Accurate density measurements for global environmental science at NMIJ

Naoki KURAMOTO, Yuya KANO and Yohei KAYUKAWA
National Metrology Institute of Japan (NMIJ)

Realization of the primary density standard using 1 kg Si spheres
- Mass and volume measurements
- State-of-the-art techniques developed for the redefinition of the kilogram
 → Uncertainty reduction of the primary standard

Density measurement to solve social issues
- Seawater
 → Prediction of global climate change
- Refrigerant
 → Prevention of global warming
Si single crystal as density standard

- Near-perfect crystalline structure
 → Volume and Density: Very stable
- Known accurate thermophysical properties
 - Thermal expansion coefficient in a wide temperature range
 → Accurate correction of density change due to the temperature change
- Manufacturing of artifacts with various shapes
1 kg Si sphere

Defining constants in the new SI

- Planck constant
- Speed of light in vacuum

Mass
- Mass comparison
- 1 kg reference weight

Volume
- Diameter measurement
- Laser interferometer

Primary density standard

Primary density standard of NMIJ
Volume measurement of Si sphere of NMIJ

- Diameter measurement in 1450 different directions
 → Volume
- u(diameter) = 0.6 nm, u_r(Volume) = 2.0×10^{-8}
- Laser wavelength: Traceable to an optical frequency comb (Primary length standard of NMIJ)
 → Si sphere volume: Traceable to the speed of light in vacuum
Surface layer on Si sphere

- **Surface layer**
 - **Thickness**: about 2 nm
 - Transparent

- **Si core**
- **Si crystal**
- **SiO₂**
- **Carbonaceous contamination layer**
- **Water**

- **Diameter measured by the laser interferometer**
 → Almost same as the diameter of Si core excluding the surface layer

- **Thickness measurement of surface layer**
 → Actual diameter including the surface layer
Surface characterization system using x-ray photoelectron spectroscopy (XPS) developed for the redefinition of the kilogram using 28Si-enriched crystals

- XPS gives information on
 - Element
 - Binding state
- Thickness of the surface layer
 - u (thickness) = 0.4 nm

Laser interferometer for the Si sphere volume measurement at NMIJ

- u (diameter) = 0.6 nm

Actual diameter (Si core + surface layer)
- u (actual diameter) = 0.9 nm
Mass measurement of Si sphere

Vacuum balance

Si sphere

1 kg reference weight
- Stainless steel

Planck constant

Consensus value of the kilogram

National prototype of the kilogram of Japan

1 kg Reference weight
Uncertainty budget of the sphere density determination at 20 °C and 101.325 kPa

<table>
<thead>
<tr>
<th>Uncertainty source</th>
<th>Relative contribution to density determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere volume</td>
<td>2.0×10^{-8}</td>
</tr>
<tr>
<td>Surface layer</td>
<td>2.4×10^{-8}</td>
</tr>
<tr>
<td>Sphere mass</td>
<td>2.3×10^{-8}</td>
</tr>
<tr>
<td>Relative combined standard uncertainty</td>
<td>3.9×10^{-8}</td>
</tr>
</tbody>
</table>

- N. Kuramoto *et al., Metrologia, 57*, 025006 (2020)
- cf. u_r(sphere density, 2005) = 1×10^{-7}
 - Improvement towards the redefinition of the kilogram
 - Diameter measurement
 - Surface characterization
Accurate density measurement for ocean science at NMIJ

- Ocean water
 - High heat capacity much larger than atmosphere
 - Circulation of energy from the sun
 → Ocean circulation affects global climate
- Global climate change: our urgent social issue
- Simulation to understand the mechanism of global climate change
 - Seawater density
 - \(u_r < 1 \) ppm
 - SI-traceable
- Accurate seawater density measurement under the cooperation with Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

Deep-ocean currents driven by difference in density of water

Strategy for density measurement of seawater

- Seawater sample
 - Collected in wide range of depth over wide area
 - Sample number: very large

- Hydrostatic weighing
 - Accuracy: high
 - Time-consuming

- Density measurement of standard seawater by hydrostatic weighing
 → Calibration of oscillating-tube densimeter

- Oscillating-tube densimeter
 - Precise density comparator
 - Rapid measurement
 - Accuracy: dependent on reference liquid used for the calibration

Standard seawater
- Reference material for salinity measurement of seawater
Weight exchange mechanism
Hydrostatic weighing

Electronic balance

Sample liquid
- Density ρ

Density standard: Sinker
- Mass M
- Volume V

Weight exchange mechanism

Principle of hydrostatic weighing

$$F = \rho V g = (M - M_{app}) g$$

- F: Buoyancy force by the sample liquid
- M_{app}: Apparent mass of the sinker in the sample liquid
- g: Gravitational acceleration

Measurement of M_{app}
$$\rightarrow \rho$$
Hydrostatic weighing system for seawater of NMIJ

Electronic balance
- (0.01 mg resolution up to 210 g)

Wwind shield

Syringe

Syringe trap

Seawater sample

Standard PRT

Sample liquid

Quartz-glass cell

Hollow weight1 (65 g)

Solid weight1 (122 g)

Quartz-glass cell (φ40 mm)

φ0.05 mm tungsten wire

Si sinker (100 g, 43 cm³)

Sinker exchanger (titanium)

Suspender (SUS316)

122.000 00 g

(56 + 65) g = 121.000 00 g

- Y. Kayukawa and H. Uchida, Measurement: Sensors, 18, 10200 (2021)
Density difference measurement by the pressure of floatation method (PFM)

\[\Delta h = 1 \text{ mm} : \Delta \rho / \rho = 1 \times 10^{-8} \]

Pressure control: \(\Delta p = \sim 30 \text{ kPa} \)

\(\rho = 2329 \text{ kg/m}^3 \) (same for the density of Si crystal)

\(u_r(\text{sinker density, PFM}) = 0.2 \text{ ppm} \)

cf. \(u_r(\text{sinker density, hydrostatic weighing}) = 5 \text{ ppm} \)

- Combination of hydrostatic weighing and PFM
- \(u_r(\text{density, standard seawater}) = 0.7 \text{ ppm} \)
Density measurement of refrigerant to prevent global warming

Density measurement of refrigerant to prevent global warming

Refrigerant: Fluid used to transfer heat in refrigeration and air conditioning system

- Condensation (gas → liquid)
- Heat release
- Evaporation (liquid → gas)
- Heat removal
- Condenser
- Outdoor unit
- Door unit
- Cool air
- Evaporator

- For optimal design of the system, accurate density of refrigerant in wide pressure and temperature ranges is required.

- Completely physical properties affecting the system performance
 - Density
 - Specific heat
 - Evaporation pressure
 - Viscosity,

Thermodynamic equation of state

Pressure-enthalpy diagram generated by thermodynamic equation of state

- Refrigerant: Fluid used to transfer heat in refrigeration and air conditioning system

- Evaporation (liquid → gas)
- Heat removal

(Coefficient of performance)

\[\text{COP} = \frac{Q}{W} \]
Evolution of Refrigerant

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ODP: Ozone Depletion Potential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP: Global Warming Potential</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **CFC, HCFC**
 - ODP ≥ 1
 - GWP ≥ 5000

- **HFC**
 - ODP = 0
 - GWP ≥ 500

- **New alternative refrigerants**
 - ODP = 0
 - GWP ≤ 10

- **Chlorofluorocarbon CFC**
- **Hydrochlorofluorocarbon HCFC**
- **Hydrofluorocarbon HFC**
- **Hydrofluoroolefin HFO**
Magnetic suspension for density measurement in wide temperature and pressure ranges

Hydrostatic weighing with magnetic suspension

Conventional hydrostatic weighing
Hydrostatic weighing system with Si sinker using magnetic suspension

- Density accuracy: < 45 ppm
- Temperature range: −10 °C ~ 150 °C
- Pressure range: < 20 MPa

- HFO-1123 (Trifluoroethene)

Si sinker
- calibrated by PFM
- \(u_r(\text{sinker density}) = 0.4 \text{ ppm} \)

Hydrostatic weighing system with Si sinker using magnetic suspension

- \(u_r(\text{density}) < 45 \text{ ppm} \)
- Temperature range: −10 °C ~ 150 °C
- Pressure range: < 20 MPa
 - HFO-1123 (Trifluoroethene)
Contribution to development of new alternative refrigerants

- Cooperation with many universities and institutes around the world
- Thermophysical properties for some of new alternative refrigerants evaluated at NMIJ
 → NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP)

Website of Kyushu University Research Center for Next Generation Refrigerant Properties (NEXT-RP)
 • https://i2cner.kyushu-u.ac.jp/~next-rp/en/collaborations_en
Summary

- NMIJ has realized the primary density standard using 1 kg Si sphere with a relative uncertainty of 4×10^{-8}
 - Laser interferometer for sphere volume measurement
 - XPS for sphere surface characterization
- Si artifacts traceable to the primary density standard
 - Accurate density measurement to solve social issues
 - Global climate change
 - Global warming
- To achieve accurate density measurements
 - Combination of various measurement techniques is essential
 - Hydrostatic weighing
 - Pressure of floatation method
 - Magnetic suspension densimeter