RF Josephson Arbitrary Waveform Synthesizer: JAWS up to 3 GHz and beyond

Paul Hale RF Technology Division Boulder, Colorado, USA

Nathan Flowers-Jacobs, J.A. Brevik, A.A. Babenko, A.E. Fox, A.S. Boaventura, P.F. Hopkins, P.D. Dresselhaus, D.F. Williams, and S.P. Benz

Quantum-Based Signal Sources

NI

Goal: Create a programmable **quantum-based RF source** for signal & power metrology **Points of emphasis:**

- Calculable, quantum-based SI-traceable signal accuracy
- Quantum Locking Range: stable, reproducible, location-independent
- Arbitrary waveform synthesis using "3-level DAC" → calculable out-of-band signal
- Typical -48 dBm at cryogenic reference plane; demonstrated up to -28 dBm

JAWS Quantum Source: pulse-driven JJs NGS COMMUNICATIONS

*Co-invented by Przybysz, Worsham, Hamilton and Benz in 1995

Practical Voltages Require Series Arrays

Example calculated spectrum

• Delta-sigma algorithm

NS

- feedback with loop filter
- RF-JAWS uses bandpass loop filter
- Very small background
 - In filter bandwidth

$$V(t)dt = \frac{h}{2\rho}$$

COMMUNICATIONS

TECHNOLOGY LABORATORY

- Calculation assumes:
 - δ-function JJ pulse shape
 - no feedthrough of bias pulses

Cryogenic Probe Station

Piezoelectricprobe control system

COMMUNICATIONS

TECHNOLOGY LABORATORY

4 K Stage with JJ Devices & Standards

COMMUNICATIONS

TECHNOLOGY LABORATORY

Single Chip: JAWS and RF Standards

COMMUNICATIONS

TECHNOLOGY LABORATORY

Calibrated RF measurement of JJ voltage NST COMMUNICATIONS

A. S. Boaventura et al., "Cryogenic Characterization of a Superconductor Quantum-Based Microwave Reference Source for Communications and Quantum Information", in IEEE Trans. Appl. Superconductivity (2021), 10.1109/TASC.2021.3117610

Two-Port RF-JAWS

Determine measured JJ waves $b_{II,1}$ and $b_{II,2}$

from measured **a** and **b** waves and **S** scattering parameters

 $b_{JJ,1} = b_1 - a_2^* S_{12} - a_1^* S_{11}$ $b_{JJ,2} = b_2 - a_1^* S_{21} - a_2^* S_{22}$

Compare measured/calibrated value to quantum-based calculation (FFT of pulse pattern)

Preliminary Two Port Results

12 COMMUNICATIONS **RF-JAWS Quantum Locking Range** NS TECHNOLOGY LABORATORY

noise

Single Frequency QLR Sweep

Preliminary QLR measurements

Two-Tone Delta-Sigma waveform NLST COMMUNICATIONS 13

Fast measurements at 10 kHz are used to verify and optimize 1.005 GHz synthesis NTF – noise transfer function

Conclusion

- JAWS is a quantum-based voltage source
 - Uses Josephson junctions to convert frequency -> voltage
 - Mature quantum-based DC voltage source (PJVS)
 - Young quantum-based low-frequency voltage source
 - We disseminate PJVS & LF-JAWS as NIST Standard Reference Instruments (SRI)
- Recently started RF-JAWS program: GHz quantum-based arbitrary signal source
 - Generate single-sines for power/phase calibrations
 - Generate multi-tones and pulses for measuring DUT non-linearities
 - Pulsed qubit control
 - Applications increase with frequency and power
- Currently focusing on step 1: Cryogenic probe station measurements
 - Comparing LSNA calibrated measurement to calculated value
 - 0.1 dB agreement at low frequencies and -48 dBm
 - qualitatively understood deviations <0.5 dB up to 3 GHz
- Working on faster JJs and faster pulses, higher frequencies and higher powers

$$\int V(t)dt = \frac{h}{2e}$$

