

Liberté Égalité Fraternité

REPORT TO CCT-WG-NCTH ACTIVITIES ON HTFPs

MOHAMED SADLI, LNE-CNAM

Anaheim, April 3rd 2023

- HTFP activities in the Euopean project REAL-K
- Planned activities in the new European project MultiFixRad
- Discussion

- New definition of the kelvin in force since 2019: direct link to thermodynamic temperature (T) and the Boltzmann constant
- 20 years of active research on high temperature fixed points (HTFPs): reliable, robust and diverse possibilities
- Mise-en-Pratique of the new definition allows three paths:
 - Direct thermodynamic temperature measurement
 - Thermodynamic temperature mediated by HTFPs of known T
 - ITS-90 still valid and fit for purpose

FORMER STUDIES

 From 2012 to 2015, Euramet EMRP project InK (implementing the new kelvin): Co-C, Pt-C, Re-C eutectic points studied – T assigned

PHILOSOPHICAL TRANSACTIONS A

rsta.royalsocietypublishing.org

Cite this article: Woolliams ER et al. 2016 Thermodynamic temperature assignment to the point of inflection of the melting curve of high-temperature fixed points. *Phil. Trans. R. Soc. A* **374**: 20150044. http://dx.doi.org/10.1098/rsta.2015.0044

Accepted: 25 August 2015

Research

One contribution of 16 to a Theo Murphy meeting issue 'Towards implementing the new kelvin'.

Subject Areas:

thermodynamics

Keywords:

high-temperature fixed points, thermodynamic temperature, thermometry, temperature scale, kelvin, eutectics Thermodynamic temperature assignment to the point of inflection of the melting curve of high-temperature fixed points

E. R. Woolliams¹, K. Anhalt², M. Ballico³, P. Bloembergen^{4,5}, F. Bourson⁶, S. Briaudeau⁶, J. Campos⁷, M. G. Cox¹, D. del Campo⁸, W. Dong⁵, M. R. Dury¹, V. Gavrilov⁹, I. Grigoryeva⁹, M. L. Hernanz⁷, F. Jahan³, B. Khlevnoy⁹, V. Khromchenko¹⁰, D. H. Lowe¹, X. Lu⁵, G. Machin¹, J. M. Mantilla⁸, M. J. Martin⁸, H. C. McEvoy¹, B. Rougié⁶, M. Sadli⁶, S. G. R. Salim^{6,11}, N. Sasajima⁴, D. R. Taubert², A. D. W. Todd¹², R. Van den Bossche^{1,13}, E. van der Ham³, T. Wang⁵, A. Whittam¹, B. Wilthan^{2,†}, D. J. Woods¹², J. T. Woodward¹⁰, Y. Yamada⁴, Y. Yamaguchi⁴, H. W. Yoon¹⁰ and Z. Yuan⁵ ¹National Physical Laboratory (NPL), Hampton Road, Teddington TW11 0LW, UK The equilibrium liquidus temperatures of rhenium-carbon, platinum-carbon and cobalt-carbon eutectic alloys.

D. H. Lowe¹, A. D. W. Todd², R. Van den Bossche³, P. Bloembergen⁴, K. Anhalt⁵, M. Ballico⁶, F. Bourson⁷, S. Briaudeau⁷, J. Campos⁸, M.G. Cox¹, D. del Campo⁹, M.R. Dury¹, V. Gavrilov¹⁰, I. Grigoryeva¹⁰, M.L. Hernanz⁸, F. Jahan⁶, B. Khlevnoy¹⁰, V. Khromchenko¹¹, X. Lu⁴, G. Machin¹, J.M. Mantilla⁹, M.J. Martin⁹, H.C. McEvoy¹, B. Rougié⁷, M. Sadli⁷, S.G.R. Salim⁷, N. Sasajima¹², D.R. Taubert⁴, E. van der Ham⁶, T. Wang⁴, D. Wei⁴, A. Whittam¹, B. Wilthan⁵, D.J. Woods², J.T. Woodward¹¹, E.R. Woolliams¹, Y. Yamada¹², Y. Yamaguchi¹², H.W. Yoon¹¹, Z. Yuan⁵

	Т	u(T)(<i>k</i> =1)
Cobalt	1597.475	0.075
[Cobalt]	1597.430	0.074
Platinum	2011.502	0.110
Rhenium	2747.902	0.228

[] indicates non equilibrium values

DISSEMINATION OF THERMODYNAMIC TEMPERATURE

3000

LNE le cnam 5

OBJECTIVES OF WORKPACKAGE1 (HIGH TEMPERATURE)

In the WP1 of this project, the general objective being demonstrate and establish traceability directly to the redefined kelvin from the silver freezing point to ~3000 K, the collaborative work was focused on:

- Characterising and selecting a set of cells at the points of Fe-C (1153 °C), Pd-C (1492 °C), Ru-C (1953 °C) and WC-C (2748 °C)
- Assigning collectively thermodynamic temperatures to the phase transitions either by absolute or relative methods : circulation of 2 sets of 4 cells in 8 labs.
- Testing thermodynamic temperature traceability schemes using HTFPs (towards NMIs and users)

Thus:

- extending the temperature range to 3020 K (WC-C)
- bridging the gap between Co-C / Pt-C (Pd-C) and Pt-C / Re-C (Ru-C)
- preparing thermodynamic references for thermocouples up to 1800 K (Fe-C and Pd-C)
- > testing for the first time traceability routes in **thermodynamic temperature** towards industry and NMIs

MAIN ACHIEVEMENTS OF THE PROJECT

- ☑ Construction of the cell completed
 - > About 30 cells constructed and tested in the producing labs for short-term stability and melting range
- ☑ Characterisation of the cells completed
 - Effect of the temperature steps used to initiate melting
 - > Effect of the temperature gradient along the cell on the melting temperature
 - Characterisation of Fe-C and Pd-C thermal effects in 3-zone furnaces (with optimum temperature profile tuning)
- ☑ Initial comparison of the cells completed
 - Cells for T assignment identified (the best two cells)
 - Cells for dissemination trials identified
 - > Spare cells in case of damage or loss during the circulation of the cells
- ✓ Assignment of thermodynamic temperatures
 - Two batches of cells circulated in 6 NMIs (loop A: CEM, PTB, NPL, LNE-Cnam; loop B: NIM, Tubitak UME)
 - Results reported
- ✓ Final comparison of the cells (ongoing)
 - Determination of the drift of the circulating cells

7 LNE le cnam

TASSIGNMENT TO THE PHASE TRANSITIONS (FE-C, PD-C, RU-C, WC-C)

- Circulation of the cells in two loops:
 - Loop A: PTB, CEM, LNE-Cnam, NPL
 - Loop B: (VNIIOFI), TUBITAK-UME, NIM, (INRIM)
 - ② Timetable: early fall 2021 late winter 2022
- Measurement of the thermodynamic temperature of the circulating cells
 - Direct method (a radiation thermometer calibrated in thermodynamic temperature values) at PTB, NIM, CEM, Tubitak UME and LNE-Cnam
 - Indirect method (using high-temperature fixed points with –previously assigned T) at NPL, CEM, LNE-Cnam and Tubitak UME
- > Determination of the (weighted) mean temperature for each phase transition

ASSIGNING THERMODYNAMIC TEMPERATURES TO THE PHASE TRANSITION OF F_E -C

T(Fe-C), K	U(k=2), K
1426.626	0.15

ASSIGNING THERMODYNAMIC TEMPERATURES TO THE PHASE TRANSITION OF WC-C

T(WC-C), K U(k=2), K 3020.702 0.24

THERMAL EFFECTS

- Study the influence of changing furnace temperature profiles and melt-initiation temperature steps on the measured phase transition temperatures.
- > Estimate the thermal effect uncertainties to be accounted for.

11 LNE le cnam

F-2: High Temperature Fixed Points Weds 5th Apr Magic Kingdom 2 10:45 – 12:15 (D. Lowe)

This work has allowed the **collective and independent** determination of the thermodynamic temperature of the phase transition of four high temperature fixed points. We know now that:

- ✓ The relative primary thermometry measurement method is efficient and easier than the absolute primary method
- ✓ The **two methods agree** perfectly (within the uncertainties)
- The set of 7 HTFPs with assigned thermodynamic temperatures will allow the realisation and the dissemination of thermodynamic temperature in the future with unprecedented uncertainty levels
- ✓ The ITS-90 scheme above the silver point (>1000 °C) can still be applied for thermodynamic temperature (reative method with one fixed point)
 - High-temperature fixed points with assigned thermodynamic temperature represent a validated thermodynamic temperature scale!

MULTIFIXRAD/ A NEW RESEARCH POTENTIAL JRP

WP 1 **WP 2 WP 3 WP 4** High temperature fixed Knowledge transfer, Interpolation instrument Interlaboratory ITS-90 realisation by and realisation of the points comparison (ILC) extrapolation scale - Verify performance! Construction, SSE, Workshops, training linearity, spectral CCT-K10 response LNE Lab 4 Lab 1 Strategy plans for Lab Model fitting, emerging institutes Construction software Characterisation Link to CCT-K10 Maintenance ٠ Basis for new CMCs for Emerging institutes select a subset emerging institutes Images: Freepik.com

MULTIFIXRAD/ A NEW RESEARCH POTENTIAL JRP

Impact

Metrology: improved regional

- Collaboration
- Services
- Specialisation
 Research capacity

Outputs

- Practical implementation of new possibilities in *MeP*-K@HT
- Improved precision at NMIs
- 5+ peer reviewed papers
- 20+ presentations at conferences
- Training materials for the elearning platform of EURAMET
- Best practice guide
- ILC report
- Stakeholder workshop

Start date: 1st June 2023

Members: Lenka Knazovicka (CMI), Helen McEvoy (NPL), Maria-Jose Martin (CEM), Ferruccio Girard (INRIM), Howard Yoon (NIST), Peter Saunders (MSL), Ricardo Sohn Moretz (INMETRO), Daniel Cardenas Garcia (CENAM), Mohamed Sadli (LNE-Cnam)

- Mainly two parts: solid-state detectors (high temperatures), thermal detectors (low temperatures)
- ✓ Oriented for users examples relating to différents types of measurements
- ✓ Collaborative work on a single shared document (online) in a first step
- ✓ Iterative approach : contributions, consolidation (PS/MS), exchanges, changes...
 - > Draft still under construction. Initial objective was Mid 2023, will probably shift ~6 months.