

Calibration procedures and challenges in the automotive field

CCQM Workshop on Particle Metrology

B. Giechaskiel, A. Melas Webex 26/09/2022

> Joint Research Centre

Overview

- Introduction
- PMP (Particle Measurement Programme) and UNECE
- Regulations
- LABS (Laboratory systems)
- PEMS (Portable Emission Measurement Systems)
- PTI (Periodic technical inspection)
- Outlook

United Nations Economic Commission for Europe (UNECE)

GTR: Global Technical Regulations: Contracting parties have to apply their procedures and limits

UNR: United Nations Regulations: Mutual recognition between Contracting Parties

EU: EU Regulations apply across EU

PMP history

The Particle Measurement Program (**PMP**) group was launched in 2001, and since then, it has evolved into an international group.

2001-2003: Assessment of sampling systems and measurement techniques. Definition of particle number methodology (solids >23 nm)

2004-2006 (light-duty), 2007-2009 (heavy-duty) inter-lab exercises

2010-2011: Regulation refinements

2013-today: Extension to lower particle size (>10 nm), other technologies and non-exhaust emissions

Regulations

Light-duty

Heavy-duty

Location	GTR	UNR	EU	SPN23 (#/km)	PM (mg/km)
LABS23	15	83 or 154	2017/1151	6×1011	4.5
PEMS ₂₃	_ 1	_ 2	2017/1151	CF=1.5 3	-

¹ informal document; ² working document; ³ to be reduced to 1.34.

Location	GTR	UNR	EU	SPN23 (#/kWh)F	PM (mg/kWh)
LABS23	4 (no PN)	49	582/2011	6×10 ^{11 1}	10
PEMS ₂₃	-	-	582/2011	CF=1.63	-

 1 8×10¹¹ #/kWh for the steady cycle (only diesel).

	Location	GTR	UNR	EU	SPN23 (#/kWh)	PM (mg/kWh)
NRMM	LABS23	11 (no PN)	96	2017/654	1×1012	15
	PEMS ₂₃	-	-	2016/1628	-	-
(non-road mobile						
5 machinery						European Commission

Worldwide regulations

Table 7. Summary of regulations including particle number limits. The table gives the first emission stage including a particle number limit. In brackets the relative technology and the

Country	System	Light-duty	Heavy-duty	NRMM
Korea	LABS23	Euro 6 (D, 2014)	Euro VI (D, 2015)	no
Singapore	LABS23	Euro 6 (D, GDI 2018)	Euro VI (all, 2018)	no
India	LABS23	BS VI (D, GDI, 2020)	BS VI (all, 2020) ¹	BS V (2024)
	PEMS23	CF=tbd (2023)	CF=tbd (2023)	
China	LABS23	CN5 (D, 2016) ²		
	LABS23	CN 6a (all, 2020)	CN VIa (all, 2019)	Stage IV (2023) ¹
	PEMS23	CN 6b (CF=2.1, 2023)	CN VIb (CF=2.0, 2021)	CF=2.5 (not PN)

¹ 2025 for positive ignition; ² earlier in Beijing (2013) and Shanghai (2014); limit 5×10¹² p/kWh. BS=Bharat stage; CN=China; D=diesel; GDI=gasoline direct injection; NRMM=non-road mobile machinery

Sampling possibilities

LABS=Laboratory system

Full dilution tunnel with constant volume sampling (**CVS**)

Proportional partial flow dilution system (**PFDS**) for heavy duty

Direct tailpipe sampling with optional pre-diluter (heavy-duty resolution)

PEMS=Portable emissions measurement system

PTI=Periodic technical inspection

LABS

Main calibration requirements

VRE=volatile removal efficiency

Technical specifications of laboratory systems

Black font: Current 23nm

Green font: Improvements

Blue italics font in dotted square: Future 10nm

Red: Heated Dashed lines: optional parts

PCRF=particle concertation reduction factor

Calibration of LABS (PNC+VPR)

Electrometer

Figure 1. Example of an experimental setup for the calibration of a PNC.

Figure 10. Example of the experimental setup for the calibration of a VPR a) upstream b) downstream measurement.

PNCmon

PNC_{Ref}

Portable Emission Measur. System (PEMS)

PEMS was not developed by PMP group, but from EU light-duty RDE group.

Only a few requirements:

- Heated section at 300°C
- Linearity
- Monodisperse efficiency
- Volatile removal efficiency

PEMS technical requirements

Linearity: slope ±15% (and differences within 15%)

Volatile removal efficiency >1 mg/m³ tetracontane

Strict monodisperse efficiencies

Measurement parameter/instrument	$ x_{min} \times (a_1 - 1) + a_0 $	Slope a1	Standard error of the estimate SEE	Coefficient of determination r^2
PN analysers ¹⁴	\leq 5 % x _{max}	0.85 - 1.15 ¹⁵	≤ 10 % of x_{max}	≥ 0.950

¹⁴ The linearity check shall be verified with soot-like particles, as these are defined in paragraph 6.2. of this annex.

¹⁵ To be updated based on error propagation and traceability charts.

Table 3. Efficiencies of particle number portable emissions measurement systems PEMS.

System	10 nm	15 nm	23 nm	30 nm	50 nm	70 nm	100 nm	200 nm
PEMS ₂₃			0.20 - 0.60	0.30 - 1.20	0.60 – 1.30	0.70 – 1.30	0.70 - 1.30	0.50 - 2.00
PEMS ₁₀	0.10 - 0.50	0.30 - 0.70		0.75 - 1.05	0.85 - 1.15	0.85 - 1.15	0.80 - 1.20	0.80 - 2.00

Calibration of PEMS (efficiency, linearity)

CPR REF or Electrometer

Linearity challenge mainly for DC based systems: how to reach 10⁸ #/cm³ (reference instrument, coagulation)

Figure 4.1: Example of setup for polydisperse linearity check.

Periodical Technical Inspection (PTI)

The PN PTI instrument should be comprised of a sampling probe, a sampling line (optional), a device/technique to avoid water condensation, a pre conditioning unit for removing volatiles (optional), and a particle detector

With dash lines the optional parts

PTI calibration setups

• <u>Type examination of a PN-PTI instrument (NMI)</u>: thermally stable soot-like particles: efficiency and linearity (and other controls)

• <u>Verification</u> (only linearity) (manufacturer or authorised centres): any but with a correlation factor with soot-like particles. Also the reference system efficiency should be correlated to soot-like

Outlook

Brakes: In addition to the mass (filter method), methodology for TOTAL (or SOLID) particles. Material: soot-like, emery oil, and silver. Emphasis should also be given to micrometer range.

Calibration improvements: Either "Simple" improvements in the calibration procedures or more complicated more common requirements and efficiencies between LABS and PEMS

• Uncertainty of systems calibrated in parts vs complete system

Daily checks: High response check not available

Outlook

Removal of volatiles

- <u>Evaporation tubes:</u> Volatile artefacts mainly <23 nm noted. Risk for PTI
- <u>Catalytic stripper:</u> oxidation efficiency check (e.g., with a gas like propane) or degradation over time. Is there any other material more suitable (e.g. SO₂)?

Linearity

- <u>Monodisperse</u>: CPCs can go up to 10⁵ #/cm³ in single counting mode. Can DMAs / neutralizers handle the respective inlet concentrations?
- Polydisperse: Linearity at 10⁸ #/cm³ concentrations. Is the 15% limit for
 PEMS feasible?

Outlook

Materials

- PNC: emery oil or soot-like
- VRP: thermally stable
- PEMS: soot like
- PTI: soot-like but any at verification (mainly salt) with correlation to soot

<u>Concentration</u>: Can soot-like 10 nm particles be produced at high enough concentrations for calibrations?

<u>Uncertainty budget</u>: Soot-like (and other) materials can have high multiply charged particles fraction. Is this correctly taken into account?

Traceability: Is the selected material(s) creating traceability issues?

Thank you for your attention!

Contact info: <u>barouch.giechaskiel@ec.europa.eu</u>

Terminology

The term "particle" is used for the matter being characterized (measured) in the airborne phase (suspended matter), and the term "particulate" for the deposited matter. In <u>regulations</u> particle number (PN) emissions mean the total number of solid particles emitted from the vehicle exhaust quantified according to the dilution, sampling and measurement methods as specified in the regulation.

Current particle methodology (laboratory): Sampling from the dilution tunnel. Hot dilution of 150°C, evaporation tube at 350°C, counting of particles >23 nm

Typically the abbreviation **PN** (particle number) is used, but recently **SPN** (solid particle number) has been introduced.

Principles of measurement Optics Aerosol inlet Volatile particle remover (VPR) to PNC Condenser Saturator Diluter **Evaporation tube** Diluter (20°C) Volatile particles (38°C) (350°C) (150°C) (25°C) Working fluid reservoir Volatile species **Catalytic stripper** Diluter Diluter Unipolar corona Faraday (in gas phase) Filter (150°C) (350°C) or (25°C) lon trap charger cage ++++ Electrometer <-Soot particles lons Condensed species Processes, 2021 accepted

Table 1. Comparison of original LABS₂₃, improved LABS₂₃ and new (improved) LABS₁₀ technical specifications and calibration requirements. Dashed line separate the calibration requirements. In green improvements compared to the original regulation. In blue and italics specifications for the LABS₁₀ system.

Part	LABS23 original	LABS23 improved	LABS10 (improved)
	optional	optional	optional
Sampling line	$RT \le 3 s$	$RT \le 3 s$	$RT \le 3 s$
	$\text{Re} \le 1700$	$\text{Re} \le 1700$	Re ≤ 1700
	PND1 (DF \ge 10:1)	PND1 (DF \ge 10:1)	PND1 (DF \ge 10:1)
	$150 \le T \le 400 \ (\pm 10) \ ^{\circ}C$	$150 \le T \le 400 \ (\pm 10) \ ^{\circ}C$	$150 \le T \le 400 \ (\pm 10) \ ^{\circ}C$
	300 – 400 °C (recommended)	350 °C (recommended)	350 °C (recommended)
	No CS	May be CS	With CS (recommended)
	T _{in,PNC} < 35°C	Tin,PNC < PNC specs	Tin,PNC < PNC specs
	$P_{100} \geq 70\%$	$P_{100} \geq 70\%$	$P_{100} \geq 70\%$
	(each instrument)	(once for family)	(once for family)
Volatile Particle	PCRF50 / PCRF100 ≤ 1.2	PCRF50 / PCRF100 ≤ 1.2	PCRF ₅₀ / PCRF ₁₀₀ ≤ 1.2
Remover (VPR)	PCRF ₃₀ / PCRF ₁₀₀ ≤ 1.3	PCRF ₃₀ / PCRF ₁₀₀ ≤ 1.3	$PCRF_{30} / PCRF_{100} \le 1.3$
	-	-	PCRF ₁₅ / PCRF ₁₀₀ \leq 2.0
	$VRE_{C40,30nm,\geq 10^4 \ \#/cm^3} > 99.0\%$	$VRE_{C40,30nm,10^4 \ #/cm^3} > 99.0\%$	VREC40,≥50nm,1 mg/m ³ > 99.9%
	VRE yearly	VRE according to manuf.	VRE according to manuf.
	Thermally stable material	Thermally stable material	Thermally stable material
	Calibration 12 months	Calibration 13 months	Calibration 13 months
	PCRF validation 30, 50, 100 nm	PCRF validation 30, 50, 100 nm	PCRF validation 30, 50, 100 nm:
	or polydisperse (50 nm): ±10%	or polydisperse (50 nm): ±10%	±10% "

Table 1. Comparison of original LABS23, improved LABS23 and new (improved) LABS10 technical specifications and calibration requirements. Dashed line separate the calibration requirements. In green improvements compared to the original regulation. In blue and italics specifications for the LABS10 system.

Part	LABS23 original	LABS23 improved	LABS10 (improved)	
	t90 < 5 s	t90 < 5 s	t90 < 5 s	
	Single counting mode	Single counting mode	Single counting mode	
	Flow ±5% nominal	Flow ±5% last certificate	Flow ±5% last certificate	
	Any material	Soot or PAO	Soot or PAO	
	$0.9 < k_{slope} < 1.1, R^2 > 0.97$	0.9 < slope < 1.1, R ² > 0.97	0.9 < slope < 1.1, R ² > 0.97	
Particle Number	Linearity ±10%	Linearity ±5% from slope	Linearity ±5% from slope	
Counter (PNC)	CE23 = 50% (±12%)	CE23 = 50% (±12%)	$CE_{10} = 65\% (\pm 15\%)$	
	CE41 > 90%	CE41 > 90%	CE15 > 90%	
	kslope may be included in CE	kslope included in CE	kslope included in CE	
	Coincidence correction <10%	Any internal correction	Any internal correction	
	6 mo monitor or wick exchange	6 mo monitor or wick exchange	6 mo monitor or wick exchange	
	or ±10% of PNC _{Ref} or ≥ 2 PNCs	or ±10% of PNC _{Ref} or ≥ 2 PNCs	or $\pm 10\%$ of PNC _{Ref} or ≥ 2 PNCs	
	Certificate 12 months	Certificate 13 months	Certificate 13 months	
	PCRFave of 30, 50, 100 nm	PCRFave of 30, 50, 100 nm	PCRFave of 30, 50, 100 nm	
Combined	Total RT ≤ 20 s	Total RT \leq 20 s	Total RT ≤ 20 s	
	Ambient air: > 100 #/cm³	No error	No error	

CE = counting efficiency; CS = catalytic stripper; DF = dilution factor; ET = evaporation tube; P = penetration; PCRF = particle number concentration reduction factor; PNC = particle number counter; RT = residence time; T = temperature; VRE = volatile removal efficiency; VPR = volatile particle remover.

1

Pre-diluter

Proposal for heavy-duty engines type approval: Sampling directly from the tailpipe with fixed dilution, optionally adding a pre-diluter.

 Table 2. Draft technical specifications of the pre-diluter.

Specification	Description
Levelier	A cold or hot pre-diluter may be located at the end of the particle sampling probe and in front of the
Location	particle transfer tube (PTT). ¹
D'1 (A fixed dilution ration >5:1 shall be applied to the cold or hot dilution stage. Cold dilution is defined
Dilution	as a dilution with (unheated) dilution air and/or diluter temperature $\geq 20 ^{\circ}\text{C}$ 10%
Demotration	The complete system (pre-diluter, PTT, and VPR) penetration shall not decrease more than 2% the
Penetration	penetration requirements specified for the VPR. 0% 10%
DCDE	The complete system (pre-diluter, PTT, and VPR) PCRFs shall not exceed 🗙% for 50 nm, 🗙% for 30
PCRF	nm, and 💥% for 15 nm (if applicable) the PCRF requirements specified for the VPR.
	25%

¹ The residence time until the pre-diluter shall be ≤ 1 s. The tubing shall be heated at ≥ 150 °C if >10 cm, or insulated if ≤ 10 cm.

In green final agreed values in last PMP meeting

