

Accurate diagnostics as part of metrology readiness for potential future pandemic events

CCQM

Maria Zambon 16th November 2022

Recent emerging viruses 2020 SARS-CoV-2 (RNA)

NHS

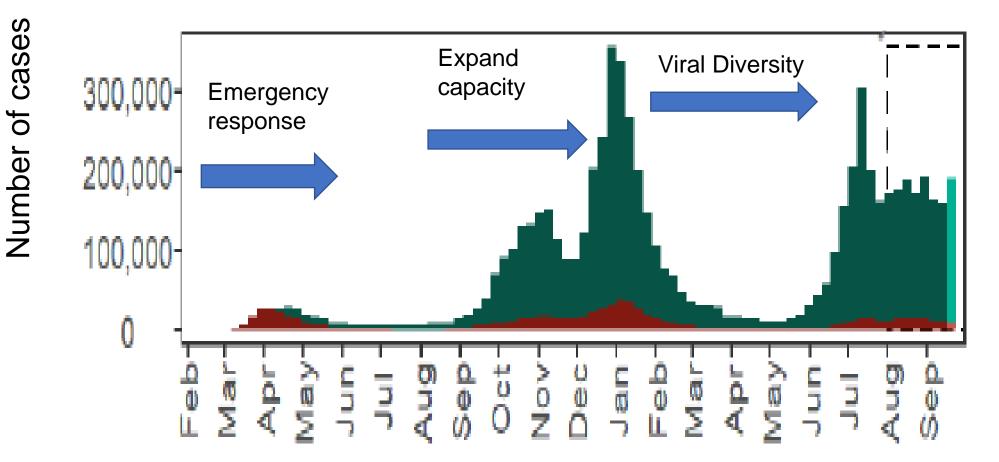
2022 Hepatitis of unknown aetiology

2022 Polio (RNA)

Polio found in Britain for first time in 40 years

Windows generation windows clivity remains toking and the set of the set of

2022 Monkeypox (DNA)



WHO chief: Monkeypox is a global emergency White House says spread

White House says spread in US can be contained

New Virus emergence Challenges for Diagnostics

Not every emerging virus leads to a pandemic, but the problems of diagnostic preparedness remain the same in the early stages

3

Phase of response	Challenge	Metrology readiness
Emergency New Virus Detected	New tests New reagents Quantitated Standards Industry support for scale up	 Methodologies & platforms that can rapidly adapt for provision of reagents Route for liaison to industry to provide standards
Expanding Capacity	Standards in quantity Panels of commutable materials	Scale up methods Documents & protocol templates
New variants	Industry response to new variants	Development of processes to help industry
Business as Usual	Improve preparedness	Methodology development Rehearsing capabilities

Aix+Marseille

Socialement engagée

ð.

5

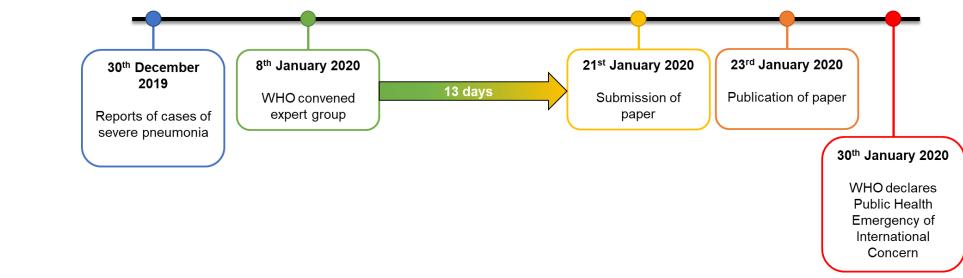
University

UK Health

Security

Agency

of Antwerp


Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR

Victor M Corman¹, Olfert Landt², Marco Kaiser³, Richard Molenkamp⁴, Adam Meijer⁵, Daniel KW Chu⁶, Tobias Bleicker¹, Sebastian Brünink¹, Julia Schneider¹, Marie Luisa Schmidt¹, Daphne GJC Mulders⁴, Bart L Haagmans⁴, Bas van der Veer⁵, Sharon van den Brink⁵, Lisa Wijsman⁵, Gabriel Goderski⁵, Jean-Louis Romette⁷, Joanna Ellis⁸, Maria Zambon⁸, Malik Peiris⁶, Herman Goossens⁹, Chantal Reusken⁵, Marion PG Koopmans⁴, Christian Drosten¹

- Charité Universitätsmedizin Berlin Institute of Virology, Berlin, Germany and German Centre for Infection Research (DZIF), Berlin, Germany
- 2. Tib-Molbiol, Berlin, Germany

RESEARCH

- 3. GenExpress GmbH, Berlin, Germany*
- 4. Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
- 5. National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- 6. University of Hong Kong, Hong Kong, China
- 7. Universite d Aix-Marseille, Marseille, France
- 8. Public Health England, London, United Kingdom
- 9. Department of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium

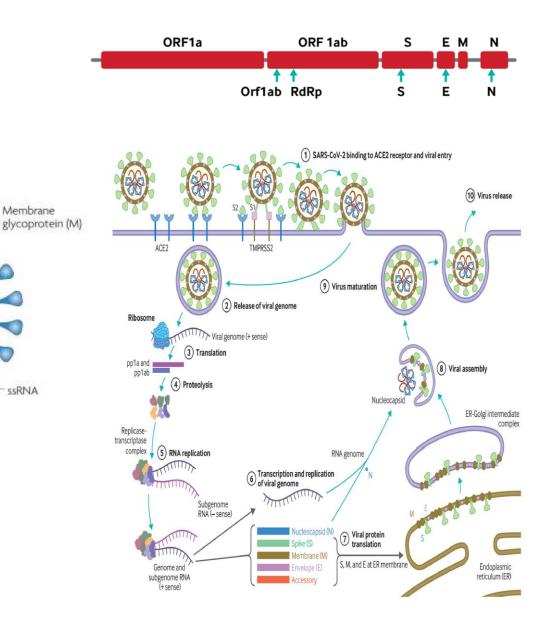
Materials to develop NAAT tests

Nucleocapsid

protein (N)

Spike

protein (S)


Envelope

protein (E)

- Knowledge of viral genome...sequence
- Reagents/enzymes/chemicals
- Template materials Virus particles Virus infected cells VLPs Recombinants

Transcribed RNA Other synthetic template

- Panels of clinical material
- Cannot distinguish between infectious and noninfectious virus.

Process of Diagnostic Test Development Performance assessment

Materials

- Quantitated materials...probit analysis for LoD
- Different virus controls...specificity
- Stored materials taken from appropriate clinical cases (specificity)
- Blinded panel of spiked clinical materials

Assurance

- Access to quantitated standards (RNA/virus/other)
- Purity of commercial reagents...contamination of key reagents
- Materials to assist quantitation/QC for laboratories starting to deliver a service

Documents

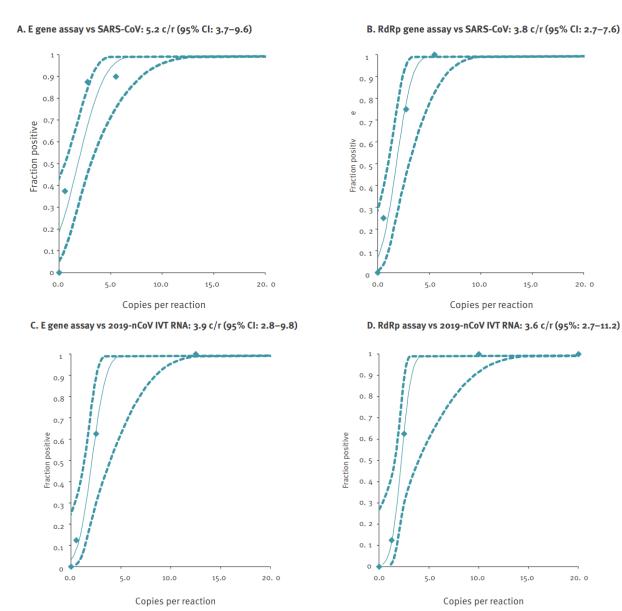

- Accessible documents that set out theories of assay development
- Instructions for laboratories to follow during implementation
- Template documents that can be adapted

FIGURE 3

Determination of limits of detection based on SARS coronavirus genomic RNA and 2019 novel coronavirus-specific in vitro transcribed RNA

20.0

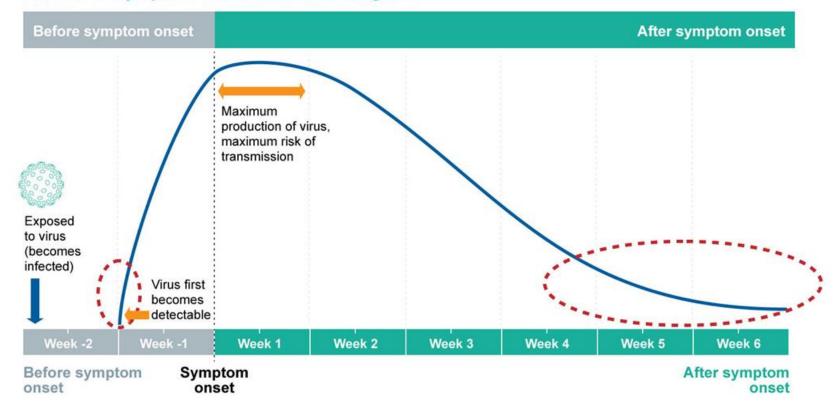
20.0

LoD work is critical

Need access to quantitated target materials

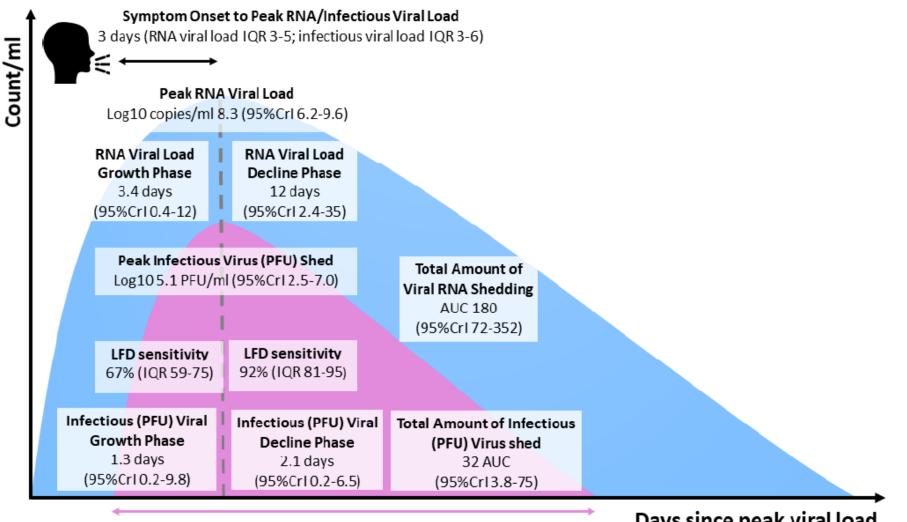
Infectious virus **Copy Numbers Transcribed RNA**

Corman et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3):pii=2000045. https://doi.org/10.2807/\560-7917.ES.2020.25.3.2000045

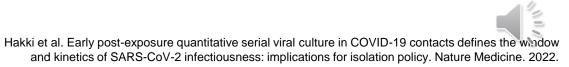

Clinical Understanding of kinetics of infection: Limit of Detection - False Positives & Negatives

Assurance of SARS-CoV-2 Positive and Indeterminate PCR Results During Periods of Low Prevalence

Public Health England


COVID-19 symptom onset schematic diagram

- unnecessary treatment and investigation
- > missing or delayed surgery
- unnecessary isolation and contact tracing with subsequent negative impact on workforce and resources
- a risk of subsequent increased exposure if the individual changes their behaviour as a result of believing that they have been infected
- the individual being placed with other inpatients with COVID-19 and consequently exposed to the virus.


Viral Kinetics

Duration of infectiousness, as measured by plaque assay 5 days (IQR 3-7)

53/57 contacts still shedding viral RNA beyond 7 days

Days since peak viral load

Clinical Importance: Test method sensitivity

LFDs

Loop Amp

Biorisk Management: Implications for assay development Example polio

GAP IV

- No propagative activity
- Destroy/transfer all PIMS
- No storage of polio containing materials
- No use of nucleic acid

ACDP

- Sabin 1 and 3 ACDP 2
- Sabin 2 ACDP class 2
- Can propagate under appropriate condition
- Can hold materials
- Can work with nucleic acid

Need surrogate templates

Can use virus materials

A ROADMAP TO METROLOGY READINESS FOR INFECTIOUS DISEASE PANDEMIC RESPONSE

QA NEEDS	GAPS	FUTURE PLANNING
Calibrated virus materials Synthetic RNA covering all targets	Pace & agility to meet massive expansion Distribution network	Rapid production of synthetic RNA
Diagnostic samples for evaluation work	Diagnostic samples for evaluation work Commutable materials Regulatory recognition	Preparation of simulated clinical samples
Sample types & sites	Inventories Performance characteristics	Comparison studies Pilot surveillance
EQAs	Rapid distribution Low copy number controls SMART analysis/middleware programmes for LIMS	Open-source software development
Proficiency panels	Rapid feedback	Panel preparation
Material suitable for mass testing outside laboratories	Easily distributed materials	Commercial providers linked to standards
Materials which account for viral diversity	Rapid provision of international standards	Rapid scale-up

CCQM

Acknowledgements

UKHSA Virology Reference Department

WHO Reference Laboratory Network

UKHSA regional laboratories

Molecular Diagnostics team (Joanna Ellis) Serology & Virus isolation (Robin Gopal) Regional Laboratories (Martin Curran) UKHSA Incident Management team

