

Physicochemical Characterization of Nanomedicines: Characterization Considerations and Challenges

Jeffrey D. Clogston, PhD

Principal Scientist, PCC Section Head

ncl@mail.nih.gov

https://ncl.cancer.gov

Nanotechnology Characterization Lab (NCL)

NCL was established in 2004 as a collaboration among the NCI, NIST and FDA, with 4 primary objectives:

Characterize nanoparticles using standardized methods

Conduct structure activity relationship (SAR) studies

Facilitate regulatory review of nanotech constructs

Method

and SOPs

Engage in educational and knowledge sharing efforts

Assay Cascade is a free service

NCL has 15+ years of knowledge and expertise in nanoparticle characterization and utilizes this to help accelerate the translation of promising nanotech drugs and diagnostics.

Visit https://ncl.cancer.gov/

NCL Assay Cascade – 70+ Standardized Protocols for Nanotech

time, temperature, pH, etc.

Sterility

- · Bacterial/Viral/Mycoplasma
- Endotoxin

Cell Uptake/Distribution

- · Cell Binding/Internalization
- Targeting

Hematology

- Hemolysis
- · Platelet Aggregation
- Coagulation
- Complement Activation
- · Plasma Protein Binding

Immune Cell Function

- Cytokine Induction
- Chemotaxis
- Phagocytosis
- Leukocyte Proliferation
- Leukocyte Procoagulant Activity

Toxicity

- Cytotoxicity
- Autophagy

Pharmacology

- · Clinical Tx cycle
- · NP Quantitation methods
- PK Parameters

Immunotoxicity

- Local lymph node proliferation assay
- T-cell dependent antibody response
- Adjuvanticity
- · Rabbit pyrogen test

Single and Repeat Dose Toxicity

- Blood Chemistry
- Hematology
- Histopathology (42 tissues)
- Gross Pathology
- Immunogenicity

Efficacy

- · Therapeutic
- Imaging

NCL testing links physicochemical properties to biological outcomes.

70+ protocols available online: https://www.cancer.gov/nano/research/ncl/protocols-capabilities

NCL Supports:

- Preclinical Characterization
- Regulatory Concerns
- Clinical Characterization
- Exploring Alternate Indications
- Next-Generation Nanoparticles

17 Collaborators in clinical trials with novel nanomedicine therapies.

Visit https://ncl.cancer.gov/

Physicochemical characterization boils down to analytical instrumentation and development of new methods

- Dynamic Light Scattering (DLS)
- Static Light Scattering (MALS)
- Laser Diffraction
- Electron Microscopy (TEM, SEM, cryo-TEM, EDS)
- Atomic Force Microscopy (AFM)
- Resistive Pulse Sensing (RPS)
- Zeta Potential

- Chromatography (RP-HPLC, SEC, AF4, FPLC)
- Liquid chromatography–mass spectrometry (LC-MS)
- Gas chromatography–mass spectrometry (GC-MS)
- Inductively coupled plasma-mass spectrometry (ICP-MS)
- CHNOS Elemental Analysis
- Spectroscopy (UV-Vis, Fluorescence, IR, Raman)
- Thermal Analysis (TGA, DSC)
- Quartz Crystal Microbalance with Dissipation monitoring (QCM-D)

Leveraging over 16 years of experience, NCL has identified critical quality attributes (CQAs) and methodology needed to support the most common nanoparticle platforms used.

- Liposomal Products
- Polymeric Nanoparticles
- Colloidal Metal Nanoparticles

Capabilities & Instrumentation: https://www.cancer.gov/nano/research/ncl/protocols-capabilities

Parameters, Methods & Considerations for the Physicochemical Characterization of Liposomal Products

- Critical quality attributes (CQAs) are known and defined for the nanoformulation
- The methodology to measure these CQAs are developed and optimized
- The associated analytical techniques and instrumentation are available and validated
- Reference standards are also available

Drug Loading Quantification of Prodrugs

Nanotechnology Characterization Laboratory

- Drug loading is one of the most important critical quality attributes (CQAs) of prodrugs.
- Quantification of chemically conjugated drugs in polymeric prodrugs is difficult.
 - Development of novel orthogonal method

Polymer with Conjugated Drug

- Drug absorbs at a unique wavelength but UV-Vis detection not sensitive enough
- Wavelength shift observed for conjugated drug
- Chemical method needed

Hydrolysis Method

1) 20 μL sample (in 50 %(v/v) ACN) + 20 μL 1 M NaOH.

2) Incubate overnight at room temperature.

3) Add 20 μL 1 M HCl to neutralize.

followed by RP-HPLC separation

4) Assayed by RP-HPLC with UV detection

Elemental analyzer – the application of combustion analysis

- Determine the elemental composition by combusting the sample under certain conditions
- Only elements of carbon (C), hydrogen (H), nitrogen (N), and sulfur (S) as combustion of materials are used to convert to their oxidized form (CO₂, H₂O, NO or NO₂, and SO₂) under high temperature high oxygen conditions

Drug Loading Quantification of Prodrugs

	O NH2 O N OH	HN FO OH OH S	<u>Sample</u> Poly L-lysine succinylated Lamivudine PLS-LAM	<u>%S</u> 0.46 14.17 1.37	<u>%N</u> 12.17 18.44 12.58
Poly L-lysine succinylated (PLS)	Lamivudine (LAM)	PLS-LAM	$\%WT_{LAM} = \frac{\%S_{prodrug} - \%S_{PLS}}{\%S_{LAM} - \%S_{PLS}} \times 100\%$ $\%WT_{LAM} = 6.6 \pm 0.4\%$	%WT _{LAM} = % W T	$\frac{\%N_{\text{prodrug}} - \%N_{\text{PLS}}}{\%N_{\text{LAM}} - \%N_{\text{PLS}}} \times 100\%$ $T_{LAM} = 7.0 \pm 0.9\%$

Orthogonal methods comparison

Prodrug	CHN <mark>S</mark> elemental analysis	CH <mark>N</mark> elemental analysis	Hydrolysis & RP-HPLC	SEC-MALS
PLS-LAM	6.6 ± 0.4%	7.0 ± 0.9%	6.7 ± 0.1% 7.4 ± 0.1%	5.7 ± 3.8%

Advantages

- ✓ Robust: no method development required
- ✓ Fast: approximately 5 min/sample in CHN mode; 7 min/sample in CHNS mode
- ✓ ~2 mg sample (powder) needed
- Accurate: sample-to-sample consistency, validated by other methods

Drug Stability by AF4-DLS-HPLC

-

Hu Y, Crist RM, Clogston JD. Anal Bioanal Chem. 2020 Jan;412(2):425-438.

Skoczen SL, Stern ST. Methods in Molecular Biology. Vol. 1628, 2018, Humana Press, New York, NY. p. 223-239.

Aim: Develop an AF4 method to examine the heterogeneity related to the density and composition of LNPs (Lipid Nanoparticles) for mRNA Delivery

11

Aim: Assess protein binding using AF4

Collected fractions also analyzed for zeta potential and particles per mL concentration

Zet	a Potential	ZP (mV)			
AF4 fraction (n=2)		-2.6			
	Total recovered particles: 6.86E+10 Total injected particles: 6.34E+10				

Particle Recovery% = 108 ± 3%

Run #	Diameter (nm)	Attenuation level (%)	Laser Power (%)	Particle concentration (1/mL)	Particle concentration * fraction volume
-1	98.9	75	93	2.78E+09	7.05E+10
-2	97.8	67	87	2.71E+09	6.88E+10
-3	98.3	67	87	2.62E+09	6.64E+10
Average	98.3			2.70E+09	6.86E+10
SD	0.6			8.04E+07	2.04E+09

PCC Challenges

The analytical techniques described are *ensemble* methods, that is methods which measure the average or bulk properties.

- For example, dynamic light scattering gives the overall size of the sample but not how many nanoparticles are of a certain size.
- Total drug loading determination gives the overall drug concentration.
 It does not measure, however, how the drug is distributed over the size range.
- For drug loaded liposomes, these techniques cannot measure how many liposomes have drug and how many are empty.

• Moreover, if they are loaded with drug, what is the extent of drug loading.

- To answer these questions, more advanced analytical techniques/methods are needed.
- Moreover, as the field advances, so does the complexity of the nanoformulations.

> Analytical methods based on a per particle basis are required.

PCC Challenges: Assessing Particle Concentration

1e+11 -9e+10 8e+10 Wyatt DynaPro, Malvern Ultra 7e+10 Based on light scattering 6e+10 5e+10 4e+10 g 3e+10 2e+10 1e+10 0.1 Size (d.nm Spectradyne nCS1, Izon qNano Based on resistive pulse sensing; Combined CSD 25c.: 4.72E+11 mL lower limit of ~50 nm +/- (1.45E+09, 1.45E+09) ml 2.5 ean: 89.4 nm 17.5 % 106108 2.0 AveZeta 1.5 Concentra rticles·mL 0.1 PerkinElmer NexION 2000 ICP-MS -25 Based on single-particle ICP-MS; 0.5 metal-containing NPs only 0.0 100 150 200 250 50 200 100 150 Diameter (nm) Size

> Need for reference materials for particle concentration

PCC Challenges: Assessing New Technologies

Questions to be answered:

- 1. What is the resolving power in terms of a mixture of different size populations?
- 2. Can the technology measure the relative ratios of non-drug loaded and drug-loaded liposomes?
- 3. Can the technology measure the amount of drugs loaded in the liposomes and the load distribution?
- 4. Can the technology measure the amount of free drug?
- 5. Can the technology measure the release of drug in plasma?

Imperial College London has developed a technology named *single particle automated Raman trapping analysis* (SPARTA), which is a comprehensive nanoparticle analysis platform *based on Raman spectroscopy* providing *simultaneous size, composition and functionalization analysis* as well as allowing monitoring of dynamic reactions occurring at the surface of individual particles.

The technology enables fast, high throughput, routine analysis of individual nanoparticles in solution *without any need for particle labelling or modification*.

Figure: Nature Communications, 2018, 9, 4256. https://www.imperial.tech/available-technologies/sparta/

Spectradyne's Arc particle analyzer uses microfluidic technology combined with fluorescent imaging to detect the fluorescent signal and measure the *size* of each particle in your formulation. This unique combination yields *phenotyping* and electrically-based particle sizing of each particle as it passes through a nanoconstriction, so that you know the particle type as well as *size* plus *concentration* information.

https://nanoparticleanalyzer.com/products_arc.php?orig_page=index.php

Acknowledging the NCL Team

Edward Cedrone

Rachael Crist

Marina Dobrovolskaia

Emma Grabarnik

Matthew Hansen

Krishna Kattel

Ruvanthi Kularatne

Barry Neun

Hannah Newton

Timothy Potter

Sarah Skoczen

Kelsie Snapp

Stephan Stern

Alison Vermilya

Teagan Ware

Jie Xu

Contact Information

