Update on NIST Graphene Research

Gerald J. FitzPatrick, Chief

Quantum Measurement Division Physical Measurement Laboratory

National Institute of Standards and Technology U.S. Department of Commerce

Graphene – Successor to GaAs

- Many present-day ohm standards are GaAs-based devices
- Less user-friendly than graphene
 - Limited current before breakdown (77 μA) Important for equipment compatibility
 - Higher magnetic field requirement (> 8 T)
 - Some electrical properties not predictable while on shelf
 - Lower temperature requirement (He-3 needs)
- Epitaxial graphene (EG) is more user friendly
 - Stable in air (after functionalization)
 - Goes beyond one value of resistance (via superconducting contacts and/or *p-n* junctions)

Graphene QHR Standard

Graphene QHR

- Millimeter-sized devices
- II. Currents up to and beyond 1 mA
- III. Compatible with commercial, room-temperature current comparator bridges
- IV. Single QHR devices used in calibrations for at least 6 years
- V. Going beyond single element
 - A. Proof-of-concept of p-n junctions
 - B. Using <u>superconducting contacts for arrays</u>

Use of Improved Contacts

- I. Two major improvements to electrical contacting
 - A. Use of NbTiN, with superconducting transition near 12.5 K
 - B. Use of multiple-series contacting (see (c) below)
- II. Advances allow many single Hall elements to be connected outputs new values of quantized resistances ("QHARS" devices)
- III. Reduction of contact resistances from about 1 Ω down 3-4 orders of magnitude

NIST QHARS Devices at $1 k\Omega$

- 13 parallel devices yields 992.8 Ω
- II. This resistance value is more versatile and compatible with bridges

Graphene Arrays for Kibble Balances

- Kibble balance mass determination with 992.8 Ω array
- II. Strong agreement between quantum standard and artifact resistors
- III. Deviation in mass value between QHARS devices and traditional resistors is:
 - A. $(-21.5 \pm 12.8) \times 10^{-9}$ for 100 g mass

B.
$$(-2.6 \pm 20) \times 10^{-9}$$
 for 50 g mass

Wye-Delta Transformation

- I. Using Wye-Delta Transformations for Higher Quantized Resistances
 - A. Grounded terminal is always one QHR element
 - B. Math transformation drastically reduces number of required elements for resistances > $1 M\Omega$

 $1.01~\text{M}\Omega \rightarrow 20.6~\text{M}\Omega$

Star-Mesh Transformations

- Using Star-Mesh Transformations for Higher Quantized Resistances
 - Formula suggests that even higher resistances accessible

APPLICABLE STAR-MESH TRANSFORMATIONS FOR FUTURE QHARS DEVICES				
R_i	Ri (1	$R_k - R_n$	Total	$R\left(M\Omega\right)$
(elements)	(elements)	(single- elements in	(elements)	
		parallel)		
50	50	3	103	98.0887
44	44	4	92	101.083
44	43	6	93	99.9407
139	139	4	282	1 001.05
245	244	13	502	10 036.4

 $6.31 \text{ M}\Omega \rightarrow 10.0 \text{ G}\Omega$

<u>Note</u>: 502 elements required for 10 G Ω , rather than 7.75 × 10⁵ elements if devices are in series

V. Conclusions

Future Outlook

• Use *p-n* junctions as a foundation for programmable quantized Hall resistance (PQHR) systems

E.J. Fox *et al.* "Part-per-million quantization and currentinduced breakdown of the quantum anomalous Hall effect" Phys. Rev. B **98**, 075145 (2018).

$$q_{N-1}(n_{N-1}) = \frac{q_{N-2}(n_{N-1}+1)}{n_{N-1} + \frac{q_{N-2}}{q_{N-1}^{(0)}}}$$

AC QHR exploration

Rigosi *et al.* Physica B, 582, 411971 (2020)

- Simplifying the calibration chain
- Topological insulators with anomalous QHE
- Is it time for guidelines for graphene resistance standards?

Acknowledgements

Thank you to all research participants:

National Institute of Standards and Technology National Taiwan University Istituto Nazionale di Ricerca Metrologica Politechnico di Torino Physikalisch-Technische Bundesanstalt Joint Quantum Institute, University of Maryland Graphene Waves, LLC

National Institute of Standards and Technology U.S. Department of Commerce

POLITECNICO DI TORINO

Thank you for your attention!