

Accurate density measurements for global environmental science at NMIJ

<u>Naoki KURAMOTO</u>, Yuya KANO and Yohei KAYUKAWA National Metrology Institute of Japan (NMIJ)

- Realization of the primary density standard using 1 kg Si spheres
 - Mass and volume measurements
 - State-of-the-art techniques developed for the redefinition of the kilogram
 - \rightarrow Uncertainty reduction of the primary standard
- Density measurement to solve social issues
 - Seawater
 - \rightarrow Prediction of global climate change
 - Refrigerant
 - \rightarrow Prevention of global warming

1 kg Si sphere

Si single crystal as density standard

- Near-perfect crystalline structure
 - \rightarrow Volume and Density: Very stable
- Known accurate thermophysical properties
 - Thermal expansion coefficient in a wide temperature range
 → Accurate correction of density change due to the temperature change
- Manufacturing of artifacts with various shapes

1 kg Si sphere

Primary density standard of NMIJ

Volume measurement of Si sphere of NMIJ

Laser interferometer for the Si sphere volume measurement developed for the redefinition of the kilogram using ²⁸Si-enriched crystals

Diameter measurement in 1450 different directions

 \rightarrow Volume

- > u(diameter) = 0.6 nm, u_r (Volume) = 2.0 × 10⁻⁸
- > Laser wavelength: Traceable to an optical frequency comb (Primary length standard of NMIJ)
 - $\rightarrow\,$ Si sphere volume: Traceable to the speed of light in vacuum

Surface layer on Si sphere

Surface layer model of Si sphere

Surface characterization of Si sphere

Surface characterization system using x-ray photoelectron spectroscopy (XPS) developed for the redefinition of the kilogram using ²⁸Si-enriched crystals

- XPS gives information on
 - Element
 - Binding state
- Thickness of the surface layer
 - u (thickness) = 0.4 nm

Laser interferometer for the Si sphere volume measurement at NMIJ

 \succ u (diameter) = 0.6 nm

Actual diameter (Si core + surface layer) • *u* (actual diameter) = 0.9 nm

Mass measurement of Si sphere

Vacuum balance

Si sphere and 1 kg reference weight

Planck constant

National prototype of the kilogram of Japan

1 kg Reference weight

Uncertainty budget of the sphere density determination at 20 °C and 101.325 kPa

Uncertainty source	Relative contribution to density determination
Sphere volume	2.0 × 10 ⁻⁸
Surface layer	$2.4 imes 10^{-8}$
Sphere mass	2.3 × 10 ⁻⁸
Relative combined standard uncertainty	3.9 × 10 ⁻⁸

- > N. Kuramoto *et al.*, *Metrologia*, **57**, 025006 (2020)
- > cf. u_r (sphere density, 2005) = 1×10^{-7}
 - Improvement towards the redefinition of the kilogram
 - Diameter measurement
 - Surface characterization

Accurate density measurement for ocean science at NMIJ

https://en.wikipedia.org/wiki/Thermohaline_circulation

Deep-ocean currents driven by difference in density of water

- Ocean water
 - High heat capacity much lager than atmosphere
 - Circulation of energy from the sun
 - \rightarrow Ocean circulation affects global climate
- Global climate change: our urgent social issue
- Simulation to understand the mechanism of global climate change
 - Seawater density
 - □ *u*_r < 1 ppm
 - SI-traceable
- Accurate seawater density measurement under the cooperation with Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

Strategy for density measurement of seawater

- Seawater sample
 - Collected in wide range of depth over wide area
 - Sample number: very large

Standard seawater

- Reference material for salinity
 - measurement of seawater

- Hydrostatic weighing
 - Accuracy: high
 - Time-consuming
- Density measurement of standard seawater by hydrostatic weighing
 - \rightarrow Calibration of oscillating-tube densimeter
- Oscillating-tube densimeter
 - Precise density comparator
 - Rapid measurement
 - Accuracy: dependent on reference liquid used for the calibration

Hydrostatic weighing

 $F = \rho V g = (M - M_{app}) g$

: Buoyancy force by the sample liquid

 $M_{\rm app}$: Apparent mass of the sinker in the sample liquid

: Gravitational acceleration

Measurement of M_{app}

$$\rightarrow \rho$$

Principle of hydrostatic weighing

Hydrostatic weighing system for seawater of NMIJ

> Y. Kayukawa and H. Uchida, *Measurement: Sensors*, **18**, 10200 (2021)

Density difference measurement by the pressure of floatation method (PFM)

- Combination of hydrostatic weighing and PFM
- > u_r (density, standard seawater) = 0.7 ppm

Density measurement of refrigerant to prevent global warming

Refrigerant: Fluid used to transfer heat in refrigeration and air conditioning system

Thermophysical properties affecting the system performance

- Density
- Specific heat
- **Evaporation pressure**
- Viscosity,,,

For optimal design of the system, accurate density of refrigerant in wide pressure and temperature ranges is required.

Evolution of refrigerant

Magnetic suspension for density measurement in wide temperature and pressure ranges

16/19

NMJ Hydrostatic weighing with magnetic suspension at NMIJ

Si sinker

- calibrated by PFM
- $u_{\rm r}({\rm sinker \ density}) = 0.4 \ {\rm ppm}$

Hydrostatic weighing system with Si sinker using magnetic suspension

- → u_r (density) < 45 ppm
- ➤ Temperature range: -10 °C ~ 150 °C
- Pressure range: < 20 MPa</p>
- Y. Kayukawa, Int. J. Refrig., **119**, 349–355 (2020)
 - HFO-1123 (Trifluoroethene)

Contribution to development of new alternative refrigerants

Website of Kyushu University Research Center for Next Generation Refrigerant Properties (NEXT-RP)

- https://i2cner.kyushu-u.ac.jp/~next-rp/en/collaborations_en
- Cooperation with many universities and institutes around the world
- Thermophysical properties for some of new alternative refrigerants evaluated at NMIJ
 - → NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP)

Summary

- NMIJ has realized the primary density standard using 1 kg Si sphere with a relative uncertainty of 4 ×10⁻⁸
 - Laser interferometer for sphere volume measurement
 - XPS for sphere surface characterization
- Si artifacts traceable to the primary density standard
 - \rightarrow Accurate density measurement to solve social issues
 - Global climate change
 - Global warming
- > To achieve accurate density measurements
 - \rightarrow Combination of various measurement techniques is essential
 - Hydrostatic weighing
 - Pressure of floatation method
 - Magnetic suspension densimeter