Quantification of Nucleic Acids by Counting

Inchul Yang (icy@kriss.re.kr)

Contents

Introduction

2 Digital PCR

Flowcytometric counting

4 Discussion

3

Counting biological entities

KRISS

Naked Eye

Optical Microscope

TEM/SEM/SPM

Amplification/colony Fluorescence

Bacterial colony

Fluorescence-DNA

Digital PCR

Single molecule Immuno-detection

- Mole: fixed number of entities
- Quantification by counting directly realizes 'Mole'-traceable measurement
- Biological measurands are huge, complex and colloidal
 - limited applicability of chemical measurement methods
 - suitable for quantification by counting
 - count itself is more meaningful than 'kg' or 'mol'
 - 1 atto mol vs. 1 nano gram vs. 1 million (cell, DNA, protein)
- Requires
- **separation/partitioning** of individual entities
- making detectable/sensitization magnification of size: growth, microscopy clonal multiplication: culture, PCR signal amplification: fluorescence, radio-isotope
- Hampered by
- sampling issues
- volume issues
- detection failure
- impurity and fragments

Sensitivity and resolution

- single molecule sensitivity

Precision

- higher precision and reproducibility
- higher tolerance to inhibitors and background nucleic acids

Absolute quantification

- no calibration needed under validated PCR conditions
- direct realization of 'mole'-traceable measurement

Throughput

- 96 samples in 5 hours including hand-on time less than 1 hour
- parallel measurement of different samples and controls

Multiplex PCR

- simultaneous quantification of multiple DNA/sequences in single tubes
- internal controls and standards can be used
- ratiometry, self-validation and linkage/breakage analysis

CCQM Comparison Studies	Description	Application area
P154.2	KRAS quantification and fractional abundance	Cancer
P184	EGFR and BRAF quantification and fractional abundance	Cancer
P199	HIV-1 RNA quantification	Infectious disease
P199b/K181	SARS-CoV-2 quantification	Infectious disease
K86c	GMO (canola seeds) quantification and fractional abundance	GMO, food
K86d	Meat authentication (pork and beef mixture)	Food
K176	HER2 Copy Number Variation	Cancer

CCQM P184

CCQM P199b

International comparison on 'absolute quantification & ratio of wild type and mutant KRAS, Coordinated by LGC

Reference materials by dPCR

Certificate of Analysis

Standard Reference Material® 2365

BK Virus DNA Quantitative Standard

This Standard Reference Material (SRM) is intended for use in the value assignment of BK virus deoxyrihonacleic acid (DNA) quantitation materials, primarily those used for quantitative polymerate chain reaction (qPCR). SRM 2565 consists of a well-characterized, linearized plasmid, containing BK virus DNA solubilized in 10 mmol L 2-amino-2-thydroxymethy1-13 propanediol hydrochhoride (Tris HC) and 1 mmol Lethylenediamineterizaeciti acid isodium sRI (disodium EDTA) pH 80 brffer (TE), with 50 ngL Juessa RNA added to ensure stability. A unit of the SRM consists of one 0.5 mL tube containing approximately 110 µL of DNA solution. The tube is labeled and is sealed with a screw cap.

Certified Values: Certified values are provided in Table 1. A NIST certified value is a value for which NIST has the highest confidence in that all known or suspected sources of bias have been accounted for. The copy number values are metrologically traceable to the natural units count 1 and ratio 1 and International System of Units (SI) derived units of volume.

Table 1. Certified Value for SRM 2365

Analyte	Certified Value (copies/µL)	95% Probability Uncertainty Interval (copies/µL)	Standard Uncertainty, u(X) (copies/µL)	Effective Coefficient of Variation, CV=100×u(X)/X	
BK Virus DNA copy number	558,000	534,000 to 582,000	12,000	2.2%	

1

NIST

National Measurement Institute

CERTIFIED REFERENCE MATERIAL CERTIFICATE OF ANALYSIS

NMIA NA050 to NA055: SARS-CoV-2 Standard

Report ID: 210329 (supersedes ID 201221, revised expiry date)

Batch No.: B200921

Certified concentration values of SARS-CoV-2 genome equivalents

NMIA Code	Concentration	Expanded	Expanded	
	(copies/iiiL)	oncertainty	Oncertainty (76)	
NA050	116,000	28,000	24	
NA051	49,000	12,000	25	
NA052	12,400	3,100	25	
NA053	3,700	1,200	33	
NA054	1,290	530	41	
NA055	420	280	66	

The uncertainty has been calculated according to the Guide to the expression of uncertainty in measurement [1] and ISO Guide 35 [2] and is stated at the 95% level of confidence.

NMIA

	2021-2022 Newly Released CRM——Nucleic acid						
Field	CRM number	CRM name					
	GBW09116-GBW09120	HER2 genomic DNA reference material					
	GBW09121	GJB2 genomic DNA reference material					
	GBW09122、GBW09123、 GBW09258	GJB2 gene plasmid DNA reference material					
Nucleic acid	GBW09259-GBW09266	12S rRNA gene plasmid DNA reference material					
	GBW09267-GBW09272	SLC26A4 gene plasmid DNA reference material					
	GBW (E) 091215	cfDNA containing EGFR T790M mutant reference material					
	GBW (E) 091216	cfDNA containing EGFR T790M wild type reference material					

KRISS RM ID number	RM title	Method		
111-10-506	SARS-CoV-2 RNA			
111-10-507	SARS-CoV-2 packaged RNA	dDCD		
111-10-508	Severe fever with thrombocytopenia syndrome (SFTS) virus packaged RNA	(RM)		
111-10-509	EGFR DNA for liquid biopsy			
111-10-510	Adenovirus Type 5 DNA (partial)	Single molecule		
111-10-511	Adenovirus Type 5 E1 gene	counting & dPCR		
111-10-512	hAd5 E1-PSG4 DNA	(CRM)		
111-10-513	SARS-CoV-2 S gene	. ,		
111-10-514	Norovirus GI RNA			
111-10-515	Norovirus GI RNA			
111-10-526	Human Alphacoronavirus 229E RNA			
111-10-536	Human rhinovirus RNA	dPCR		
111-10-537	RVFV lineage A RNA	(RM)		
111-10-538	RVFV lineage D RNA	. ,		
111-10-539	RVFV lineage K RNA	-		
111-10-549	Severe fever with thrombocytopenia syndrome (SFTS) virus RNA	-		
111-10-551	SARS-CoV-2 Omicron variant RNA			

Instrument design

Instrumentation (V2)

EMCCD images of DNA molecules

DNA and RNA count signals

KRISS

Nucleic acids quantification by direct counting

KRISS

Lambda DNA

10P Pentrans Mercelegia 46 (2009) 375-387 Count-based quantitation of trace level macro-DNA molecules

Hyuk-Min Lim, Hee-Bong Yoo, Nan-Sook Hong, Inchul Yang, Myung-Sub Han and Sang-Ryoul Park¹

Plasmid DNA

A candidate reference method for quantification of low concentrations of plasmid DNA by exhaustive counting of single DNA molecules in a flow stream

Hee-Bong Yoo^{1,1}, Donggeun Oh^{1,3}, Jae Yong Song¹, Mamoru Kawah, Jeeseong Hwang⁵, In Chul Yang^{1,3} and Sang-Ryoul Park^{1,3,6}

Bilateral comparison

SCIENTIFIC	REPORTS
------------	---------

OPEN Accurate quantification of supercoiled DNA by digital PCR Dong", Hee-Bong Yoo^{1,1}, Jing Wang" & Sang-Ryoul Pa

CCOM P154 analytical

International Comparison of Enumeration-Based Quantification of DNA Copy-Concentration Using Flow Cytometric Counting and Digital Polymerase Chain Reaction

Digital rolyinerase Chain Peeckonni Benergi Jing Wang¹ Zhiwei Sul³ Jenerj Paviki,¹ Mojca Mikave,² Madam Algay,² Estan Mosiogla, ¹Pahipe Corbiser, ²Mirra Jaka,⁸ Panno Cosne, Jasan J. de V. Creatane, Boberto Bech Findura, ¹Daniel Benke,² Makari Jerebes Smith,² Jacob McLaughin,⁶ Kerry Findus,^{1,2} Alexandra S. Walak,⁸ Jim F. Huggstu,⁶ Helen Parkes,⁴ Magrert C. Kine, ¹D Jenrum Harran,² and Peter M. Vallare⁴

Compare of supercoiled plasmid quantified by d-PCR and direct counting Sample A. B. C : sample of different concentration P > 0.05

	10000 -									T
20	9000 -						Ŧ	Į	Į	
E Sol	8000 -		-			т	+	1		T
5	7000 -	ľ		[ē	Î	1			
	6000 -		1							
		5		4	5	7-	5	÷	12-	13-
		Report								

M13 DNA: Seq-specific

Quantification of single-strand DNA by sequence-specific counting in capillary flow cytometry

Hee-Bong Yoo¹, Chaeeun Lee¹, Kee-Suk Hong¹0, Sang-Ryoul Park¹ and Inchul Yang¹0

MS2 RNA: Seq-specific

Using High-Sensitivity Capillary Flow Cytometry Hee-Bong Yoo, Sang-Ryoul Park, Kee-Suk Hong, and Inchul Yang*

KRISS gene CRMs certified by counting

KRISS is now working on

- Cross-validation of different methods for nucleic acids measurements

KRISS

· 전자서 담당무서 : 바세요문서표문그룹

정자서 하셨자 : 양민원/하상영/이다#

KRISS

- Quantification of virus particles by counting
- Two-channel optics, volumetric imaging and automation

Comaparison of nucleic acids quantification methodsRISS

Conclusion

KRISS

- Counting is a simple and direct approach for realization of 'Mole'traceable measurement of biological entities
- Biological entities(cells, virus, nucleic acids and proteins) are good targets for application of counting approaches
- Digital PCR is a popular and robust method for quantitative analysis of nucleic acids. It has a potential to be a primary method for moletraceable quantification of nucleic acids owing to
 - extreme sensitivity and resolution
 - high precision, reproducibility and stability
 - throughput and multiplexing
 - varierty of applications
- KRISS has developed a method for direct counting of nucleic acids in capillary flowcytometry. We expect cross-validation of digital PCR, single molecule counting and chemical analysis will benefit one another in establishment of measurement standards of nucleic acids

Questions:

11 CCQM NAWG

- What is the CCQM position on 'use of non-SI and dimension-less descripts such as copy, cells and genomes' when reporting results for such measurements in:
 - KC, pilot reports, etc?
 - Associated publications amongst the stakeholder communities?
- What recommendations may CCQM provide for expression of e.g. 1000 copies of biomolecular entities (cells, etc) per unit volume (mL) value:
 - 1000 copies/mL
 - 1000 1/mL
 - 1000 /mL
 - 1000 mL⁻¹
 - Other?

Bureau

- International des
 - Poids et
 - A Mesures

3

by Jim Hugget, NAWG chair

RNA

