<u>Update of the BIPM comparison BIPM.RI(II)-K1.Cr-51 of</u> activity measurements of the radionuclide ⁵¹Cr to include the 2012 result of the <u>KRISS (Rep. of Korea), the 2022 result of the POLATOM (Poland), and to link</u> the 2022 EURAMET.RI(II)-K2.Cr-51 comparison

C. Michotte¹, S. Courte¹, R. Coulon¹, M. Nonis¹, S. Judge¹, Tae Soon Park², Jong-Man Lee², K.B. Lee², T. Ziemek³, A. Listkowska³, E. Lech³, P. Saganowski³, J. Marganiec-Gałązka³, R. Broda³

 ¹ Bureau International des Poids et Mesures, Sèvres
 ² Korean Research Institute of Standards and Science, Daejeon, Rep. of Korea
 ³ National Centre for Nuclear Research Radioisotope Centre POLATOM, 05-400 Otwock, Poland

Abstract

Two new participations in the BIPM.RI(II)-K1.Cr-51 comparison have been added to the previous results and this has produced a revised value for the key comparison reference value (KCRV), calculated using the power-moderated weighted mean. A link has been made to the EURAMET.RI(II)-K2.Cr-51 comparison piloted by the POLATOM in 2022, who sent an ampoule from the EURAMET comparison to the International Reference System (SIR). The LNE-LNHB (France) used the EURAMET comparison to update its degree of equivalence. The degrees of equivalence between each equivalent activity measured in the SIR and the KCRV have been calculated and the results are given in the form of a table for the latest results in the BIPM.RI(II)-K1.Cr-51, and the linked EURAMET.RI(II)-K2.Cr-51. A graphical presentation is also given.

1. Introduction

The SIR for activity measurements of γ -ray-emitting radionuclides was established in 1976. Each national metrology institute (NMI) may request a standard ampoule from the BIPM that is then filled with 3.6 g of the radioactive solution. For radioactive gases, a different standard ampoule is used. Each NMI completes a form that details the standardization method used to determine the absolute activity of the radionuclide and the full uncertainty budget for the evaluation. The ampoules are sent to the BIPM where they are compared with standard sources of ²²⁶Ra using pressurized ionization chambers. Details of the SIR method, experimental set-up and the determination of the equivalent activity, A_e , are all given in [1].

From its inception until 31 December 2023, the SIR has measured 1054 ampoules to provide 807 independent results for 72 different radionuclides. The SIR makes it possible for national laboratories to check the reliability of their activity measurements at any time. This is achieved by the determination of the equivalent activity of the

radionuclide and by comparison of the result with the key comparison reference value determined from the results of primary standardizations. These comparisons are described as BIPM ongoing comparisons and the results form the basis of the BIPM key comparison database (KCDB) of the CIPM Mutual Recognition Arrangement (CIPM MRA) [2]. The comparison described in this report is known as the BIPM.RI(II)-K1.Cr-51 key comparison and includes results published previously [3 - 5].

In addition, a bilateral comparison, EURAMET.RI(II)-K2.Cr-51, piloted by the National Centre for Nuclear Research Radioisotope Centre POLATOM, Laboratory of Radioactivity Standards (POLATOM, Poland) was held in 2022 for this radionuclide [6]. A link to the SIR has been evaluated thanks to the participation of the POLATOM in both comparisons.

One further international comparison linked to the SIR, APMP.RI(II)-K2.Cr-51 was held in 2004. Linked degrees of equivalence were already published in [4].

Successful participation in this comparison by a laboratory may provide evidential support for Calibration and Measurement Capability (CMC) claims for ⁵¹Cr measured using the laboratory's method(s) used in the comparison or methods calibrated by those used for the comparison. This comparison may also be used to support CMC claims for those radionuclides measured in the laboratory using the same method and having a degree of difficulty at or below that of the radionuclide measured in this comparison as indicated in the current Measurement Methods Matrix (MMM)^{1,2}.

2. Participants in the BIPM.RI(II)-K1.Cr-51

The KRISS and the POLATOM have submitted ampoules for inclusion in this comparison. The details of the laboratories that have participated in the BIPM.RI(II)-K1.Cr-51 comparison are given in Table 1a, with the earlier submissions being taken from [3 - 5]. In cases where the laboratory has changed its name since the original submission, both the earlier and the current acronyms are given, as it is the latter that is used in the KCDB. The date of measurement in the SIR is also given in Table 1a and is used in the KCDB and all references in this report.

¹ International Rules for CMC Claims in Ionizing Radiation Metrology Doc 3 March 16 2021 (Sept 2020), Consultative Committee for Ionizing Radiation metrology (CCRI),

https://www.bipm.org/documents/20126/54619299/Rules+for+entering+CMC+claims+in+ionizing+radiation+metrology/c0b97b77-99e1-4abb-1d10-9a90a35fc9bf

² Guidance on Applying the Measurement Methods Matrix (MMM) in Using Comparison Results to Support CMCs,

https://www.bipm.org/documents/20126/72227223/MMM+and+supporting+docs.pdf/3e2bc3be-ce68-591f-a4f5-fce0c3aedefc

NMI	Original acronym	Full name	Country	Regional metrology organization	Date of measurement at the BIPM
NIST	NBS	National Institute of Standards and Technology	United States	SIM	1977-01-24 1978-12-15 1981-08-12 1999-05-03
СМІ	UVVVR	Český Metrologický Institut/Czech Metrological Institute, Inspectorate for Ionizing Radiation	Czech Republic	EURAMET	1978-04-13 1982-06-30
_	IAEA**	International Atomic Energy Agency	_	_	1978-05-19
ANSTO	AAEC	Australian Nuclear Science and Technology Organisation	Australia	APMP	1978-08-30
PTB	ASMW *	Physikalisch- Technische Bundesanstalt	Germany	EURAMET	1979-03-01 1983-01-14 1995-03-24 1998-04-24
BFKH	OMH MKEH	Government Office of the Capital City Budapest	Hungary	EURAMET	1980-05-22 1989-10-09
_	AECL***	Atomic Energy of Canada Ltd	Canada	_	1980-07-09
NPL	_	National Physical Laboratory	United Kingdom	EURAMET	1980-12-01 2004-05-28
_	CBNM now JRC	Joint Research Centre, European Union	European Union	EURAMET	1981-06-17
LNE- LNHB	LMRI LPRI BNM- LNHB	Laboratoire national de métrologie et d'essais -Laboratoire national Henri Becquerel	France	EURAMET	1984-12-20 1994-04-15 2006 -07-17
NMIJ	ETL	National Metrology Institute of Japan	Japan	APMP	1993-11-24 2004-03-15

Table 1a. Details of the participants in the BIPM.RI(II)-K1.Cr-	51
---	----

NMI	Original acronym	Full name	Country	Regional metrology organization	Date of measurement at the BIPM
KRISS	_	Korea Research Institute of Standards and Science	Rep. of Korea	APMP	2012-01-27
POLATOM	_	National Centre for Nuclear Research Radioisotope Centre POLATOM, Laboratory of Radioactivity Standards	Poland	EURAMET	2022-06-03

Table 1a continued. Details of the participants in the BIPM.RI(II)-K1.Cr-51

* Another laboratory in the country

** In collaboration with UVVVR

*** Federal Crown corporation, not part of the NMI in Canada

The two NMIs that took part in the bilateral comparison, EURAMET.RI(II)-K2.Cr-51 piloted by the POLATOM in 2022 are shown in Table 1b including the POLATOM, the linking laboratory.

Table 1b. Details of the participants in the 2022 EURAMET.RI(II)-K2.Cr-51 eligible for linking to BIPM.RI(II)-K1.Cr-51 comparison

NMI	Full name	Country	Regional metrology organization
LNE-LNHB	Laboratoire national de métrologie et d'essais - Laboratoire national Henri Becquerel	France	EURAMET
POLATOM	National Centre for Nuclear Research Radioisotope Centre POLATOM, Laboratory of Radioactivity Standards	Poland	EURAMET

3. NMI standardization methods

Each NMI that submits ampoules to the SIR has measured the activity either by a primary standardization method or by using a secondary method, for example, a calibrated ionization chamber. In the latter case, the traceability of the calibration needs to be clearly identified to ensure that any correlations are taken into account.

A brief description of the standardization methods, the activities submitted, the relative standard uncertainties and the half-life used by the participants in the SIR are given in Table 2. The uncertainty budgets for the two new submissions are given in Appendix 1, previous uncertainty budgets are given in the earlier K1 reports [3–5]. The uncertainty budgets for the eligible participants in the EURAMET.RI(II)-K2.Cr-51 comparison are given in the EURAMET comparison report [6]. The acronyms used for the measurement methods are given in Appendix 2.

Details regarding the solutions submitted are shown in Table 3, including any impurities, when present, as identified by the laboratories. When given, the standard uncertainties on the evaluations are shown.

NMI		Method used and	Half-life	Activity	Reference	Rela	ntive
		acronym (see	/ d	A_i/kBq	date	stan	dard
		Appendix 2)				uncer	tainty
						× 100 by	method
						of eval	uation
					YYYY-MM-DD	А	В
NIST	1977	Pressurized IC*	-	10 260	1976-12-07	0.05	1.35
					17 h UT		
	1978	4P-IC-GR-00-00-00	27.73	3 936	1978-12-06	0.01	0.64
	1001				1/nUI		
	1981	Pressurized IC **	27.73	6 082	1981-07-28	0.01	0.34
					16 h UT		
	1999	4P-IC-GR-00-00-00	27.702(4)	24 449	1999-04-22	0.10	0.24
					19 h UT		
CMI		$4\pi x - \gamma$ coincidence	27.75	3 570	1978-02-23	0.20	0.47
	1978	4P-PC-MX-NA-GR-CO			11 h UT		
	1982	$4\pi(PC)-\gamma$	27.71	7 233	1982-06-09	0.10	0.23
		coincidence			12 h UT		
		4P-PC-MX-NAGR-CO					
IAEA	1978	x-γ coincidence	27.75	3 781	1978-02-23	0.20	0.47
		00-00-XR-00-GR-CO			11 h UT		
ANST	Ю	$4\pi x$ - γ coincidence	-	7 368	1978-08-01	0.1	0.1
	1978	4P-PC-XR-NA-GR-CO					
PTB	1979	Pressurized IC [†]	-	15 428	1979-03-01	0.02	0.15
	1002	4P-IC-GR-00-00-00		12.094	1092 11 20	0.01	0.01
	1983	$4\pi(e_A,x)-\gamma$	-	13 984	1982-11-29	0.26	0.36
		coincidence 4P-PP-MX-NAGR-CO		14 041	12 h U I		
	1995	Pressurized IC [‡]	_	8 4 2 5	1995-04-01	0.03	0.40
		4P-IC-GR-00-00-00		8 403		0.05	0.10
	1998	4π (PPC)EC- γ	27.706(7)	7 485	1998-05-01	0.05	0.13
		coincidence	[7]			0.05	0.15
		4P-PP-MX-NA-GR-CO	L.1				

Table 2.	Standardization	methods of	the SIR	participants	for ⁵¹ Cr
----------	-----------------	------------	---------	--------------	----------------------

NMI	Method used and	Half-life	Activity	Reference	Relative	standard
	acronym (see	/ d	A_i/kBq	date	uncertair	$ty \times 100$
	Appendix 2)				by met	hod of
					evalu	ation
				YYYY-MM-DD	А	В
BFKH 1980	$4\pi(e,x)-\gamma$	27.70(4)	23 570	1980-06-01	0.03	0.61
	coincidence			12 h UT		
1989	4P-PP-MX-NA-GR-CO	27.703(4)	89 410	1989-10-15	0.08	0.24
				12 h UT		
AECL 1980	$4\pi(PC)-\gamma$	—	39 683	1980-06-04	0.06	0.18
	coincidence			17 h UT		
NDI 1000	4P-PC-MX-NA-GR-CO		15 522	1000 12 05		
NPL 1980	$4\pi\beta$ - γ coincidence	-	15 533	1980-12-05	0.24	0.33
2004		27 7000	2 802	2004 05 25	0.10	0.66
2004		(20)	5 805	2004-03-23 12 h UT	0.10	0.66
IRC 1981	$\int \pi(\mathbf{e}, \mathbf{x}) \chi$	(20)	10.414	1981-06-01	0.02	0.17
JRC 1701	$4\pi(c_A, x) - \gamma$		10 339	1701-00-01	0.05	0.17
	4P-PC-MX-NA-GR-CO		10 557			
LNE-LNHB	$4\pi x$ - γ coincidence	27.706(7)	3 373	1984-12-17	0.13	0.13
1984		[7]	3 375			
1994	4P-PP-XR-NA-GR-CO		13 813	1994-04-20	0.20	0.05
			13 675	12 h UT		
2006	4π (PC) β-γ	27.703(3)	10 820	2006-07-01	0.10	0.15
	4P-PC-MX-GE-GR-AC	[8]		12 h UT		
NMII 1003	$A = (a \mathbf{x}) \mathbf{x}$		5.038	1003 11 01	0.04	0.20
INIVIIJ 1993	$4\pi(e,x)-\gamma$	_	5 950	0 h UT	0.04	0.30
	4P-PC-MX-NA-GR-CO			01101		
2004		27.702(3)	7 896	2004-03-01	0.18	0.21
		[9]		0 h UT		
KRISS	4P-PP-AE-NA-GR-CO	27.703(3)	23 406	2011-10-11	0.09	0.45
2012		[8]		15 h UT	0.07	0.45
				2022 06 01		
POLATOM	$4\pi(LS)-\gamma$	27.704(4)	24.762**	2022-06-01		
2022	concidence and		24 702**	12 h U l	0.89	0.02
	methods		24 190		0.85	0.04
	4P-LS-MX-NA-GR-CO					
	4P-LS-MX-NA-GR-AC					

Table 2 continued. Standardization methods of the participants for ⁵¹Cr

* calibrated by $4\pi x$ - γ coincidence 4P-??-XR-??-GR-CO

**calibrated on 28 July 1981 using a ⁵¹Cr solution whose activity was determined by the $4\pi(e+x)-\gamma$ anti-coincidence efficiency-extrapolation technique

 † calibrated for ^{51}Cr in 1978 by $4\pi(PC)$ EC- γ coincidence (4P-PP-MX-NA-GR-CO) by the PTB

[‡] calibrated in 1978 using an absolute measurement for the nuclide considered

^{‡‡} The weighted mean result reported by the POLATOM is 24 784(152) kBq.

NMI		Chemical	Solvent	Carrier	Density	Relative activity of
		composition	conc. /	conc.	$/(g \text{ cm}^{-3})$	impurity [†]
			(mol dm^{-3})	$/(\mu g g^{-1})$		102
NIST	1977	Cr in HCl	1	Cr:13	—	192 Ir: 0.015 (3) %
	1978			Cr : 7	1.015(2)	54 Mn: 6.1 × 10 ⁻⁵ %
						58 Co: 7.9 × 10 ⁻⁴ %
						⁵⁹ Fe: 2.1×10^{-4} %
						$^{65}Co: 4.8 \times 10^{-4} \%$
	1981			$Cr \cdot 10$	1.016(2)	$57 2 10^{-4} $
	1701			CI : 10	1.010(2)	⁵⁵ Zn: 3×10^{-3} %
	1999	CrCl	1	CrCl ₂ .	1 017(1)	
	1777	in HCl	1	1000	1.01/(1)	
CMI		$Cr(NO_2)_2$	0.08	$Cr(NO_3)_3$:	_	< 0.01 %
	1978	CI(INO3)3		50		
	1982	in HCl				< 0.1 %
IAEA	1978	$Cr(NO_3)_3$	0.08	$Cr(NO_3)_3$:	_	< 0.01 %
		in HCl		50		
ANST	0	CrCl ₂	1	—	1	< 0.1 %
	1978	in HCl				
PTB	1979	CrCl ₂	0.1	$CrCl_2:50$	1.000	< 0.01 %
		in HCl				
	1983	CrCl ₃	0.1	CrCl ₃ : 20	1.0005	< 0.1 %
		in HCl				
	1995	miner		CrCl ₃ : 50	1.00	_
	1998			CrCl ₃ : 40	0.9995	_
BFKH	1980	Cr in HCl	0.1	Cr: 25	_	¹²⁴ Sb: $1.5(6) \times 10^{-3}$ %
	1989			Cr: 28	_	60 Co: 2(1) × 10 ⁻⁴ %
AECL	1980	CrCl ₃	0.3	CrCl ₃ : 30	1	< 0.1 %
		in HCl				
NPL	1980	CrCla	0.1	Cr: 30	1.001	_
		in HCl				
	2004	Na ₂ CrO ₄ in	_	Na ₂ CrO ₄ :	1	_
	-	H_2O		10		
JRC	1981	Na2 ⁵¹ CrO ₄ in	0.002	-	1.00(1)	-
		HCl (with				
		NaCl: 450				
		µg/g)				

Table 3.	Details o	of the	solution	of ⁵¹ Cr	submitted
----------	-----------	--------	----------	---------------------	-----------

NMI	Chemical composition	Solvent conc. / (mol dm ⁻³)	Carrier: conc. $/(\mu g g^{-1})$	Density / (g cm ⁻³)	Relative activity of impurity [†]
LNE-LNHB 1984	CrCl ₂ in HCl	0.1	$CrCl_2:10$	0.999	_
1994	CrCl ₃ in HCl	0.1	CrCl ₃ : 100	1.00	¹²⁴ Sb: 0.0024(4) %
2006	CrCl ₃ .6H ₂ O in HCl	0.1	CrCl ₃ .6H ₂ O: 100	1.00	_
NMIJ 1993	CrCl ₂ in HCl	0.1	$CrCl_2:50$	1.00	-
2004*			$CrCl_2:100$	1.002	_
KRISS 2012	⁵¹ Cr in HCl	1	_	1.0176	_
POLATOM 2022**	⁵¹ Cr in HCl	0.1	Na ₂ CrO ₄ : 25	1.00	60 Co: 1.57(15) × 10 ⁻⁴ %

Table 3 continued. Details of the solution of ⁵¹Cr submitted

^{\dagger} the ratio of the activity of the impurity to the activity of ⁵¹Cr at the reference date.

* same solution used in the 2004 APMP.RI(II).K2.Cr-51 comparison

** same solution used in the 2022 EURAMET.RI(II).K2.Cr-51 comparison

4. **Results**

All the submissions to the SIR since its inception in 1976 are maintained in a database known as the "master-file". The latest submissions have added two ampoules for the activity measurements of ⁵¹Cr giving rise to 30 ampoules in total. The SIR equivalent activity, A_{ei} , for each ampoule received from each NM, *i*, including both previous and new results, is given in Table 4a. The relative standard uncertainty arising from each measurement in the SIR is also shown. This uncertainty is additional to that declared by the NMI for the activity measurement shown in Table 2. Although submitted activities are compared with a given source of ²²⁶Ra, all the SIR results are normalized to the radium source number 5 [1].

The half-life used by the BIPM is 27.703(3) d from *Monographie BIPM*-5 Volume 1 [8], while in the EURAMET.RI(II)-K2 comparison the updated value of 27.704(4) d from the <u>DDEP website</u> (2014-06-15 update), has been selected.

Measurements repeated at the BIPM after periods of up to 2 months later produced comparison results in agreement within standard uncertainty for the POLATOM(2022).

No recent submission has been identified as a pilot study so the result of each NMI is normally eligible for inclusion on the KCDB platform of the CIPM MRA [2].

Table 4a.	Results of SIR	measurements	of ⁵¹ Cr
-----------	-----------------------	--------------	---------------------

NMI		Mass of solution m; / g	Activity submitted A:/kBa	N° of Ra source used	SIR Ae/ MBa	Relative uncertainty from SIR	Combined uncertainty uci / MBg
NIST	1977	5.072 5	10 260	1	494.5	22×10^{-4}	6.8
	1978	3.762 75	3 936	1	495.2	15×10^{-4}	3.2
	1981	3.726 64	6 082	1	488.3	16×10^{-4}	1.8
	1999	3.759 6(2)	24 449	2	489.4	10×10^{-4}	1.4
CMI	1978	3.703 82	3 570	1	485.8	17×10^{-4}	2.6
	1982	3.643 67	7 233	1	488.7	12×10^{-4}	1.4
IAEA	1978	3.604 58	3 781	1	486.0	21×10^{-4}	2.7
ANST	O 1978	3.605 79	7 368	1	489.9	16×10^{-4}	1.0
PTB	1979	3.732 9(1)	15 428	2	488.1	9 × 10 ⁻⁴	0.9
	1983	3.596 8(1)	13 984	1	488.7	13×10^{-4}	2.3
		3.611 4(1)	14 041		488.3	12×10^{-4}	2.2
	1995	3.544 8	8 425	2	487.3	9×10^{-4}	2.0
		3.535 7	8 403		487.3	10×10^{-4}	
	1998	3.656 28	7 485	1	487.6	12×10^{-4}	0.9
BFKH	1980	3.603 9	23 570	3	487.4	9×10^{-4}	3.0
	1989	3.618 3	89 410	4	487.3	7×10^{-4}	1.3
AECL	1980	1.304 0	39 683	2	486.5	10×10^{-4}	1.1
NPL	1980	3.390 1	15 533	2	488.3	9×10^{-4}	2.0
	2004	3.537 36	3 803	1	487.0	19×10^{-4}	3.4
JRC	1981	2.883 20(2)	10 414	1	484.0	15×10^{-4}	1.1
		2.862 52(2)	10 339		483.9	14×10^{-4}	1.0
LNE-I	LNHB	3.615 64	3 373	1	494.0	16×10^{-4}	1.2
	1984	3.618 62	3 375		493.3	17×10^{-4}	
	1994	3.543 6	13 813	2	488.4	10×10^{-4}	1.1
		3.508 2	13 675		488.3	11×10^{-4}	
	2006	3.571 0(6)	10 820	1	489.2	14×10^{-4}	1.1
NMIJ	1993	3.654 09	5 938	1	484.7	13×10^{-4}	1.6
	2004 [§]	3.602 52	7 896	1	487.1	18×10^{-4}	1.6

NMI	Mass of	Activity	N° of Ra	SIR	Relative	Combined
	solution	submitted	source	Ae / MBq	uncertainty	uncertainty
	<i>mi</i> / g	A_i / kBq	used		from SIR	$u_{c,i}$ / MBq
KRISS	3.607	23 406	1	488.4	19×10^{-4}	2.4
2012						
POLATOM	3.641 99(30)	24 784#	2	483.62	9.8×10^{-4}	3.00
2022 ^{§§}						

Table 4a continued. Results of SIR measurements of ⁵¹Cr

[#] See footnote in Table 2

[§] result used to link the 2004 APMP.RI(II)-K2.Cr-51 comparison

^{§§} result used to link the 2022 EURAMET.RI(II)-K2.Cr-51 comparison

A bilateral comparison, EURAMET.RI(II)-K2.Cr-51, was held in 2022 [6] and the laboratory from this comparison to be added to the matrix of degrees of equivalence is given in Table 1b together with the POLATOM participation that served to link the comparison to the BIPM.RI(II)-K1.Cr-51 comparison. The LNE-LNHB used the EURAMET.RI(II)-K2.Cr-51 comparison to update its degree of equivalence from earlier SIR participation.

The results $(A/m)_i$ of the EURAMET.RI(II)-K2.Cr-51 comparison have been linked to the BIPM.RI(II)-K1.Cr-51 comparison through the measurement in the SIR of one ampoule of the EURAMET.RI(II)-K2.Cr-51 solution standardized by the POLATOM. The linking factor L_j is defined to be

$$L_i = A_{e,i} / (A/m)_i = 71.068 \text{ g}$$
 (1)

where the activity (MBq), mass (g) and equivalent activity (MBq) are taken from the row indicated in Table 4a for the POLATOM (2022). The relative standard uncertainty of L_j is 9.8 × 10⁻⁴, the uncertainty from the SIR measurement of the linking ampoule combined quadratically with the relative uncertainty of the mass solution in the ampoule, also given in Table 4a.

The linked result is evaluated as

$$A_{e,LNE-LNHB} = (A/m)_{LNE-LNHB} L_j$$
 (2)

where the primary activity concentrations measured by the LNE-LNHB in the EURAMET.RI(II)-K2.Cr-51 comparison is taken from the Final report [6] and are shown in Table 4b. The uncertainties for the EURAMET.RI(II)-K2.Cr-51 comparison results linked to the SIR are comprised of the original uncertainties combined quadratically with the uncertainty in the link.

Table 4b.Results of the 2022 EURAMET.RI(II)-K2.Cr-51 comparison of⁵¹Cr including POLATOM, the linking laboratory

NMI	Measurement method and acronym (see Appendix 2)	Activity* concentration measured (A/m) _i / (MBq g ⁻¹)	Standard uncertainty <i>u_i</i> / (MBq·g ⁻¹)	Linked equivalent activity A _{ei} / MBq	Combined standard uncertainty u _{ci} / MBq
LNE- LNHB	4π(LS)-γ anti- coincidence 4P-LS-MX-NA-GR-AC 4π(NaI(Tl))γ counting 4P-NA-GR-00-00-00	6.845 [#] 6.800	0.021 [#] 0.056	486.5	1.6
POLATOM	4π(LS)-γ coincidence and anticoincidence methods 4P-LS-MX-NA-GR-CO 4P-LS-MX-NA-GR-AC	6.799 ^{##} 6.809	0.060 ^{##} 0.058	483.6	3.0

*referenced to 1 June 2022 12:00 UTC

[#] result selected by the LNE-LNHB for use in the KCDB

^{##} same results as for the SIR comparison.

The linked EURAMET result for the LNE-LNHB agrees within two combined standard uncertainties with their 2006 SIR result.

4.1 <u>The Key Comparison Reference Value</u>

In May 2013 the CCRI(II) decided to calculate the key comparison reference value (KCRV) using the power-moderated weighted mean [10] rather than an unweighted mean, as had been the policy. This type of weighted mean is similar to a Mandel-Paule mean in that the NMIs' uncertainties may be increased until the reduced chi-squared value is one. In addition, it allows for a power α smaller than two in the weighting factor. As proposed in [10], α is taken as 2 - 3/N where N is the number of results selected for the KCRV. Therefore, all SIR key comparison results can be selected for the KCRV with the following provisions:

- a) only results for solutions standardized by primary techniques are accepted, with the exception of radioactive gas standards (for which results from transfer instrument measurements that are directly traceable to a primary measurement in the laboratory may be included);
- b) each NMI or other laboratory has only one result (normally the most recent result or the mean if more than one ampoule is submitted);
- c) results more than 20 years old are included in the calculation of the KCRV (but are not included in data shown in the KCDB or in the plots in this report as they have expired);

- d) possible outliers can be identified on a mathematical basis and excluded from the KCRV using the normalized error test with a test value of 2.5 and using the modified uncertainties;
- e) results can also be excluded for technical reasons; and
- f) the CCRI(II) is always the final arbiter regarding excluding any data from the calculation of the KCRV.

The data set used for the evaluation of the KCRVs is known as the "KCRV file" and is a reduced data set from the SIR master-file. Although the KCRV may be modified when other NMIs participate, on the advice of the Key Comparison Working Group of the CCRI(II), such modifications are made only by the CCRI(II) during one of its biennial meetings, or by consensus through electronic means (e.g., email) as discussed at the CCRI(II) meeting in 2013.

Consequently, the KCRV for ⁵¹Cr has been calculated to be 488.05(41) MBq with the power $\alpha = 1.75$ on the basis of the SIR results from the ANSTO, AECL, NIST(1981), CMI(1982), ASMW(1983), BKFH(1989), PTB(1998), NMIJ(2004), NPL(2004), LNE-LNHB(2006), and the last results of the KRISS and the POLATOM. This updated value can be compared with the previous KCRVs of 487.44(54) MBq published in 2003 [3], and 488.0(3) MBq published in 2009 [5], and has been approved by the CCRI(II).

4.2 <u>Degrees of equivalence</u>

Every participant in a comparison is entitled to have one result included in the KCDB as long as the NMI is a signatory or designated institute listed in the CIPM MRA, and the result is valid (i.e., not older than 20 years). Normally, the most recent result is the one included. An NMI may withdraw its result only if all other participants agree.

The degree of equivalence of a given measurement standard is the degree to which this standard is consistent with the KCRV [2]. The degree of equivalence is expressed quantitatively in terms of the deviation from the key comparison reference value and the expanded uncertainty of this deviation (k = 2). The degree of equivalence between any pair of national measurement standards is expressed in terms of their difference and the expanded uncertainty of this difference and is independent of the choice of key comparison reference value.

4.2.1 Comparison of a given NMI result with the KCRV

The degree of equivalence of the result of a particular NMI, i, with the key comparison reference value is expressed as the difference D_i between the values

$$D_i = A_{e_i} - \text{KCRV} \tag{3}$$

and the expanded uncertainty (k = 2) of this difference, U_i , known as the equivalence uncertainty; hence

$$U_i = 2u(D_i). \tag{4}$$

When the result of the NMI *i* is included in the KCRV with a weight *w_i*, then

$$u^{2}(D_{i}) = (1-2w_{i}) u_{i}^{2} + u^{2}(\text{KCRV}) .$$
(5)

However, when the result of the NMI *i* is not included in the KCRV, then

$$u^{2}(D_{i}) = u_{i}^{2} + u^{2}(\text{KCRV}).$$
 (6)

4.2.2 Comparison between pairs of NMI results

The degree of equivalence between the results of any pair of NMIs, i and j, is expressed as the difference D_{ij} in the values

$$D_{ij} = D_i - D_j = A_{e_i} - A_{e_j}$$
(7)

and the expanded uncertainty (k = 2) of this difference, $U_{ij} = 2u(D_{ij})$, where

$$u_{Dij}^{2} = u_{i}^{2} + u_{j}^{2} - 2u(A_{ei}, A_{ej})$$
(8)

where any obvious correlations between the NMIs (such as a traceable calibration, or correlations normally coming from the SIR or from the linking factor in the case of linked comparison) are subtracted using the covariance $u(A_{ei}, A_{ej})$ (see [11] for more detail). However, the CCRI decided in 2011 that these "pair-wise degrees of equivalence" no longer need to be published as long as the methodology is explained.

Table 5 shows the matrix of all the degrees of equivalence as they will appear in the KCDB. It should be noted that for consistency within the KCDB, a simplified level of nomenclature is used with A_{ei} replaced by x_i . The introductory text is that agreed for the comparison. The graph of the results in Table 5, corresponding to the degrees of equivalence with respect to the KCRV (identified as x_R in the KCDB), is shown in Figure 1. This graphical representation indicates in part the degree of equivalence between the NMIs but obviously does not take into account the correlations between different NMIs. It should be noted that the final data in this paper, while correct at the time of publication, will become out-of-date as NMIs make new comparisons. The formal results under the CIPM MRA [2] are those available in the KCDB.

Conclusion

The BIPM ongoing key comparison for ⁵¹Cr, BIPM.RI(II)-K1.Cr-51 currently comprises four valid results. The key comparison reference value has been updated using the power-moderated weighted mean to include the KRISS and POLATOM latest results.

The result of the LNE-LNHB that took part in the EURAMET.RI(II)-K2.Cr-51 comparison in 2022 has been linked to the BIPM ongoing key comparison, superseding its earlier result from the BIPM.RI(II)-K1.Cr-51 comparison.

The SIR results together with the previously published APMP.RI(II)-K2.Cr-51 results, have been analysed with respect to the updated KCRV determined for this radionuclide.

Six degrees of equivalence in total have been approved by the CCRI(II) and are published in the BIPM key comparison database. Further results may be added when

other NMIs contribute ⁵¹Cr activity measurements to the ongoing K1 comparison or take part in other linked comparisons.

References

- [1] Ratel G., The Système International de Référence and its application in key comparisons, *Metrologia*, 2007, 44(4), S7-S16.
- [2] CIPM MRA: Mutual recognition of national measurement standards and of calibration and measurement certificates issued by national metrology institutes, International Committee for Weights and Measures, 1999, 45 pp. <u>http://www.bipm.org/en/cipm-mra/</u>.
- [3] Ratel G., Michotte C., BIPM comparison BIPM.RI(II)-K1.Cr-51 of activity measurements of the radionuclide ⁵¹Cr, <u>Metrologia</u>, 2003, 40, <u>Tech. Suppl.</u>, <u>06008</u>.
- [4] Ratel G., Michotte C., Hino Y., Tyler D., Judge S., Kharitonov I.A., Activity measurements of the radionuclide ⁵¹Cr for the NMIJ, Japan and the NPL, UK in the ongoing key comparison BIPM.RI(II)-K1.Cr-51 and the linking of the activity measurement of the VNIIM, Russian Federation in the APMP.RI(II)-K2.Cr-51 regional key comparison, *Metrologia*, 2005, 42, *Tech. Suppl.*, 06014.
- [5] Ratel G., Michotte C., Kryeziu D., Moune M. and Iwahara A., Update of the BIPM comparison BIPM.RI(II)-K1.Cr-51 to include new activity measurements for the LNE-LNHB (France) and the pilot study result of the LNMRI (Brazil), *Metrologia*, 2009, 46, *Tech. Suppl.*, 06001.
- [6] Broda R., Ziemek T., Bobin Ch., Thiam Ch., Listkowska A., Lech E., Chambon L., Lourenço V., Czudek M., Saganowski P., Tymiński Z. and Kołakowska E., International comparison of activity measurements of a solution of ⁵¹Cr, <u>Metrologia, 2023, 60, Tech. Suppl., 06018</u>.
- [7] IAEA-TECDOC-619, X-ray and gamma-ray standards for detector calibration, (1991), Vienna, IAEA.
- [8] Bé M.-M., Chisté V., Dulieu C., Browne E., Chechev V., Kuzmenko N., Helmer R., Nichols A., Schönfeld E., Dersch R., 2004, Table of radionuclides, <u>Monographie BIPM-5</u>, Vol 1.
- [9] Firestone R.B., Shirley V.S. (Ed), 1996, *Table of Isotopes*, 8th edition, Wiley and Sons.
- [10] Pommé S, Keightley, J., Determination of a reference value and its uncertainty through a power-moderated mean, *Metrologia*, **52**, 2015, S200-S212.
- [11] Michotte C. and Ratel G., Correlations taken into account in the KCDB, CCRI(II) working document, 2003, <u>CCRI(II)/03-29</u>.

Table 5.Table of degrees of equivalence and introductory text for ⁵¹Cr

Key comparison BIPM.RI(II)-K1.Cr-51

MEASURAND : Equivalent activity of ⁵¹Cr

<u>Key comparison reference value</u>: the SIR reference value x_R for this radionuclide is 488.05 MBq, with a standard uncertainty u_R of 0.41 MBq. The value x_i is taken as the equivalent activity for laboratory *i*.

The degree of equivalence of each laboratory with respect to the reference value is given by a pair of terms: $D_i = (x_i - x_R)$ and U_i , its expanded uncertainty (k = 2), both expressed in MBq, and $U_i = 2((1 - 2w_i)u_i^2 + u_R^2)^{1/2}$ when each laboratory has contributed to the calculation of $x_{R.}$

```
Linking APMP.RI(II)-K2.Cr-51 to BIPM.RI(II)-K1.Cr-51
```

The value x_i is the equivalent activity for laboratory *i* participant in APMP.RI(II)-K2.Cr-51 having been normalized using the value of the NMIJ as the linking laboratory.

The degree of equivalence of laboratory *i* participant in APMP.RI(II)-K2.Cr-51 with respect to the key comparison reference value is given by a pair of terms: $D_i = (x_i - x_R)$ and U_i , its expanded uncertainty (k = 2), both expressed in kBq. The approximation $U_i = 2(u_i^2 + u_R^2)^{1/2}$ is used in the following table as none of these D_i contributed to the KCRV.

Linking EURAMET.RI(II)-K2.Cr-51 to BIPM.RI(II)-K1.Cr-51

The value x_i is the equivalent activity for laboratory *i* participant in EURAMET.RI(II)-K2.Cr-51 having been normalized using the value of the POLATOM as the linking laboratory.

The degree of equivalence of laboratory *i* participant in EURAMET.RI(II)-K2.Cr-51 with respect to the key comparison reference value is given by a pair of terms: $D_i = (x_i - x_R)$ and U_i , its expanded uncertainty (k = 2), both expressed in kBq. The approximation $U_i = 2(u_i^2 + u_R^2)^{1/2}$ is used in the following table as none of these D_i contributed to the KCRV.

These statements make it possible to extend the BIPM.RI(II)-K1.Cr-51 matrices of equivalence to the participants in APMP.RI(II)-K2.Cr-51 and EURAMET.RI(II)-K2.Cr-51.

Lab <i>i</i>	Di	Ui
BIPM.RI(II)-K1.Cr-51	/ MB	q
NMIJ	-0.9	3.1
NPL	-1.0	6.7
KRISS	0.4	4.7
POLATOM	-4.4	5.9

Lab <i>i</i>	Di	Ui
APMP.RI(II)-K2.Cr-51	/ MBq	
VNIIM	0.8	2.5

EURAMET.RI(II)-K2.Cr-51

LNE-LNHB	-1.6	3.2

Figure 1. Graph of degrees of equivalence with the KCRV for ⁵¹Cr

N.B. The right-hand axis shows approximate values only

Appendix 1. Uncertainty budgets for the activity of ⁵¹Cr submitted to the SIR

KRISS, 2012

Relative standard uncertainties	Comments	Relative sensitivity factor	$u_{\text{rel},i} \times 10^4$ evaluated by method	
Contributions due to			Α	B
counting statistics	Standard deviation of the mean	0.20	9	_
weighing	One dilution and two weighings	0.35	_	16
dead time	Re-analysis after varying	0.11	_	5
background	Background set	0.76	_	35
Counting time	For 10 ms / 100 s	0.02	_	1
Decay correction	For 30 d decay correction	0.02	-	1
extrapolation of efficiency curve	From extrapolation results	0.48	-	22
Pile-up, adsorption, impurities	neglected		-	7
Quadratic summation			9	45
Relative combined standard uncertainty, <i>u_c</i>			4	6

POLATOM, 2022

Measurement method			4π(LS)-γ coincidence	
ACRONYM	4P-LS-MX-NA-GR-CO		Comments:	
Uncertainty budget				
Uncertainty component	Relative uncertainty / 10 ⁻²	Evaluation type (A or B)	Comment	
Counting statistics	0.76	А	Counting statisctics and background in %	
Background				
Weighing	0.05	А	in %	
Dilution				
Dead time	0.001	В	in %	
Resolving time	0.023	В	in %	
Pile-up, afterpulse				
Adsorption				
Impurities				
Decay correction	0.06	А	in %	
Decay data				
Extra-/Inter-polation of efficiency curve	0.45	A	in %	
Quenching, kB value				
Tracer				
Reproducibility				
Combined standard uncertainty	0.887			

POLATOM, 2022

Measurement method		4	π(LS)-γ anticoincidence	
ACRONYM	4P-LS-MX-NA-GR-AC		Comments:	
Uncertainty budget				
Uncertainty component	Relative uncertainty / 10 ⁻²	Evaluation type (A or B)	Comment	
Counting statistics	0.7	А	Counting statisctics and background in %	
Background				
Weighing	0.05	А	in %	
Dilution				
Dead time	0.001	В	in %	
Resolving time	0.023	В	in %	
Pile-up, afterpulse				
Adsorption				
Impurities				
Decay correction	0.06	A	in %	
Decay data				
Extra-/Inter-polation of efficiency curve	0.47	A		
Quenching, kB value				
Tracer				
Reproducibility				
Anticoincidence window	0.031	В	in %	
Combined standard uncertainty	0.848			

Appendix 2. Acronyms used to identify different measurement methods

Each acronym has six components, geometry-detector (1)-radiation (1)-detector (2)-radiation (2)-mode. When a component is unknown, ?? is used and when it is not applicable 00 is used.

Geometry	acronym	Detector	acronym
4π	4P	proportional counter	PC
defined solid angle	SA	press. prop counter	PP
2π	2P	liquid scintillation counting	LS
undefined solid angle	UA	Nal(TI)	NA
		Ge(HP)	GH
		Ge(Li)	GL
		Si(Li)	SL
		CsI(TI)	CS
		ionization chamber	IC
		grid ionization chamber	GC
		Cerenkov detector	CD
		calorimeter	CA
		solid plastic scintillator	SP
		PIPS detector	PS
		CeBr₃	СВ
Radiation	acronym	Mode	acronym
positron	PO	efficiency tracing	ET
beta particle	BP	internal gas counting	IG
Auger electron	AE	CIEMAT/NIST	CN
conversion electron	CE	sum counting	SC
mixed electrons	ME	coincidence	со
bremsstrahlung	BS	anti-coincidence	AC
gamma rays	GR	coincidence counting with efficiency tracing	СТ
X - rays	XR	anti-coincidence counting AT with efficiency tracing	
photons (x + γ)	PH	triple-to-double coincidence TD ratio counting	
alpha - particle	AP	selective sampling SS	
mixture of various radiation	MX	high efficiency HE	

Examples	method	acronym
$4\pi(PC)\beta-\gamma$ -coincidence c	ounting	4P-PC-BP-NA-GR-CO
$4\pi(PPC)\beta-\gamma$ -coincidence	counting eff. trac.	4P-PP-MX-NA-GR-CT
defined solid angle α -part	ticle counting with a PIPS detector	SA-PS-AP-00-00-00
4π (PPC)AX- γ (Ge(HP))-anticoincidence counting		4P-PP-MX-GH-GR-AC
4π CsI- β ,AX, γ counting		4P-CS-MX-00-00-HE
calibrated IC		4P-IC-GR-00-00-00
internal gas counting		4P-PC-BP-00-00-IG