Optical Clocks at 10⁻¹⁸ accuracy: challenges and applications

CGPM 2022, Versailles, November 17, 2022

An Adage !

Never measure anything but frequency !

Arthur Schawlow advice to his students at Stanford

1981 Nobel prize laureate

Clock concept

Find a periodic phenomenon

1) Nature:

observation: Earth rotation, pulsars,...

2) Human realization: example Galileo pendulum

simple phenomenon described by a small number of parameters

 $T = 2\pi \sqrt{l/g}$

Counting oscillations ! The shorter the period, the better is the precision of

a time interval measurement

3) Optical clocks use electromagnetic signals oscillating with 10¹⁵ cycles per second.

The physical signal is locked onto an atomic transtion

Atomic Clock

Oscillator

The oscillator of frequency v is locked to the frequency v_A of a transition between two energy levels in an atom

Current definition of the second: Cesium atomic fountain

Comparison between two fountains Paris Observatory

Accuracy: agreement between the cesium frequencies: 2 10-16

Fountains and Temps Atomique International

 ~ 12 fountains in the world are compared by GPS and optical fibers.
Steer TAI computed by BIPM with an accuracy of 2 10⁻¹⁶

LNE-SYRTE, FR

PTB, D

NIST, USA INRIM, IT

Clock Figure of Merit

- Frequency: v
- Resonance width and interaction time T $\Delta\nu{=}1/2T$
- Signal to Noise ratio: $S/N \sim N_{at}^{1/2}$

$$\mathcal{F} = v / \Delta v \ge S/N = 2 v \top S/N$$

Microwave cesium fountain: $\mathcal{F} = 2 \cdot 10^{10} \ge 0.5 \ge 5000 = 5 \cdot 10^{13}$
Optical clocks: $\mathcal{F} = 2 \cdot 5 \cdot 10^{14} \ge 1 \cdot 100 = 5 \cdot 10^{17}$

Trapped ion

Al⁺, Yb⁺,Hg⁺, Ca⁺, Lu⁺,.....

Neutral atoms Sr, Yb, Hg, Ca, Cd

NIST, PTB, NPL, SYRTE, NPL, RIKEN, NICT, Innsbruck, Seoul, Singapore,....

Optical Clocks surpass cesium clocks by two orders of magnitude

⁸⁷Strontium Optical Clocks

Non-perturbing lattice trap at magic wavelength: light shift of the clock transition vanishes

Frequency Stability of Optical Atomic Clocks

Graph from C. Oates, NIST, Oct '19

JILA ⁸⁷Sr OLC: measuring the differential gravitational shift over 1 mm sample

Two trap areas on same image: laser noise is common mode Differential sensibility: 4.4 10⁻¹⁸ @1s et 1 10⁻¹⁹ @2000 s

Testing the Einstein effect with transportable optical clocks

Tokyo skytree 450 m radio tower

Katori et al., 2020

Testing the Einstein effect with transportable optical clocks

Quantum metrology: towards Heisenberg limit

The signal to noise ratio in fountains and OL clocks is at the quantum projection noise: Uncorretaled atoms: frequency instability scales as $1/N^{1/2}$

N two-level atoms: spin $\frac{1}{2}$ ensemble forming a collective spin |J| = N/2

$$\Delta J_z. \Delta J_y \ge \left| J_x / 2 \right|$$

Spin squeezing: reduce variance in one direction, useful for measurement sensitivity Kitagawa et Ueda, 1993, Wineland et al. 1994, approach 1/N

Quantum metrology

Rotation of 660 µrad

Gain in signal to noise : factor 10 for 5 10⁵ atoms Phase sensitivity: 147 microradians per cycle This implies that at least 680 particles are entangled

20 dB noise reduction on variance Towards an optical clock with correlated atoms

The current challenge: increase interaction time beyond 228 μs while preserving quantum correlations

Entanglement-Enhanced ¹⁷¹ Yb Optical Atomic Clock Nature, 588, 414 (2020) a b Excited fraction Excited fraction 01 0 0.2 -10 0 0.1 0.3 10 Frequency offset (kHz) Time (ms) С S, 10 α Normalized variance 0.1 1 10 100 a (deg)

Vuletic, MIT Metrological gain:4.4 dB

Perspectives 1

Optical clocks surpass microwave clocks by two orders of magnitude. They have daily fluctuations ~ 0.1 - 1 picosecond. New definition of the second is required.

- 3 options:
- One atomic species
- A combination of atomic transitions

See J. Lodewyck, Metrologia 56, 055009 (2019)

- Fixing another fundamental constant such as electron mass

See presentation of draft resolution E by N. Dimarcq

Perspectives 2

1) Optical fiber links and frequency combs enable *continental* optical clock comparisons at adequate level. Satellite missions like ACES will enable in 2025 *intercontinental* clock comparisons at 10⁻¹⁷ -10⁻¹⁸.

2) Einstein effect: a new relativistic geodesy with optical clocks.

3) Earth potential fluctuations will limit the precision of time on ground at 10⁻¹⁸-10⁻¹⁹ (ie. cm - mm). Solution: have reference clock(s) in high Earth orbit where fluctuations are reduced.

4) Quantum Metrology will improve clock performance through quantum correlations.