

Counting Cells.

CCU/CCQM workshop. The Metrology of quantities which can be counted Dr Jonathan Campbell. Science Leader. NML@LGC. Jonathan.Campbell@lgcgroup.com

Biological complexity

Biological complexity. Characterisation *Classical counting methods*

Prokaryotes

Eukaryotes

LGC

Skinner&Johnson. Chromosoma 126:195- (2017)

Rodrigues et al. Bioecngineering 9(7) 2022

© J.Deacon. Univ. Edin

Biological complexity. Characterisation

Adapted from ISO 23033:2021

Considerations for cell counting

Automated microscopy Dry cell mass/weight Packed Cell Height Spectrophotometry (i.e. Turbidity)

Fluorimetry / luminometry Spectrophotometry Cell-based ELISA Metabolic assays Impedance-based biomass monitor

Populations

Adapted from IS 20391-12017

Quantities relating to cell counting

Quantity	Other metric	Expression	Description	Application (example)
Total cell count		number of cells [unit 1]	Count of cells Count of events	
Differential cell count (subset of cells of interest)		number of x cells [unit 1]	Count of x cells Count of x events x = nominal property	
Cell (suspension) concentration		number of cells / volume number of x cells / volume [unit count value/mL]	Cell count per volume	Multiple / Diagnostic (viable cell concentration) (AIDS <200CD4+ cells/mL)
Differential cell index or fraction		Number of x cells/Total number of cells	Decimal Fraction	Multiple / Diagnostic % viability % mitotic index
Packed cell volume		Height of PCV/Height of Plasma x 100. [%]	Fraction	Rapid diagnostic (Estimate of RBC fraction in whole blood)
Cell area density		number of cells / area [unit count value/mm ²]	Cell count per unit area	Discriminative Cell identity / morphology

Quantities relating to cell counting

Quantity	Other metric	Expression	Description	Application (example)
Average cell area		$\left(rac{area \ occupied \ by \ cells}{number \ of \ cells} ight)$ [µm ²]	2D area of cell	Discriminative Cell identity / morphology functional response
Cell confluency		$\left(\frac{area \ occupied \ by \ cells}{area}\right) x100$	Area of an adherent population of cells covering a substrate	Cell growth kinetics. Cell manufacture (Estimate of cell proliferation 2D substrate) (Optimized sub-culture)
	Colony Forming Unit / volume	$\frac{no.of\ colonies \times dilution\ factor}{Vol.culture\ plate}$	Group of growing cells visible at micro/macroscopic scale	Estimate proliferative viable cells a. Bacterial contamination (ProK) b. Stem cell number (EuK)
	Plaque forming units / volume	no.of colonies Vol.infectious lysate × dilution factor	Group of changed or absent cells in a confluent sheet of cells	Estimate number of infectious viral particles
	Turbidity	OD600	Absorbance measurement of a cell suspension at 600nm.	Correlate to Bacterial/Yeast cell number. (Proliferation in a bioreactor)

Dilution series considerations.

- Enable practical handling of the material to enable counting
- Present an optimal concentration to the measurement device
- Processing steps for a dilution series should avoid damaging cells
- Homogeneity of stock and replicate dilutions will be dependent on properties of cell type
- The proportionality of a cell count can serve as an internal reference to the quality of a counting process

Manual counting.

NATIONAL MEASUREMENT LABORATORY FOR CHEMICAL AND BIO-MEASUREMENT HOSTED AT LGC

- Operator decides on the basis of morphology or cell ultrastructure
- Training.
 - · Counting process execution (subjective recognition or cell vs. artifact)
 - Measurement process execution (pre-analytical/analytical/post analytical phase execution)
- Subjective thresholds (inclusion/exclusion criteria)
 - Dye / label selectivity/concentration
 - Cell boundary criteria
- Coincidence loss.

Automated image-based.

Image Cytometers

- Disposable slides or vials with different degrees of control over processing steps (ie. dye mixing, sample cueing)
- Basic algorithms for cell identification typically based on;
 - Cell Brightness (%) (Dark to bright transition at cell boundary)
 - Cell sharpness (Arbitrary). 'Clarity' of edge
 - Central spot Brightness / Area. Brightness at the centre of the ROI. % of greyscale range
 - Minimum Circularity
 - Decluster degree
- Output typically histogram Count / Size

Automated image-based.

Computational image-based cytometry

- Differentiate cells by features beyond what is possible by observation
- Development of robust machine-learning based algorithms, with different level of supervision

Flow cytometry

NATIONAL MEASUREMENT LABORATORY FOR CHEMICAL AND BIO-MEASUREMENT HOSTED AT LGC

Polychromatic flow cytometry

- Optical. Laser/LED light scattered by cells/particles and detected as events
- Multi-parametric information at single cell level
- Only singlets typically used for onward analysis
- Subset of total events forms the analytical data
 - Subjective manual gating or automated gating.
- Only a portion of fluorescence information is collected

Flow cytometry

NINAL MEASUREMENT LABORAT FOR CHEMICAL AND BIO-MEASURES HOSTED AT

Polychromatic flow cytometry

- Optical. Laser/LED light scattered by cells/particles and detected as events
- Multi-parametric information at single cell level
- Only singlets typically used for onward analysis
- Subset of total events forms the analytical data
 - Subjective manual gating or automated gating.
- Only a portion of fluorescence information is collected

Rebecca C Grant. PhD thesis 2019. Univ. Loughborough

Flow cytometry

Polychromatic flow cytometry

- Optical. Laser/LED light scattered by cells/particles and detected as events
- Multi-parametric information at single cell level
- Only singlets typically used for onward analysis
- Subset of total events forms the analytical data
 - Subjective manual gating or automated gating.
- Only a portion of fluorescence information is collected
- Imaging Flow cytometry
- Brightfield or fluorescence images obtained for each event.

All Events - B6

P217 Pilot Study: Enumeration of fixed peripheral blood mononuclear cells in suspension

- Measurement Claim: Quantification of absolute cell numbers in a PBMC preparation
- Evaluate a lyophilized, fixed preparation of peripheral blood mononuclear cells (PBMCs) as a comparator for manual, automated and flow cytometry-based cell counting methodologies (Consensus Value/Sources of Variation)
- Uses a wide range of cell counting technologies together with a prescribed dilutions series design adapted from ISO 20391-2
 - Flow Methods Detailed SOP

Consensus Cell Count: Dilution Fraction: 1

- Manual Method Some guidelines but in-house protocols were followed
- Automated Methods no guidelines; include any

de any

P217 Pilot Study Dilution Fraction Schematic sigma stock sigma rep sample solution Lyophilized PBMC Stock X 5 Vials Lyophilized PBMC are allowed to Reconstitute in 1mL ddH₃O equilibrate for 20 mins at room temp. Mix 5 times, following reconstitution df, = 1 $df_2 = 0.7$ $df_3 = 0.5$ df, = 0.3 $df_5 = 0.1$ $df_{6} = 0.05$ Tubes 1-12 (n=2) Random Samp Number (blinded labelina: optional K₁₁ 11 12 13 21 22 23 31 32 33 41 42 43 51 52 53 61 62 63 71 72 73 81 82 83 91 92 93 101 102 103 11-1 11-2 11-3 17-11-2 17-3 Measuring Cell Concentration of each Tube 1-12 in triplicate; using Flow/manual or automated cell counting methods Replicate Measurements of each test sample (K_{ii} = 3), *Where K_{ii} = Measurements (observations) of a single test **10** Participating Labs d_R = Targeted dilution fraction sigma rep obs sigma group

Metric: Prop.Const.x (Dilution Series Analysis)

Further considerations

- Counting for entities that are fundamentally different
- The place of examination within the counting process is critical
 - An operator decides on the basis of morphology or cell ultrastructure (Manual counting)
 - An automated count relies on predefined limits (operator) or training set quality
- What is the status of the measurand for cell counting?
 - How do different measurands relate in complex entity quantification?
- The assignment of value to a cell and cell property.
 - Nominal viability properties (live/dead) versus ordinal binary (ie.1/0)

The place of digital specifications for control in cell analysis

- How do we address the stability issue for biological entities?

Department for Science, Innovation & Technology

NML@LGC

Jeanne Rivera Matt Bourn Lauren Daly **Alison Woolford Simon Cowen Steve Ellison Julian Braybrook** Deepa Rajagopal MHRA Sandrine Vessillier MHRA David Newton NIST CCQM-P217 participants

Laura Pierce NIST Sumona Sarkar NIST Carl Simon NIST

Loughborough University Rebecca Grant Melissa Cheung Jon Petzing

