></td><td></td><td></td><td></td></td>	<td></td> <td></td> <td></td> <td></td> <td></td>					
Primary methods or standards used for calibration Image: calibration calibration Date of calibration Image: calibration Date of primary measurement Image: calibration Uncertainty budget Counting statistics 0.032 A Counting statistics 0.032 A Counting statistics 0.032 A Background 0.0006 A Sample Weighing 0.015 B Tracer weighing 0.0001 B Dead time 0.087 B Selection of kB value 0.009 B Dilution 0.076 B Dilution 0.076 B Sample Decay correction 0.0008 B Tracer use (shing 0.012 B Trace use (shing 0.013 A Sample Decay correction 0.0008 B Trace use (structure) 0.011 B Sample Decay correction 0.0008 B Trace use (structure) 0.011 B Nuclear Da	the NMI (YYYY-MM-DD)	2022-	-03-18	Used Gol	dstar Quanta Scintillation Cocktail	
Primary methods or standards used for calibration Image: calibration calibration Date of calibration Image: calibration Date of primary measurement Image: calibration Uncertainty budget Counting statistics 0.032 A Counting statistics 0.032 A Counting statistics 0.032 A Background 0.0006 A Sample Weighing 0.015 B Tracer weighing 0.0001 B Dead time 0.087 B Selection of kB value 0.009 B Dilution 0.076 B Dilution 0.076 B Sample Decay correction 0.0008 B Tracer use (shing 0.012 B Trace use (shing 0.013 A Sample Decay correction 0.0008 B Trace use (structure) 0.011 B Sample Decay correction 0.0008 B Trace use (structure) 0.011 B Nuclear Da	For relative methods:					
Relative uncertainty budget Evaluation type (A or B) Comment Uncertainty budget 0.032 A Counting statistics 0.032 A Sample Weighing 0.0006 A Sample Weighing 0.001 B Tracer weighing 0.0001 B Dead time 0.002 B Sample Veighing 0.0015 B Sample Veighing 0.0001 B Sample Veighing 0.0001 B Sample Veighing 0.0001 B Sample Veighing 0.0003 A Sample Veighing 0.0015 B Statistics 0.015 B Sample Veighing 0.0001 B Sample Veighing 0.0001 B Sample Decay correction 0.0008 B Tracer uncertititig 0.0033 A Tracer veighting 0.011 B Muclear Data 0.01 B Sample Decay correction 0.0008 B Nuclear Data 0.01 B Nuclear Data						
calibration	•					
Date of calibration						
Measurement Volumentation Uncertainty budget 10 ³ Evaluation Uncertainty component 10 ³ Comment Counting statistics 0.032 A Counting statistics 0.032 A Sample Weighing 0.006 A Sample Weighing 0.001 B Dead time 0.087 B Selection of k8 value 0.009 B Dilution 0.076 B Cocktaii 0.1 B Sample Decay correction 0.021 B Tracer Decay correction 0.003 A Trace curve fitting 0.003 A Trace curve fitting 0.001 B Trace curve fitting 0.002 B Trace curve fitting 0.003 A Itracer activity per unit mass 0.01 B Nuclear Data 0.21 B Itracer activity per unit mass 0.01 B Itracer activity per unit mass 0.21 Itracer Itracer activity per unit mass 0.21 Itracer						
Measurement Volumentation Uncertainty budget 10 ³ Evaluation Uncertainty component 10 ³ Comment Counting statistics 0.032 A Counting statistics 0.032 A Sample Weighing 0.006 A Sample Weighing 0.001 B Dead time 0.087 B Selection of k8 value 0.009 B Dilution 0.076 B Cocktaii 0.1 B Sample Decay correction 0.021 B Tracer Decay correction 0.003 A Trace curve fitting 0.003 A Trace curve fitting 0.001 B Trace curve fitting 0.002 B Trace curve fitting 0.003 A Itracer activity per unit mass 0.01 B Nuclear Data 0.21 B Itracer activity per unit mass 0.01 B Itracer activity per unit mass 0.21 Itracer Itracer activity per unit mass 0.21 Itracer				-		
Relative uncertainty componentRelative uncertainty / type (A or B)Evaluation type (A or B)Counting statistics0.032ABackground0.0006ASample Weighing0.015BTracer weighing0.0001BDead time0.009BSelection of kB value0.009BDilution0.076BCocktail0.1BSample Decay correction0.001BTracer veighting0.003ASample Decay correction0.021BTracer urve fitting0.003ATracer activity per unit mass0.01BNuclear Data0.21BCombined standardIICombined standardIIImage: Combined standardImage: Combined standardImage: Combined standard						
Uncertainty component10°2type (A or B)CommentCounting statistics0.032A	Uncertainty budget		Fuchation			
Counting statistics0.032ABackground0.0006ASample Weighing0.015BTracer weighing0.0001BDead time0.087BSelection of kB value0.009BDilution0.076BCocktail0.1BSample Decay correction0.021BTracer Decay correction0.0033ATracer activity per unit mass0.01BNuclear Data0.21BCombined standardIIImage: Combined standardImage: Combined standardImage: Combined standard	Uncertainty component	-		Comment		
Sample Weighing0.015BTracer weighing0.000BDead time0.087BSelection of kB value0.009BDilution0.076BCocktail0.1BCocktail0.1BTracer Decay correction0.021BTracer Decay correction0.003ATracer otivity per unit mass0.01BNuclear Data0.21BNuclear Data0.21BCombined standardIIImage: Combined standardImage: Combined standardImage: Combined standardImage: Combined standardImage: Combined standardImage: Combined standard						
Tracer weighing0.0001BDead time0.087BSelection of kB value0.009BDilution0.076BCocktai0.1BSample Decay correction0.021BTracer Decay correction0.0008BTrace curve fitting0.0033AVarcer activity per unit mass0.01BNuclear Data0.21BCombined standardIICombined standardII	Background	0.0006	A			
Dead time0.087BSelection of kB value0.009BDilution0.076BCocktail0.1BCocktail0.021BTracer Decay correction0.0008BTrace curve fitting0.0033ATracer activity per unit mass0.01BNuclear Data0.21BImage: Combined standardImage: Combined standardCombined standardImage: Combined standard	Sample Weighing	0.015	В			
Selection of kB value0.009BDilution0.076BCocktail0.1BSample Decay correction0.021BTracer Decay correction0.0008BTrace curve fitting0.0033Atracer activity per unit mass0.01BNuclear Data0.21BQuert DataQuert DataQuert DataCombined standardII	Tracer weighing	0.0001	В			
Dilution0.076BCocktail0.1BSample Decay correction0.021BTracer Decay correction0.0008BTrace curve fitting0.0033Atracer activity per unit mass0.01BNuclear Data0.21BQuerter activity per unit mass0.01BQuerter activity per unit mass0.01BNuclear Data0.21BQuerter activity per unit mass0.01BQuerter activity per unit mass0.01BQuerter activity per unit mass0.02BQuerter activity per unit mass0.21BQuerter activity per unit mass0.21BQ	Dead time	0.087	В			
Cocktail 0.1 B Sample Decay correction 0.021 B Tracer Decay correction 0.0008 B Trace curve fitting 0.0033 A tracer activity per unit mass 0.01 B Nuclear Data 0.21 B Combined standard I I	Selection of kB value	0.009	В			
Sample Decay correction0.021BTracer Decay correction0.0008BTrace curve fitting0.0033Atracer activity per unit mass0.01BNuclear Data0.21BQuert DataQuert Data <t< td=""><td>Dilution</td><td>0.076</td><td>В</td><td></td><td></td></t<>	Dilution	0.076	В			
Tracer Decay correction 0.0008 B Trace curve fitting 0.0033 A tracer activity per unit mass 0.01 B Nuclear Data 0.21 B Image: Combined standard Image: Combined standard Image: Combined standard	Cocktail					
Trace curve fitting 0.0033 A tracer activity per unit mass 0.01 B Nuclear Data 0.21 B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
tracer activity per unit mass 0.01 B Nuclear Data 0.21 B Image: Combined standard Image:			В			
Nuclear Data 0.21 B Image: Combined standard Image: Combined standard Image: Combined standard						
Combined standard						
	Nuclear Data	0.21	В			
	Combined standard					
	uncertainty	0.36		1		

Appendix E. Acronyms used to identify different measurement methods

Each acronym has six components, geometry-detector (1)-radiation (1)-detector (2)-radiation (2)-mode. When a component is unknown, ?? is used and when it is not applicable 00 is used.

Geometry	acronym	Detector	acronym
4π	4P	proportional counter	PC
defined solid angle	SA	press. Prop. Counter	PP
2 π	2P	liquid scintillation counting	LS
undefined solid angle	UA	NaI(Tl)	NA
		Ge(HP)	GH
		Ge(Li)	GL
		Si(Li)	SL
		CsI(Tl)	CS
		ionization chamber	IC
		grid ionization chamber	GC
		Cerenkov detector	CD
		calorimeter	CA
		solid plastic scintillator	SP
		PIPS detector	PS
		CeBr3	СВ

Radiation	acronym	Mode	acronym
positron	РО	efficiency tracing	ET
beta particle	BP	internal gas counting	IG
Auger electron	AE	CIEMAT/NIST	CN
conversion electron	CE	sum counting	SC
mixed electrons	ME	coincidence	СО
bremsstrahlung	BS	anticoincidence	AC
gamma rays	GR	coincidence counting with	CT
		efficiency tracing	
x-rays	XR	anticoincidence counting	AT
		with efficiency tracing	
photons $(x + \gamma)$	PH	triple-to-double coincidence	TD
		ratio counting	
photons + electrons	PE	selective sampling	SS
alpha particle	AP	high efficiency	HE
mixture of various radi-	MX	digital coincidence counting	DC
ation			

Examples of methods	acronym
$4\pi(\text{PC})\beta$ - γ coincidence counting	4P-PC-BP-NA-GR-CO
$4\pi(\text{PPC})\beta$ - γ coincidence counting	4P-PP-MX-NA-GR-CT
eff. trac	
defined solid angle α -particle	SA-PS-AP-00-00-00
counting with a PIPS detector	
4π (PPC)AX- γ (GeHP)-	4P-PP-MX-GH-GR-AC
anticoincidence counting	
$4\pi \text{CsI-}\beta, \text{AX}, \gamma \text{ counting}$	4P-CS-MX-00-00-HE
calibrated IC	4P-IC-GR-00-00-00
internal gas counting	4P-PC-BP-00-00-IG