

Progress Report on Mass and Related Quantities at National Institute of Standards (NIS) - Egypt (From May, 2021 to May, 2023) <u>19th meeting of the CCM</u> <u>25 and 26 May 2023</u>

Prepared by:

Dr. Ahmed D. S. Ahmed

Head of Mass, Density and Pressure Laboratory

1-Calibration and Measuring Capabilities (CMCs)

The following **Published** (20) CMCs had been approved and published in the BIPM-KCDB:

1.1 Mass

The following CMCs had been approved and published in the BIPM-KCDB website on 25th Oct., 2022: - 100 kg Mass Standard

Absolute expanded uncertainty: **0.5** g, Comparison in air, Temperature: 18 °C to 27 °C

200 kg Mass standard

Absolute expanded uncertainty: 1 g, Comparison in air, Temperature: 18 °C to 27°C

- 500 kg Mass standard

Absolute expanded uncertainty: 1.2 g, Comparison in air, Temperature: 18 °C to 27 °C

1000 kg Mass Standard

Absolute expanded uncertainty: **1.5 g**, Comparison in air, Temperature: 18 °C to 27 °C

1.2 Density

The following CMCs had been approved and published in the BIPM-KCDB website on 2022:

- Density of liquid: 950 kg/m³ to 1850 kg/m³, Hydrometers, Absolute expanded uncertainty: 5.4E-2 kg/m³ to 7.4E-2 kg/m³, Cuckow method (Hydrostatic weighing), Liquid temperature: 20 °C
 Pressure: 101 kPa (11th May, 2022)
- Density of liquid: 650 kg/m³ to 950 kg/m³, Hydrometers, Absolute expanded uncertainty: 5.4E-2 kg/m³,
 Cuckow method (Hydrostatic weighing) Liquid temperature: 20 °C, Pressure: 101 kPa(1st Feb., 2022)
- Density of solid: 7700 kg/m3 to 8400 kg/m3 Mass standard 5 kg to 20 kg, Absolute expanded uncertainty: 0.82 kg/m³ to 0.8 kg/m³, Hydrostatic weighing by weight comparison, Reference temperature: 20 °C,(25th October 2022)
- Density of solid: 7700 kg/m³ to 8400 kg/m³, Mass standard 1 kg, Absolute expanded uncertainty: 0.85 kg/m³
 Hydrostatic weighing by weight comparison, Reference temperature: 20 °C ,(11th May, 2022)
- Density of solid: 7700 kg/m³ to 8400 kg/m³, Mass standard 2 kg, Absolute expanded uncertainty: 0.83 kg/m³, Hydrostatic weighing by weight comparison, Reference temperature: 20 °C, (11th May, 2022)

1.3 Hardness

The following CMCs had been approved and published in the BIPM-KCDB website on 4th Nov., 2022:

- Hardness: 184 HV30 to 712 HV30, Hardness reference blocks, Absolute expanded uncertainty: 3 HV to
 1.1E1 HV, Vickers HV 30, ISO 6507-3
- Hardness: 455 HV to 854 HV, Hardness reference blocks, Absolute expanded uncertainty: 7.3 HV to 1.4E1
 HV, Vickers HV 120, ISO 6507-3
- Hardness: 292 HV10 to 854 HV10, Hardness reference blocks, Absolute expanded uncertainty: 4.7 HV10 to 1.4E1 HV10, Vickers HV10, ISO 6507-3
- Hardness: 270 HV to 832 HV, Hardness reference blocks, Absolute expanded uncertainty: 4.3 HV to 1.3E1
 HV, Vickers HV 20, ISO 6507-3
- Hardness: 380 HV to 770 HV, Hardness reference blocks, Absolute expanded uncertainty: 6 HV to 1.2E1
 HV, Vickers HV50, ISO 6507-3
- Hardness: 452 HV to 772 HV, Hardness reference blocks, Absolute expanded uncertainty: 7.2 HV to 1.2E1
 HV, Vickers HV 100, ISO 6507-3

1.4 Torque

The following CMCs had been approved and published in the BIPM-KCDB website on 5th Nov., 2022:

- **Torque:** clockwise and anticlockwise: **0.1 N m to 1 N m** Reference torque transducer, Relative expanded uncertainty: **0.14 %,** Direct comparison, DIN 51309, BS 7882.
- **Torque:** clockwise and anticlockwise: **1.0 N m to 20.0 N m** Reference torque transducer, Relative expanded uncertainty: **0.06 %**, Direct comparison, DIN 51309, BS 7882

1.5 Fluid Flow

The following CMCs had been approved and published in the BIPM-KCDB website on 13th Sep., 2021:

- **Fluid flow, Volume of liquid**: **1 μL to 10 μL,** Micropipettes or piston pipettes, Absolute expanded uncertainty: **9.0E-2 μL**, Gravimetric Liquid: Water, Reference temperature: 20 °C
- **Fluid flow, Volume of liquid**: **10 μL to 100 μL,** Micropipettes or piston pipettes, absolute expanded uncertainty: **0.35 μL,** Gravimetric, Liquid: Water, Reference temperature:20 °C
- **Fluid flow, Volume of liquid**: **100 μL to 1000 μL,** Micropipettes or piston pipettes, absolute expanded uncertainty: **0.58 μL,** Gravimetric, Liquid: Water, Reference temperature:20 °C

2- Submitted CMCs

Activity	Number of CMCs	Status
Pressure	1	draft
Torque	1	under review
Viscosity	6	under review

3- Comparisons:

The ongoing comparisons are summarized in the following table:

Year	Identifier	Description	Participants	Pilot	Status
2022-		Density measurement of a silicon	PTB, CENAM, INRIM,	РТВ	Measurements in
2023	CCM.D-K1.2023	sphere (1 kg sphere made of natural	METAS, NIM, NIS, NMIA,		progress
		silicon)	NMIJ AIST, NRC, SASO-		
			NMCC, UME		
2020-	CCM.P-K16	Pressure 25 kPa to 350 kPa (Absolute	CENAM, KRISS, LNE,	CENAM	Measurements in
2022		mode)	METAS, NIS, NIST, NMIJ		progress
			AIST, PTB, VNIIM		
2020-	CCM.P-K17	Pressure 25 kPa to 350 kPa (Gauge	CENAM, KRISS, LNE,	CENAM	Measurements in
2022		mode)	METAS, NIS, NIST, NMIJ		progress
			AIST, PTB, VNIIM		
2020-	CCM.P-K18	Pressure 0.7 MPa to 7 MPa (gauge	CENAM, KRISS, LNE,	CENAM	Measurements in
2022		mode)	METAS, NIS, NIST, NMIJ		progress
			AIST, PTB, VNIIM		
2022-	GULFMET.M. D-	Solid density (Stainless steel weights	EMI, NIS, SASO-NMCC,	EMI	Protocol
2023	S1	1 kg, 200 g, 20 g and 2 g)	UME,		complete
	AFRIMETS.M.P-S2	Pressure measurements (Absolute	NMISA, KEBS, LPEE-LNM,	NMISA	Measurements in
2017-		mode) Absolute Pressure	NIS, PTB		progress
2022		10 kPa, 30 kPa, 50 kPa, 70 kPa, 90			
		kPa, 100 kPa and 110 kPa			

Ministry of Scientific Research National Institute of Standards (NIS) Mass and Force Metrology Division

2022	AFRIMETS.M.T-S1	Torque measurements (500 N m and 1000 N m)	NIS,PTB	NIS	Approved
2022- 2023	APMP.M.FF- K4.2022	Liquid volume (Water volume: 100 ml and 20 L 100mL, 20 L)	NIM, IPQ, MUSSD, NIMT, NIS, NMIA, NMIM, NMLPHIL, NPLI, SASO- NMCC, SCL, SNSU-BSN, UzNIM, VMI-STAMEQ, VNIIM	NIM	Planned

4-Patents under Evaluation

- Patent Title: Multi-capacity Force Transducer, Request No.: 566/2020
- Patent Title: Serial Build-up Force Measurement System, Request No.: 1385/2020
- Patent Title: Design of a torque lever arm for primary torque calibration machine, Request No.: EG/P/2022/515
- Patent Title: Design of a 100 KN.m multi-function torque calibration machine, Request No.: EG/P/2022/516

5-Research Activities

There are <u>four</u> Completed <u>Ph.D. thesis</u> in density, pressure, fluid flow and force activities

- Using Single Crystal Silicon Sphere for Primary Density Measuring Systems
- Investigation of non-rotating piston gauges as primary and secondary standards for the intermediate vacuum-pressure range from 0 to 15 kPa
- Study of two-phase flow in a horizontal pipe and obstruction flow measurement devices
- Novel Design of a Multi-Capacity Force Measurement Instrument.

There are still <u>five</u> running <u>Ph.D. thesis</u> which cover the mass, density, fluid flow, and force activities.

- Establishment of NIS Watt Balance Prototype
- Establishment a versatile system for measuring the density of various kinds of materials
- Metrological Investigation of Flow Rate and Characteristics of Flowing Heavy Oil Mixed with Immiscible Fluids
- A metrological Study of Air Flow Inside Buildings and its Applications
- Determining and studying the parameters of force transducers under applying static and dynamic forces for Dynamic force calibrations

There is **One** master thesis is completed in the field of force activity

- Mechanical Characterization of Glass Fiber/Metal Laminates Composites

NIS has published around **25 publications** in scientific journals indexed in SCOPUS. These publications are listed as following:

- 1. ESTABLISHING AND CHARACTERIZING A PERMANENT MAGNET SYSTEM FOR THE PROTOTYPE OF NIS'S KIBBLE BALANCE", Metrol. Meas. Syst., Vol. 30, (2023), No.1.
- NIS-EGYPT MASS SCALE UP TO ONE TON AFTER THE REDIFINITION OF THE MASS UNIT", ARPN Journal of Engineering and Applied Sciences, VOL. 16, NO. 14, JULY 2021
- 3. Validation of a PTB force-balanced piston gauge primary pressure standard (2021) Acta IMEKO, 10 (1), pp. 271-276 .DOI: 10.21014/ACTA_IMEKO.V10I1.821
- 4. Results of a project to calibrate mercury sphygmomanometer blood pressure-measuring devices in Egypt (2021) Journal of Human Hypertension, 35 (10), pp. 921-926. DOI: 10.1038/s41371-020-00424-0

Ministry of Scientific Research National Institute of Standards (NIS) Mass and Force Metrology Division

- 5. Design and Performance Evaluation of a Portable Chamber for Prevention of Aerosol Airborne–Infection, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 100, no. 2, pp.181-197, 2022.
- 6. Recent Preventive Methods to Reduce the Infection Diseases by Air Distributions Control. Journal of Measurement Science and Applications (JMSA), (Articles in Press),2023
- 7. The resolution of analogue measuring devices and its associated uncertainty An investigation with practical recommendations Precision Engineering ,2021
- 8. An Investigation on using Lagrange, Newton and Least Square Methods for Generating Nonlinear Interpolation Function for the Measuring Instruments, ASM Science Journal, 2021
- 9. Difference between calibration and practical force proving instruments, Revista Scienterium (Javeriana), 2021
- 10. An investigation on using the falling mass technique for dynamic force calibrations, Metrology and Measurement Systems, 2021
- 11. Enlargement of a force sensor measurement range based on a build-up principle, Engineering Research Journal (ERJ), 2021
- 12. An Investigation on using measurement Uncertainty as decision rule for statement of conformity, Revista Scienterium (Javeriana),2021
- 13. Proposed Approach for force proving instruments classification, International Journal of Metrology and Quality Engineering, 2021
- 14. Novel design of a multi-capacity force measurement instrument, Messurement, 2021
- 15. Developing the NIS Solid Density Hydrostatic Weighing System Up to 20 kg, Metrology & Quality Engineering, 2021
- 16. An accurate method for determining stress intensity factor by caustic, MRS Advance (Material research society),2022
- 17. Modeling of the Quantization Effects on the Resolution Uncertainty of Digital Indictors, IEEE Instrumentation & Measurement Magazine, 2022
- 18. Flexural behavior of functionally graded polymeric composite beams, Journal of Industrial Textiles, 2022
- 19. Mechanical and Tribological Behavior of Functionally Graded Unidirectional Glass Fiber-Reinforced Epoxy Composites, Polymers, 2022
- 20. A comparison between static and dynamic stiffness of force transducers for dynamic force calibrations, Measurement: Journal of the International Measurement Confederation,2022
- 21. Calibration of Reference Torque Transducer in one Direction and Use its Cubic Coefficients in Both Directions With Improved Interpolation Error, Metrology and Measurement Systems, 2022
- 22. Effect of Carbon Content on The Impact Energy of Ductile Austenitic Cast Iron, ASM science, 2022
- 23. Extrapolation errors of force transducer curve fitting equations, Revista Scienterium (Javeriana), 2023
- 24. Commissioning NIS 1 kN·m Primary Torque Standard Machine, Mapan- Journal of Metrology Society of India,2023
- 25. Report on the AFRIMETS.M.T-S1 supplementary torque comparison for 500 N⋅m and 1000 N⋅m between NIS (Egypt) and PTB (Germany), Metrologia,2023