Optical Clocks at 10^{-18} accuracy: challenges and applications

C. Salomon

CGPM 2022, Versailles, November 17, 2022
Never measure anything but frequency!

Arthur Schawlow advice to his students at Stanford

1981 Nobel prize laureate
Clock concept

Find a periodic phenomenon
1) Nature:
 observation: Earth rotation, pulsars,…
2) Human realization: example Galileo pendulum
 simple phenomenon described by a small number of parameters

\[T = 2\pi \sqrt{\frac{l}{g}} \]

Counting oscillations!
The shorter the period, the better is the precision of a time interval measurement

3) Optical clocks use electromagnetic signals oscillating with \(10^{15}\) cycles per second.

The physical signal is locked onto an atomic transition
The oscillator of frequency ν is locked to the frequency ν_A of a transition between two energy levels in an atom.
Current definition of the second: Cesium atomic fountain

\[E_e - E_f = h\nu_A \]

Planck –Einstein relation

Hyperfine transition at 9.2 GHz
Atoms at 1 microKelvin

Comparison between two fountains
Paris Observatory

Frequency stability at 10^{-16} after 5 to 10 days of averaging
Accuracy: agreement between the cesium frequencies: 2×10^{-16}
~ 12 fountains in the world are compared by GPS and optical fibers. Steer TAI computed by BIPM with an accuracy of 2×10^{-16}
Clock Figure of Merit

- Frequency: ν
- Resonance width and interaction time T
 $\Delta\nu = 1/2T$
- Signal to Noise ratio: $S/N \sim N_{at}^{1/2}$

$$\mathcal{F} = \frac{\nu}{\Delta\nu} \times S/N = 2 \nu T S/N$$

Microwave cesium fountain: $\mathcal{F} = 2 \times 10^{10} \times 0.5 \times 5000 = 5 \times 10^{13}$

Optical clocks: $\mathcal{F} = 2 \times 5 \times 10^{14} \times 1 \times 100 = 5 \times 10^{17}$

Trapped ion: $\text{Al}^+, \text{Yb}^+, \text{Hg}^+$, Ca^+, Lu^+,…..

Neutral atoms: $\text{Sr}, \text{Yb}, \text{Hg}, \text{Ca}, \text{Cd}$

NIST, PTB, NPL, SYRTE, NPL, RIKEN, NICT, Innsbruck, Seoul, Singapore,…..
Optical Clocks surpass cesium clocks by two orders of magnitude.
87 Strontium Optical Clocks

Non-perturbing lattice trap at magic wavelength: light shift of the clock transition vanishes

Magic wavelength λ_{magic}: polarizabilities are equal for both clock states

Clock transition: 698 nm
Lifetime \sim20 s

Nature, 602 420, 2022
Ye’s group
JILA

Laser cooled, atoms in lattice
Laser beam

3.1 second probe time

87 Strontium

Optical Clocks

Clock transition: 698 nm
Lifetime \sim20 s

Ye’s group
JILA

Laser cooled, atoms in lattice
Laser beam

Non-perturbing lattice trap at magic wavelength: light shift of the clock transition vanishes

Magic wavelength λ_{magic}: polarizabilities are equal for both clock states

Clock transition: 698 nm
Lifetime \sim20 s

Nature, 602 420, 2022
Ye’s group
JILA
Frequency Stability of Optical Atomic Clocks

Graph from C. Oates, NIST, Oct '19

1 cm of gravitational red shift

Applications in Earth geodesy
JILA ^{87}Sr OLC: measuring the differential gravitational shift over 1 mm sample

Two trap areas on same image: laser noise is common mode

Differential sensibility: 4.4×10^{-18} @1 s and 1×10^{-19} @2000 s

T. Bothwell,…
J. Ye, JILA, Nature, 602 420, 2022
Testing the Einstein effect with transportable optical clocks

\[\frac{\nu_2}{\nu_1} = \left(1 + \frac{U_2 - U_1}{c^2} \right) \]

Tokyo skytree
450 m radio tower

Katori et al., 2020
Testing the Einstein effect with transportable optical clocks

\[
\frac{v_2}{v_1} = \left(1 + \frac{U_2 - U_1}{c^2}\right)
\]

\[10^{-4}\] test near Earth surface
Quantum metrology: towards Heisenberg limit

The signal to noise ratio in fountains and OL clocks is at the quantum projection noise:

Uncorrelated atoms: frequency instability scales as $I/N^{1/2}$

N two-level atoms: spin $1/2$ ensemble forming a collective spin $|J| = N/2$

$$\Delta J_z, \Delta J_y \geq |J_x/2|$$

Spin squeezing: reduce variance in one direction, useful for measurement sensitivity
Kitagawa et Ueda, 1993, Wineland et al. 1994, approach I/N

LETTER Nature 2016

doi:10.1038/nature16176

Non destructive measurement of index of refraction of atoms in cavity mode: J_z
Quantum metrology

Gain in signal to noise: factor 10 for 5×10^5 atoms

Phase sensitivity: 147 microradians per cycle

This implies that at least 680 particles are entangled
20 dB noise reduction on variance
Towards an optical clock with correlated atoms

The current challenge: increase interaction time beyond 228 μs while preserving quantum correlations

Entanglement-Enhanced 171Yb Optical Atomic Clock

Vuletic, MIT Metrological gain: 4.4 dB
Optical clocks surpass microwave clocks by two orders of magnitude. They have daily fluctuations ~ 0.1 - 1 picosecond. New definition of the second is required.

3 options:

- One atomic species

- A combination of atomic transitions

 See J. Lodewyck, Metrologia 56, 055009 (2019)

- Fixing another fundamental constant such as electron mass

 See presentation of draft resolution E by N. Dimarcq
1) Optical fiber links and frequency combs enable *continental* optical clock comparisons at adequate level. Satellite missions like ACES will enable in 2025 *intercontinental* clock comparisons at $10^{-17} - 10^{-18}$.

2) Einstein effect: a new relativistic geodesy with optical clocks.

3) Earth potential fluctuations will limit the precision of time on ground at $10^{-18} - 10^{-19}$ (ie. cm - mm). Solution: have reference clock(s) in high Earth orbit where fluctuations are reduced.

4) Quantum Metrology will improve clock performance through quantum correlations.