

Analytical Characterization of LNP-RNA Nanovaccines

Luigi Calzolai, Joint Research Centre of the European Commission

The views expressed are those of the presenter and should not be construed to represent European Commission views or policies

CCQM Workshop on Particle Metrology, 26th October 2022

LNP-mRNA nanovaccines for COVID-19 *Pfizer/BionTech, Moderna*

LNP-mRNA Nanovaccines vs. Nanomedicines

- There are strong similarities, but also key differences
- Main point: nanovaccines are given *intra muscular* (im), nanomedicines are *intra venous* (iv) administration.
- Messenger RNA much more complex biological molecule than small drugs usually delivered by nanomedicines.

Pre-Clinical Characterization of Nanovaccines

Giuditta Guerrini $0^{1,3}$, Davide Magrì $0^{1,3}$, Sabrina Gioria 0^{1} , Donata Medaglini² and Luigi Calzolai 0^{1}

Key Physicochemical Properties of LNP-mRNA Nanovaccines

Composition: mRNA modifications

Park, Jung Woo, et al. "mRNA vaccines for COVID-19: what, why and how." *International journal of biological sciences* 17.6 (2021): 1446.

Composition Issues

- mRNA quantification and integrity
- 5' capping and 3' polyA-tail
- Purity of the mRNA
- Proportion of mRNA that is encapsulated (i.e. free/bound cargo)
- Lipid-related impurities
- Lipid-RNA adducts
- Actual structure and morphology of soft LNP-mRNA

Analytical Challenges

- Which analytical measurement available to measure each key property?
- Analytical capabilities for mRNA measurements somehow less
 advanced
- When to use orthogonal measurements?
- How to measure internal structures of these soft particles with techniques working in vacuum? (ex. TOF-SIMS, XPS)
- No reference materials and/or documentary standards available

Lipid-RNA adducts in LNP-mRNA systems

Packer, Meredith, et al. "A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems." *Nature communications* 12.1 (2021): 1-11.

Impurities formed through lipid:mRNA reactions:

Oxidation of the ionizable cationic lipid leads to the formation of covalent lipid-mRNA adducts. These lipid-mRNA species cannot be transcribed into protein

How they were identified:

- Reversed phase—ion pair HPLC (RP-IP HPLC)
- Can't be detected using capillary electrophoresis, which is normally used to measure mRNA integrity

Lipid-RNA adducts in LNP-mRNA systems

Packer, Meredith, et al. "A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems." *Nature communications* 12.1 (2021): 1-11.

Reversed phase-ion pair HPLC: 2 peaks

Capillary electrophoresis: single peak

In-vitro Potency of LNP-mRNA

- Depends on uptake of the LNP-mRNA by cells and the expression of the encoded antigen.
- It is a good surrogate end-point of the quality (and efficacy) of the formulation without use of animals.

How to Standardize Potency Measures

- Which LNP-mRNA. Reference material?
- Which cell line?
- Which read out measurement?
- How to ensure traceability?

The rapid expansion of RNA therapeutics

- The success of LNP-mRNA vaccines is leading to rapid expansion of RNA therapeutics in modern research and clinical development
- Infectious diseases and cancer show the largest growth and the greatest number of therapeutics in research phases

• They will face similar issues for their accurate characterization

	Preclinical	Active	Completed
Respiratory Disease	58%	33%	8%
Autoimmune Disease	50%	33%	17%
Blood Disease	50%	31%	13%
Liver Disease	46%	38%	8%
Infectious Disease	43%	25%	29%
Neurological and Neuromuscular	38%	38%	5%
Metabolic Disease	33%	2.4%	24%
Other*	33%	0%	67%
Wound healing	33%	O%	67%
Cardiovascular Disease	28%	34%	31%
Cancer	26%	48%	23%
Eye Disease	20%	35%	35%
Kidney Disease	14%	36%	36%
Transplantation	0%	0%	100%

https://www.cas.org/resources/cas-insights/biotechnology/rnatherapeutics-revolution

Conclusions

- Following the success of mRNA vaccines, LNP-RNA therapeutics are rapidly expanding in several therapeutic areas
- Analytical methods are needed to accurately measure key properties of these challenging LNP-RNA therapeutics
- Reference materials and documentary standard are needed to ensure the required confidence in the measurements

Thank you