Update on NIST Graphene Research

Gerald J. FitzPatrick, Chief
Quantum Measurement Division
Physical Measurement Laboratory
Graphene – Successor to GaAs

- Many present-day ohm standards are GaAs-based devices
- Less user-friendly than graphene
 - Limited current before breakdown (77 μA) – Important for equipment compatibility
 - Higher magnetic field requirement (> 8 T)
 - Some electrical properties not predictable while on shelf
 - Lower temperature requirement (He-3 needs)
- Epitaxial graphene (EG) is more user-friendly
 - Stable in air (after functionalization)
 - Goes beyond one value of resistance (via superconducting contacts and/or p-n junctions)
Graphene QHR Standard

I. Millimeter-sized devices
II. Currents up to and beyond 1 mA
III. Compatible with commercial, room-temperature current comparator bridges
IV. Single QHR devices used in calibrations for at least 6 years
V. Going beyond single element
 A. Proof-of-concept of p-n junctions
 B. Using superconducting contacts for arrays
I. Two major improvements to electrical contacting
 A. Use of NbTiN, with superconducting transition near 12.5 K
 B. Use of multiple-series contacting (see (c) below)

II. Advances allow many single Hall elements to be connected – outputs
 new values of quantized resistances ("QHARS" devices)

III. Reduction of contact resistances from about 1 Ω down 3-4 orders of magnitude
I. 13 parallel devices yields 992.8 Ω
II. This resistance value is more versatile and compatible with bridges.
Graphene Arrays for Kibble Balances

I. Kibble balance mass determination with 992.8 Ω array

II. Strong agreement between quantum standard and artifact resistors

III. Deviation in mass value between QHARS devices and traditional resistors is:
 A. \((-21.5 \pm 12.8) \times 10^{-9}\) for 100 g mass
 B. \((-2.6 \pm 20) \times 10^{-9}\) for 50 g mass
I. Using Wye-Delta Transformations for Higher Quantized Resistances
 A. Grounded terminal is always one QHR element
 B. Math transformation drastically reduces number of required elements for resistances > 1 MΩ

1.01 MΩ → 20.6 MΩ
Star-Mesh Transformations

- Using Star-Mesh Transformations for Higher Quantized Resistances
 - Formula suggests that even higher resistances accessible

\[R_{ik} = R_i R_k \sum_{\alpha=1}^{n} \frac{1}{R_{\alpha}} \]

<table>
<thead>
<tr>
<th>(R_i) (elements)</th>
<th>(R_k) (elements)</th>
<th>(R_{ik} - R_{nk}) (single-elements in parallel)</th>
<th>Total (elements)</th>
<th>(R) (M(\Omega))</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
<td>3</td>
<td>103</td>
<td>98.0887</td>
</tr>
<tr>
<td>44</td>
<td>44</td>
<td>4</td>
<td>92</td>
<td>101.083</td>
</tr>
<tr>
<td>44</td>
<td>43</td>
<td>6</td>
<td>93</td>
<td>99.9407</td>
</tr>
<tr>
<td>139</td>
<td>139</td>
<td>4</td>
<td>282</td>
<td>1001.05</td>
</tr>
<tr>
<td>245</td>
<td>244</td>
<td>13</td>
<td>502</td>
<td>10036.4</td>
</tr>
</tbody>
</table>

6.31 M\(\Omega \) \(\rightarrow \) 10.0 G\(\Omega \)

Note: 502 elements required for 10 G\(\Omega \), rather than \(7.75 \times 10^5 \) elements if devices are in series.
Future Outlook

- Use p-n junctions as a foundation for programmable quantized Hall resistance (PQHR) systems

$$q_{N-1}(n_{N-1}) = \frac{q_{N-2}(n_{N-1} + 1)}{n_{N-1} + \frac{q_{N-2}(0)}{q_{N-1}}}$$

- AC QHR exploration

- Simplifying the calibration chain
- Topological insulators with anomalous QHE

- *Is it time for guidelines for graphene resistance standards?*

Rigosi et al. Physica B, 582, 411971 (2020)
Acknowledgements

Thank you to all research participants:

- National Institute of Standards and Technology
- National Taiwan University
- Istituto Nazionale di Ricerca Metrologica
- Politecnico di Torino
- Physikalisch-Technische Bundesanstalt
- Joint Quantum Institute, University of Maryland
- Graphene Waves, LLC

Thank you for your attention!